MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsbn0 Structured version   Visualization version   GIF version

Theorem drsbn0 18316
Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
drsbn0 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)

Proof of Theorem drsbn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsbn0.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2735 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2isdrs 18313 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑧𝑦(le‘𝐾)𝑧)))
43simp2bi 1146 1 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  c0 4308   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278   Proset cproset 18304  Dirsetcdrs 18305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-drs 18307
This theorem is referenced by:  drsdirfi  18317  isipodrs  18547
  Copyright terms: Public domain W3C validator