MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsprs Structured version   Visualization version   GIF version

Theorem drsprs 18260
Description: A directed set is a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
drsprs (𝐾 ∈ Dirset β†’ 𝐾 ∈ Proset )

Proof of Theorem drsprs
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2732 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
31, 2isdrs 18258 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ (Baseβ€˜πΎ) β‰  βˆ… ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)βˆƒπ‘§ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑧 ∧ 𝑦(leβ€˜πΎ)𝑧)))
43simp1bi 1145 1 (𝐾 ∈ Dirset β†’ 𝐾 ∈ Proset )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  Basecbs 17148  lecple 17208   Proset cproset 18250  Dirsetcdrs 18251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-drs 18253
This theorem is referenced by:  drsdirfi  18262  isdrs2  18263
  Copyright terms: Public domain W3C validator