| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drsprs | Structured version Visualization version GIF version | ||
| Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| drsprs | ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | 1, 2 | isdrs 18262 | . 2 ⊢ (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (Base‘𝐾) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑧 ∧ 𝑦(le‘𝐾)𝑧))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐾 ∈ Dirset → 𝐾 ∈ Proset ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Proset cproset 18253 Dirsetcdrs 18254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-drs 18256 |
| This theorem is referenced by: drsdirfi 18266 isdrs2 18267 |
| Copyright terms: Public domain | W3C validator |