MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresss Structured version   Visualization version   GIF version

Theorem dmresss 5959
Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Proof shortened and axiom usage reduced. (Proof shortened by AV, 15-May-2025.)
Assertion
Ref Expression
dmresss dom (𝐴𝐵) ⊆ dom 𝐴

Proof of Theorem dmresss
StepHypRef Expression
1 resss 5949 . 2 (𝐴𝐵) ⊆ 𝐴
2 dmss 5841 . 2 ((𝐴𝐵) ⊆ 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐴)
31, 2ax-mp 5 1 dom (𝐴𝐵) ⊆ dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3897  dom cdm 5614  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624  df-res 5626
This theorem is referenced by:  limsupresuz2  45817  liminfresuz2  45895  isubgruhgr  47978
  Copyright terms: Public domain W3C validator