MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsbn0 Structured version   Visualization version   GIF version

Theorem drsbn0 18265
Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
drsbn0 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)

Proof of Theorem drsbn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsbn0.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2isdrs 18262 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑧𝑦(le‘𝐾)𝑧)))
43simp2bi 1146 1 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253  Dirsetcdrs 18254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-drs 18256
This theorem is referenced by:  drsdirfi  18266  isipodrs  18496
  Copyright terms: Public domain W3C validator