Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmpt1d Structured version   Visualization version   GIF version

Theorem elrnmpt1d 42635
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrnmpt1d.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1d.2 (𝜑𝑥𝐴)
elrnmpt1d.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
elrnmpt1d (𝜑𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1d
StepHypRef Expression
1 elrnmpt1d.2 . 2 (𝜑𝑥𝐴)
2 elrnmpt1d.3 . 2 (𝜑𝐵𝑉)
3 elrnmpt1d.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43elrnmpt1 5855 . 2 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
51, 2, 4syl2anc 587 1 (𝜑𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cmpt 5152  ran crn 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5153  df-cnv 5587  df-dm 5589  df-rn 5590
This theorem is referenced by:  rnmptbd2lem  42656  rnmptbdlem  42663  rnmptss2  42665  rnmptssbi  42669  supminfxrrnmpt  42874
  Copyright terms: Public domain W3C validator