Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptssf | Structured version Visualization version GIF version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
dmmptssf.1 | ⊢ Ⅎ𝑥𝐴 |
dmmptssf.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptssf | ⊢ dom 𝐹 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptssf.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6178 | . 2 ⊢ dom 𝐹 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | dmmptssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | ssrab2f 42995 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
5 | 2, 4 | eqsstri 3966 | 1 ⊢ dom 𝐹 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Ⅎwnfc 2884 {crab 3403 Vcvv 3441 ⊆ wss 3898 ↦ cmpt 5175 dom cdm 5620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-mpt 5176 df-xp 5626 df-rel 5627 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 |
This theorem is referenced by: limsupequzmpt2 43603 liminfequzmpt2 43676 |
Copyright terms: Public domain | W3C validator |