MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresss Structured version   Visualization version   GIF version

Theorem dmresss 6029
Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Proof shortened and axiom usage reduced. (Proof shortened by AV, 15-May-2025.)
Assertion
Ref Expression
dmresss dom (𝐴𝐵) ⊆ dom 𝐴

Proof of Theorem dmresss
StepHypRef Expression
1 resss 6019 . 2 (𝐴𝐵) ⊆ 𝐴
2 dmss 5913 . 2 ((𝐴𝐵) ⊆ 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐴)
31, 2ax-mp 5 1 dom (𝐴𝐵) ⊆ dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3951  dom cdm 5685  cres 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-dm 5695  df-res 5697
This theorem is referenced by:  limsupresuz2  45724  liminfresuz2  45802  isubgruhgr  47854
  Copyright terms: Public domain W3C validator