MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1d Structured version   Visualization version   GIF version

Theorem elrnmpt1d 5917
Description: Elementhood in an image set. Deducion version of elrnmpt1 5913. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrnmpt1d.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1d.2 (𝜑𝑥𝐴)
elrnmpt1d.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
elrnmpt1d (𝜑𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1d
StepHypRef Expression
1 elrnmpt1d.2 . 2 (𝜑𝑥𝐴)
2 elrnmpt1d.3 . 2 (𝜑𝐵𝑉)
3 elrnmpt1d.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43elrnmpt1 5913 . 2 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
51, 2, 4syl2anc 584 1 (𝜑𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5183  ran crn 5632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  mptcnfimad  7944  elrgspnsubrunlem1  33214  rnmptbd2lem  45235  rnmptbdlem  45242  rnmptss2  45244  rnmptssbi  45247  supminfxrrnmpt  45460  sge0f1o  46373
  Copyright terms: Public domain W3C validator