![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drsprs | Structured version Visualization version GIF version |
Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
drsprs | ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | 1, 2 | isdrs 18371 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (Base‘𝐾) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
4 | 3 | simp1bi 1145 | 1 ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Proset cproset 18363 Dirsetcdrs 18364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-drs 18366 |
This theorem is referenced by: drsdirfi 18375 isdrs2 18376 |
Copyright terms: Public domain | W3C validator |