| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drsbn0 | Structured version Visualization version GIF version | ||
| Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| drsbn0.b | ⊢ 𝐵 = (Base‘𝐾) |
| Ref | Expression |
|---|---|
| drsbn0 | ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | isdrs 18207 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 Proset cproset 18198 Dirsetcdrs 18199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-drs 18201 |
| This theorem is referenced by: drsdirfi 18211 isipodrs 18443 |
| Copyright terms: Public domain | W3C validator |