MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domepOLD Structured version   Visualization version   GIF version

Theorem domepOLD 5833
Description: Obsolete proof of dmep 5832 as of 26-Dec-2023. (Contributed by Scott Fenton, 27-Oct-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
domepOLD dom E = V

Proof of Theorem domepOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equid 2015 . . . 4 𝑥 = 𝑥
2 el 5357 . . . . 5 𝑦 𝑥𝑦
3 epel 5498 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
43exbii 1850 . . . . 5 (∃𝑦 𝑥 E 𝑦 ↔ ∃𝑦 𝑥𝑦)
52, 4mpbir 230 . . . 4 𝑦 𝑥 E 𝑦
61, 52th 263 . . 3 (𝑥 = 𝑥 ↔ ∃𝑦 𝑥 E 𝑦)
76abbii 2808 . 2 {𝑥𝑥 = 𝑥} = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦}
8 df-v 3434 . 2 V = {𝑥𝑥 = 𝑥}
9 df-dm 5599 . 2 dom E = {𝑥 ∣ ∃𝑦 𝑥 E 𝑦}
107, 8, 93eqtr4ri 2777 1 dom E = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1782  {cab 2715  Vcvv 3432   class class class wbr 5074   E cep 5494  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-dm 5599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator