Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmresss | Structured version Visualization version GIF version |
Description: The domain of a restriction is a subset of the original domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
dmresss | ⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5847 | . 2 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | inss2 4120 | . 2 ⊢ (𝐵 ∩ dom 𝐴) ⊆ dom 𝐴 | |
3 | 1, 2 | eqsstri 3911 | 1 ⊢ dom (𝐴 ↾ 𝐵) ⊆ dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3842 ⊆ wss 3843 dom cdm 5525 ↾ cres 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-dm 5535 df-res 5537 |
This theorem is referenced by: limsupresuz2 42792 liminfresuz2 42870 |
Copyright terms: Public domain | W3C validator |