Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmresss Structured version   Visualization version   GIF version

Theorem dmresss 42312
Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
dmresss dom (𝐴𝐵) ⊆ dom 𝐴

Proof of Theorem dmresss
StepHypRef Expression
1 dmres 5847 . 2 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 inss2 4120 . 2 (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴
31, 2eqsstri 3911 1 dom (𝐴𝐵) ⊆ dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  cin 3842  wss 3843  dom cdm 5525  cres 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-br 5031  df-opab 5093  df-xp 5531  df-dm 5535  df-res 5537
This theorem is referenced by:  limsupresuz2  42792  liminfresuz2  42870
  Copyright terms: Public domain W3C validator