![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drsbn0 | Structured version Visualization version GIF version |
Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
drsbn0.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
drsbn0 | ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2771 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | 1, 2 | isdrs 17142 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Preset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
4 | 3 | simp2bi 1140 | 1 ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 ∅c0 4063 class class class wbr 4786 ‘cfv 6031 Basecbs 16064 lecple 16156 Preset cpreset 17134 Dirsetcdrs 17135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4923 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-drs 17137 |
This theorem is referenced by: drsdirfi 17146 isipodrs 17369 |
Copyright terms: Public domain | W3C validator |