![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnmpt1d | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elrnmpt1d.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpt1d.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
elrnmpt1d.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
elrnmpt1d | ⊢ (𝜑 → 𝐵 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpt1d.2 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | elrnmpt1d.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
3 | elrnmpt1d.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmpt1 5578 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) |
5 | 1, 2, 4 | syl2anc 580 | 1 ⊢ (𝜑 → 𝐵 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4922 ran crn 5313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-mpt 4923 df-cnv 5320 df-dm 5322 df-rn 5323 |
This theorem is referenced by: rnmptss2 40219 rnmptssbi 40224 supminfxrrnmpt 40444 |
Copyright terms: Public domain | W3C validator |