MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsprs Structured version   Visualization version   GIF version

Theorem drsprs 18240
Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
drsprs (𝐾 ∈ Dirset → 𝐾 ∈ Proset )

Proof of Theorem drsprs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2isdrs 18238 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (Base‘𝐾) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑧𝑦(le‘𝐾)𝑧)))
43simp1bi 1145 1 (𝐾 ∈ Dirset → 𝐾 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4292   class class class wbr 5102  cfv 6499  Basecbs 17155  lecple 17203   Proset cproset 18229  Dirsetcdrs 18230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-drs 18232
This theorem is referenced by:  drsdirfi  18242  isdrs2  18243
  Copyright terms: Public domain W3C validator