| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpt1d | Structured version Visualization version GIF version | ||
| Description: Elementhood in an image set. Deducion version of elrnmpt1 5945. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elrnmpt1d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpt1d.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| elrnmpt1d.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elrnmpt1d | ⊢ (𝜑 → 𝐵 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpt1d.2 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | elrnmpt1d.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | elrnmpt1d.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmpt1 5945 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐵 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: mptcnfimad 7990 elrgspnsubrunlem1 33247 rnmptbd2lem 45239 rnmptbdlem 45246 rnmptss2 45248 rnmptssbi 45251 supminfxrrnmpt 45465 sge0f1o 46378 |
| Copyright terms: Public domain | W3C validator |