MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   GIF version

Theorem isipodrs 18607
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Distinct variable group:   𝑧,𝐴,𝑥,𝑦

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2740 . . . . 5 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
21drsbn0 18374 . . . 4 ((toInc‘𝐴) ∈ Dirset → (Base‘(toInc‘𝐴)) ≠ ∅)
32neneqd 2951 . . 3 ((toInc‘𝐴) ∈ Dirset → ¬ (Base‘(toInc‘𝐴)) = ∅)
4 fvprc 6912 . . . . 5 𝐴 ∈ V → (toInc‘𝐴) = ∅)
54fveq2d 6924 . . . 4 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = (Base‘∅))
6 base0 17263 . . . 4 ∅ = (Base‘∅)
75, 6eqtr4di 2798 . . 3 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = ∅)
83, 7nsyl2 141 . 2 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
9 simp1 1136 . 2 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) → 𝐴 ∈ V)
10 eqid 2740 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
111, 10isdrs 18371 . . 3 ((toInc‘𝐴) ∈ Dirset ↔ ((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
12 eqid 2740 . . . . . . . 8 (toInc‘𝐴) = (toInc‘𝐴)
1312ipopos 18606 . . . . . . 7 (toInc‘𝐴) ∈ Poset
14 posprs 18386 . . . . . . 7 ((toInc‘𝐴) ∈ Poset → (toInc‘𝐴) ∈ Proset )
1513, 14mp1i 13 . . . . . 6 (𝐴 ∈ V → (toInc‘𝐴) ∈ Proset )
16 id 22 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
1715, 162thd 265 . . . . 5 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Proset ↔ 𝐴 ∈ V))
1812ipobas 18601 . . . . . . 7 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
19 neeq1 3009 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (𝐴 ≠ ∅ ↔ (Base‘(toInc‘𝐴)) ≠ ∅))
20 rexeq 3330 . . . . . . . . . 10 (𝐴 = (Base‘(toInc‘𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2120raleqbi1dv 3346 . . . . . . . . 9 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2221raleqbi1dv 3346 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2319, 22anbi12d 631 . . . . . . 7 (𝐴 = (Base‘(toInc‘𝐴)) → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
2418, 23syl 17 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
25 simpll 766 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐴 ∈ V)
26 simplrl 776 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
27 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
2812, 10ipole 18604 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑥𝐴𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
2925, 26, 27, 28syl3anc 1371 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
30 simplrr 777 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
3112, 10ipole 18604 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑦𝐴𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3225, 30, 27, 31syl3anc 1371 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3329, 32anbi12d 631 . . . . . . . . . 10 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑧𝑦𝑧)))
34 unss 4213 . . . . . . . . . 10 ((𝑥𝑧𝑦𝑧) ↔ (𝑥𝑦) ⊆ 𝑧)
3533, 34bitrdi 287 . . . . . . . . 9 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑦) ⊆ 𝑧))
3635rexbidva 3183 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
37362ralbidva 3225 . . . . . . 7 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
3837anbi2d 629 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
3924, 38bitr3d 281 . . . . 5 (𝐴 ∈ V → (((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4017, 39anbi12d 631 . . . 4 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))))
41 3anass 1095 . . . 4 (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
42 3anass 1095 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4340, 41, 423bitr4g 314 . . 3 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4411, 43bitrid 283 . 2 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
458, 9, 44pm5.21nii 378 1 ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318   Proset cproset 18363  Dirsetcdrs 18364  Posetcpo 18377  toInccipo 18597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598
This theorem is referenced by:  ipodrscl  18608  fpwipodrs  18610  ipodrsima  18611  nacsfix  42668
  Copyright terms: Public domain W3C validator