Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domepOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of dmep 5792 as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
domepOLD | ⊢ dom E = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 2020 | . . . 4 ⊢ 𝑥 = 𝑥 | |
2 | el 5262 | . . . . 5 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | |
3 | epel 5463 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
4 | 3 | exbii 1855 | . . . . 5 ⊢ (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥 ∈ 𝑦) |
5 | 2, 4 | mpbir 234 | . . . 4 ⊢ ∃𝑦 𝑥 E 𝑦 |
6 | 1, 5 | 2th 267 | . . 3 ⊢ (𝑥 = 𝑥 ↔ ∃𝑦 𝑥 E 𝑦) |
7 | 6 | abbii 2808 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} |
8 | df-v 3410 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
9 | df-dm 5561 | . 2 ⊢ dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦} | |
10 | 7, 8, 9 | 3eqtr4ri 2776 | 1 ⊢ dom E = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∃wex 1787 {cab 2714 Vcvv 3408 class class class wbr 5053 E cep 5459 dom cdm 5551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-eprel 5460 df-dm 5561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |