| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresss | Structured version Visualization version GIF version | ||
| Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Proof shortened and axiom usage reduced. (Proof shortened by AV, 15-May-2025.) |
| Ref | Expression |
|---|---|
| dmresss | ⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5949 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 2 | dmss 5841 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ 𝐴 → dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 dom cdm 5614 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 df-res 5626 |
| This theorem is referenced by: limsupresuz2 45817 liminfresuz2 45895 isubgruhgr 47978 |
| Copyright terms: Public domain | W3C validator |