MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   GIF version

Theorem isipodrs 18426
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Distinct variable group:   𝑧,𝐴,𝑥,𝑦

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘(toInc‘𝐴)) = (Base‘(toInc‘𝐴))
21drsbn0 18193 . . . 4 ((toInc‘𝐴) ∈ Dirset → (Base‘(toInc‘𝐴)) ≠ ∅)
32neneqd 2948 . . 3 ((toInc‘𝐴) ∈ Dirset → ¬ (Base‘(toInc‘𝐴)) = ∅)
4 fvprc 6834 . . . . 5 𝐴 ∈ V → (toInc‘𝐴) = ∅)
54fveq2d 6846 . . . 4 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = (Base‘∅))
6 base0 17088 . . . 4 ∅ = (Base‘∅)
75, 6eqtr4di 2794 . . 3 𝐴 ∈ V → (Base‘(toInc‘𝐴)) = ∅)
83, 7nsyl2 141 . 2 ((toInc‘𝐴) ∈ Dirset → 𝐴 ∈ V)
9 simp1 1136 . 2 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) → 𝐴 ∈ V)
10 eqid 2736 . . . 4 (le‘(toInc‘𝐴)) = (le‘(toInc‘𝐴))
111, 10isdrs 18190 . . 3 ((toInc‘𝐴) ∈ Dirset ↔ ((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
12 eqid 2736 . . . . . . . 8 (toInc‘𝐴) = (toInc‘𝐴)
1312ipopos 18425 . . . . . . 7 (toInc‘𝐴) ∈ Poset
14 posprs 18205 . . . . . . 7 ((toInc‘𝐴) ∈ Poset → (toInc‘𝐴) ∈ Proset )
1513, 14mp1i 13 . . . . . 6 (𝐴 ∈ V → (toInc‘𝐴) ∈ Proset )
16 id 22 . . . . . 6 (𝐴 ∈ V → 𝐴 ∈ V)
1715, 162thd 264 . . . . 5 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Proset ↔ 𝐴 ∈ V))
1812ipobas 18420 . . . . . . 7 (𝐴 ∈ V → 𝐴 = (Base‘(toInc‘𝐴)))
19 neeq1 3006 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (𝐴 ≠ ∅ ↔ (Base‘(toInc‘𝐴)) ≠ ∅))
20 rexeq 3310 . . . . . . . . . 10 (𝐴 = (Base‘(toInc‘𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2120raleqbi1dv 3307 . . . . . . . . 9 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2221raleqbi1dv 3307 . . . . . . . 8 (𝐴 = (Base‘(toInc‘𝐴)) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)))
2319, 22anbi12d 631 . . . . . . 7 (𝐴 = (Base‘(toInc‘𝐴)) → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
2418, 23syl 17 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
25 simpll 765 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝐴 ∈ V)
26 simplrl 775 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑥𝐴)
27 simpr 485 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑧𝐴)
2812, 10ipole 18423 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑥𝐴𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
2925, 26, 27, 28syl3anc 1371 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑥(le‘(toInc‘𝐴))𝑧𝑥𝑧))
30 simplrr 776 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → 𝑦𝐴)
3112, 10ipole 18423 . . . . . . . . . . . 12 ((𝐴 ∈ V ∧ 𝑦𝐴𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3225, 30, 27, 31syl3anc 1371 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → (𝑦(le‘(toInc‘𝐴))𝑧𝑦𝑧))
3329, 32anbi12d 631 . . . . . . . . . 10 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑧𝑦𝑧)))
34 unss 4144 . . . . . . . . . 10 ((𝑥𝑧𝑦𝑧) ↔ (𝑥𝑦) ⊆ 𝑧)
3533, 34bitrdi 286 . . . . . . . . 9 (((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ (𝑥𝑦) ⊆ 𝑧))
3635rexbidva 3173 . . . . . . . 8 ((𝐴 ∈ V ∧ (𝑥𝐴𝑦𝐴)) → (∃𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∃𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
37362ralbidva 3210 . . . . . . 7 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
3837anbi2d 629 . . . . . 6 (𝐴 ∈ V → ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
3924, 38bitr3d 280 . . . . 5 (𝐴 ∈ V → (((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4017, 39anbi12d 631 . . . 4 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))))
41 3anass 1095 . . . 4 (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ ((toInc‘𝐴) ∈ Proset ∧ ((Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧))))
42 3anass 1095 . . . 4 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧) ↔ (𝐴 ∈ V ∧ (𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4340, 41, 423bitr4g 313 . . 3 (𝐴 ∈ V → (((toInc‘𝐴) ∈ Proset ∧ (Base‘(toInc‘𝐴)) ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(toInc‘𝐴))∀𝑦 ∈ (Base‘(toInc‘𝐴))∃𝑧 ∈ (Base‘(toInc‘𝐴))(𝑥(le‘(toInc‘𝐴))𝑧𝑦(le‘(toInc‘𝐴))𝑧)) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
4411, 43bitrid 282 . 2 (𝐴 ∈ V → ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧)))
458, 9, 44pm5.21nii 379 1 ((toInc‘𝐴) ∈ Dirset ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑦) ⊆ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cun 3908  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  Basecbs 17083  lecple 17140   Proset cproset 18182  Dirsetcdrs 18183  Posetcpo 18196  toInccipo 18416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-tset 17152  df-ple 17153  df-ocomp 17154  df-proset 18184  df-drs 18185  df-poset 18202  df-ipo 18417
This theorem is referenced by:  ipodrscl  18427  fpwipodrs  18429  ipodrsima  18430  nacsfix  41021
  Copyright terms: Public domain W3C validator