![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmresss | Structured version Visualization version GIF version |
Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Proof shortened and axiom usage reduced. (Proof shortened by AV, 15-May-2025.) |
Ref | Expression |
---|---|
dmresss | ⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6003 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | dmss 5901 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ 𝐴 → dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3948 dom cdm 5674 ↾ cres 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3421 df-v 3466 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5146 df-dm 5684 df-res 5686 |
This theorem is referenced by: limsupresuz2 45365 liminfresuz2 45443 isubgruhgr 47468 |
Copyright terms: Public domain | W3C validator |