Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptssf Structured version   Visualization version   GIF version

Theorem dmmptssf 43111
Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
dmmptssf.1 𝑥𝐴
dmmptssf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptssf dom 𝐹𝐴

Proof of Theorem dmmptssf
StepHypRef Expression
1 dmmptssf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6178 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 dmmptssf.1 . . 3 𝑥𝐴
43ssrab2f 42995 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
52, 4eqsstri 3966 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wnfc 2884  {crab 3403  Vcvv 3441  wss 3898  cmpt 5175  dom cdm 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-mpt 5176  df-xp 5626  df-rel 5627  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633
This theorem is referenced by:  limsupequzmpt2  43603  liminfequzmpt2  43676
  Copyright terms: Public domain W3C validator