MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   GIF version

Theorem isipodrs 18435
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Distinct variable group:   𝑧,𝐴,𝑥,𝑦

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2730 . . . . 5 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
21drsbn0 18202 . . . 4 ((toInc‘𝐴) ∈ Dirset → (Base‘(toInc‘𝐴)) ≠ ∅)
32neneqd 2931 . . 3 ((toInc‘𝐴) ∈ Dirset → ¬ (Base‘(toInc‘𝐴)) = ∅)
4 fvprc 6809 . . . . 5 𝐴 ∈ V → (toInc‘𝐴) = ∅)
54fveq2d 6821 . . . 4 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = (Base‘∅))
6 base0 17117 . . . 4 ∅ = (Base‘∅)
75, 6eqtr4di 2783 . . 3 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = ∅)
83, 7nsyl2 141 . 2 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
9 simp1 1136 . 2 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) → 𝐴 ∈ V)
10 eqid 2730 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
111, 10isdrs 18199 . . 3 ((toInc‘𝐴) ∈ Dirset ↔ ((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
12 eqid 2730 . . . . . . . 8 (toInc‘𝐴) = (toInc‘𝐴)
1312ipopos 18434 . . . . . . 7 (toInc‘𝐴) ∈ Poset
14 posprs 18214 . . . . . . 7 ((toInc‘𝐴) ∈ Poset → (toInc‘𝐴) ∈ Proset )
1513, 14mp1i 13 . . . . . 6 (𝐴 ∈ V → (toInc‘𝐴) ∈ Proset )
16 id 22 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
1715, 162thd 265 . . . . 5 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Proset ↔ 𝐴 ∈ V))
1812ipobas 18429 . . . . . . 7 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
19 neeq1 2988 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (𝐴 ≠ ∅ ↔ (Base‘(toInc‘𝐴)) ≠ ∅))
20 rexeq 3286 . . . . . . . . . 10 (𝐴 = (Base‘(toInc‘𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2120raleqbi1dv 3302 . . . . . . . . 9 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2221raleqbi1dv 3302 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2319, 22anbi12d 632 . . . . . . 7 (𝐴 = (Base‘(toInc‘𝐴)) → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
2418, 23syl 17 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
25 simpll 766 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐴 ∈ V)
26 simplrl 776 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
27 simpr 484 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
2812, 10ipole 18432 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑥𝐴𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
2925, 26, 27, 28syl3anc 1373 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
30 simplrr 777 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
3112, 10ipole 18432 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑦𝐴𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3225, 30, 27, 31syl3anc 1373 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3329, 32anbi12d 632 . . . . . . . . . 10 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑧𝑦𝑧)))
34 unss 4138 . . . . . . . . . 10 ((𝑥𝑧𝑦𝑧) ↔ (𝑥𝑦) ⊆ 𝑧)
3533, 34bitrdi 287 . . . . . . . . 9 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑦) ⊆ 𝑧))
3635rexbidva 3152 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
37362ralbidva 3192 . . . . . . 7 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
3837anbi2d 630 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
3924, 38bitr3d 281 . . . . 5 (𝐴 ∈ V → (((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4017, 39anbi12d 632 . . . 4 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))))
41 3anass 1094 . . . 4 (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
42 3anass 1094 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4340, 41, 423bitr4g 314 . . 3 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4411, 43bitrid 283 . 2 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
458, 9, 44pm5.21nii 378 1 ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  Vcvv 3434  cun 3898  wss 3900  c0 4281   class class class wbr 5089  cfv 6477  Basecbs 17112  lecple 17160   Proset cproset 18190  Dirsetcdrs 18191  Posetcpo 18205  toInccipo 18425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-tset 17172  df-ple 17173  df-ocomp 17174  df-proset 18192  df-drs 18193  df-poset 18211  df-ipo 18426
This theorem is referenced by:  ipodrscl  18436  fpwipodrs  18438  ipodrsima  18439  nacsfix  42724
  Copyright terms: Public domain W3C validator