MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsbn0 Structured version   Visualization version   GIF version

Theorem drsbn0 18263
Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
drsbn0.b 𝐡 = (Baseβ€˜πΎ)
Assertion
Ref Expression
drsbn0 (𝐾 ∈ Dirset β†’ 𝐡 β‰  βˆ…)

Proof of Theorem drsbn0
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsbn0.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2730 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
31, 2isdrs 18260 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐡 β‰  βˆ… ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (π‘₯(leβ€˜πΎ)𝑧 ∧ 𝑦(leβ€˜πΎ)𝑧)))
43simp2bi 1144 1 (𝐾 ∈ Dirset β†’ 𝐡 β‰  βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  βˆ…c0 4323   class class class wbr 5149  β€˜cfv 6544  Basecbs 17150  lecple 17210   Proset cproset 18252  Dirsetcdrs 18253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-drs 18255
This theorem is referenced by:  drsdirfi  18264  isipodrs  18496
  Copyright terms: Public domain W3C validator