| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drsbn0 | Structured version Visualization version GIF version | ||
| Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| drsbn0.b | ⊢ 𝐵 = (Base‘𝐾) |
| Ref | Expression |
|---|---|
| drsbn0 | ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drsbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | isdrs 18207 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐵 (𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐾 ∈ Dirset → 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 Proset cproset 18198 Dirsetcdrs 18199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-drs 18201 |
| This theorem is referenced by: drsdirfi 18211 isipodrs 18443 |
| Copyright terms: Public domain | W3C validator |