Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > drsprs | Structured version Visualization version GIF version |
Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
drsprs | ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | 1, 2 | isdrs 18019 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (Base‘𝐾) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
4 | 3 | simp1bi 1144 | 1 ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∅c0 4256 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Proset cproset 18011 Dirsetcdrs 18012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-drs 18014 |
This theorem is referenced by: drsdirfi 18023 isdrs2 18024 |
Copyright terms: Public domain | W3C validator |