MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   GIF version

Theorem isipodrs 17765
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Distinct variable group:   𝑧,𝐴,𝑥,𝑦

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2821 . . . . 5 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
21drsbn0 17541 . . . 4 ((toInc‘𝐴) ∈ Dirset → (Base‘(toInc‘𝐴)) ≠ ∅)
32neneqd 3021 . . 3 ((toInc‘𝐴) ∈ Dirset → ¬ (Base‘(toInc‘𝐴)) = ∅)
4 fvprc 6657 . . . . 5 𝐴 ∈ V → (toInc‘𝐴) = ∅)
54fveq2d 6668 . . . 4 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = (Base‘∅))
6 base0 16530 . . . 4 ∅ = (Base‘∅)
75, 6syl6eqr 2874 . . 3 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = ∅)
83, 7nsyl2 143 . 2 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
9 simp1 1132 . 2 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) → 𝐴 ∈ V)
10 eqid 2821 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
111, 10isdrs 17538 . . 3 ((toInc‘𝐴) ∈ Dirset ↔ ((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
12 eqid 2821 . . . . . . . 8 (toInc‘𝐴) = (toInc‘𝐴)
1312ipopos 17764 . . . . . . 7 (toInc‘𝐴) ∈ Poset
14 posprs 17553 . . . . . . 7 ((toInc‘𝐴) ∈ Poset → (toInc‘𝐴) ∈ Proset )
1513, 14mp1i 13 . . . . . 6 (𝐴 ∈ V → (toInc‘𝐴) ∈ Proset )
16 id 22 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
1715, 162thd 267 . . . . 5 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Proset ↔ 𝐴 ∈ V))
1812ipobas 17759 . . . . . . 7 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
19 neeq1 3078 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (𝐴 ≠ ∅ ↔ (Base‘(toInc‘𝐴)) ≠ ∅))
20 rexeq 3406 . . . . . . . . . 10 (𝐴 = (Base‘(toInc‘𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2120raleqbi1dv 3403 . . . . . . . . 9 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2221raleqbi1dv 3403 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2319, 22anbi12d 632 . . . . . . 7 (𝐴 = (Base‘(toInc‘𝐴)) → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
2418, 23syl 17 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
25 simpll 765 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐴 ∈ V)
26 simplrl 775 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
27 simpr 487 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
2812, 10ipole 17762 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑥𝐴𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
2925, 26, 27, 28syl3anc 1367 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
30 simplrr 776 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
3112, 10ipole 17762 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑦𝐴𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3225, 30, 27, 31syl3anc 1367 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3329, 32anbi12d 632 . . . . . . . . . 10 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑧𝑦𝑧)))
34 unss 4159 . . . . . . . . . 10 ((𝑥𝑧𝑦𝑧) ↔ (𝑥𝑦) ⊆ 𝑧)
3533, 34syl6bb 289 . . . . . . . . 9 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑦) ⊆ 𝑧))
3635rexbidva 3296 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
37362ralbidva 3198 . . . . . . 7 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
3837anbi2d 630 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
3924, 38bitr3d 283 . . . . 5 (𝐴 ∈ V → (((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4017, 39anbi12d 632 . . . 4 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))))
41 3anass 1091 . . . 4 (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
42 3anass 1091 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4340, 41, 423bitr4g 316 . . 3 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4411, 43syl5bb 285 . 2 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
458, 9, 44pm5.21nii 382 1 ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cun 3933  wss 3935  c0 4290   class class class wbr 5058  cfv 6349  Basecbs 16477  lecple 16566   Proset cproset 17530  Dirsetcdrs 17531  Posetcpo 17544  toInccipo 17755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-tset 16578  df-ple 16579  df-ocomp 16580  df-proset 17532  df-drs 17533  df-poset 17550  df-ipo 17756
This theorem is referenced by:  ipodrscl  17766  fpwipodrs  17768  ipodrsima  17769  nacsfix  39302
  Copyright terms: Public domain W3C validator