Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domepOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of dmep 5821 as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
domepOLD | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2016 | . . . 4 ⊢ 𝑥 = 𝑥 | |
2 | el 5287 | . . . . 5 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5489 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1851 | . . . . 5 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 230 | . . . 4 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | 1, 5 | 2th 263 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ∃𝑦 𝑥 E 𝑦) |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} |
8 | df-v 3424 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | df-dm 5590 | . 2 ⊢ dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} | |
10 | 7, 8, 9 | 3eqtr4ri 2777 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 {cab 2715 Vcvv 3422 class class class wbr 5070 E cep 5485 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-dm 5590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |