MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1d Structured version   Visualization version   GIF version

Theorem elrnmpt1d 5931
Description: Elementhood in an image set. Deducion version of elrnmpt1 5927. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
elrnmpt1d.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1d.2 (𝜑𝑥𝐴)
elrnmpt1d.3 (𝜑𝐵𝑉)
Assertion
Ref Expression
elrnmpt1d (𝜑𝐵 ∈ ran 𝐹)

Proof of Theorem elrnmpt1d
StepHypRef Expression
1 elrnmpt1d.2 . 2 (𝜑𝑥𝐴)
2 elrnmpt1d.3 . 2 (𝜑𝐵𝑉)
3 elrnmpt1d.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43elrnmpt1 5927 . 2 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
51, 2, 4syl2anc 584 1 (𝜑𝐵 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5191  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  mptcnfimad  7968  elrgspnsubrunlem1  33205  rnmptbd2lem  45249  rnmptbdlem  45256  rnmptss2  45258  rnmptssbi  45261  supminfxrrnmpt  45474  sge0f1o  46387
  Copyright terms: Public domain W3C validator