| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drsbn0 | Structured version Visualization version GIF version | ||
| Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| drsbn0.b | ⊢ 𝐵 = (Base‘𝐾) |
| Ref | Expression |
|---|---|
| drsbn0 | ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2735 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | isdrs 18313 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Proset cproset 18304 Dirsetcdrs 18305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-drs 18307 |
| This theorem is referenced by: drsdirfi 18317 isipodrs 18547 |
| Copyright terms: Public domain | W3C validator |