Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptssf Structured version   Visualization version   GIF version

Theorem dmmptssf 45233
Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
dmmptssf.1 𝑥𝐴
dmmptssf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptssf dom 𝐹𝐴

Proof of Theorem dmmptssf
StepHypRef Expression
1 dmmptssf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6216 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 dmmptssf.1 . . 3 𝑥𝐴
43ssrab2f 45118 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
52, 4eqsstri 3996 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wnfc 2877  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  rn1st  45274  limsupequzmpt2  45723  liminfequzmpt2  45796
  Copyright terms: Public domain W3C validator