Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptssf Structured version   Visualization version   GIF version

Theorem dmmptssf 42664
Description: The domain of a mapping is a subset of its base class. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
dmmptssf.1 𝑥𝐴
dmmptssf.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptssf dom 𝐹𝐴

Proof of Theorem dmmptssf
StepHypRef Expression
1 dmmptssf.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21dmmpt 6132 . 2 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
3 dmmptssf.1 . . 3 𝑥𝐴
43ssrab2f 42555 . 2 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
52, 4eqsstri 3951 1 dom 𝐹𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wnfc 2886  {crab 3067  Vcvv 3422  wss 3883  cmpt 5153  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  limsupequzmpt2  43149  liminfequzmpt2  43222
  Copyright terms: Public domain W3C validator