MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdirfi Structured version   Visualization version   GIF version

Theorem drsdirfi 17766
Description: Any finite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs 17757 first comes into play; without it we would need an additional constraint that 𝑋 not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
drsdirfi.l = (le‘𝐾)
Assertion
Ref Expression
drsdirfi ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑋 ∈ Fin) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦)
Distinct variable groups:   𝑦,𝐾,𝑧   𝑦,𝐵,𝑧   𝑦, ,𝑧   𝑦,𝑋,𝑧

Proof of Theorem drsdirfi
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3912 . . . . . 6 (𝑎 = ∅ → (𝑎𝐵 ↔ ∅ ⊆ 𝐵))
21anbi2d 632 . . . . 5 (𝑎 = ∅ → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵)))
3 raleq 3309 . . . . . 6 (𝑎 = ∅ → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧 ∈ ∅ 𝑧 𝑦))
43rexbidv 3206 . . . . 5 (𝑎 = ∅ → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
52, 4imbi12d 348 . . . 4 (𝑎 = ∅ → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)))
6 sseq1 3912 . . . . . 6 (𝑎 = 𝑏 → (𝑎𝐵𝑏𝐵))
76anbi2d 632 . . . . 5 (𝑎 = 𝑏 → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ 𝑏𝐵)))
8 raleq 3309 . . . . . 6 (𝑎 = 𝑏 → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧𝑏 𝑧 𝑦))
98rexbidv 3206 . . . . 5 (𝑎 = 𝑏 → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧𝑏 𝑧 𝑦))
107, 9imbi12d 348 . . . 4 (𝑎 = 𝑏 → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦)))
11 sseq1 3912 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐵 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐵))
1211anbi2d 632 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵)))
13 raleq 3309 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
1413rexbidv 3206 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
1512, 14imbi12d 348 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)))
16 sseq1 3912 . . . . . 6 (𝑎 = 𝑋 → (𝑎𝐵𝑋𝐵))
1716anbi2d 632 . . . . 5 (𝑎 = 𝑋 → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ 𝑋𝐵)))
18 raleq 3309 . . . . . 6 (𝑎 = 𝑋 → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧𝑋 𝑧 𝑦))
1918rexbidv 3206 . . . . 5 (𝑎 = 𝑋 → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧𝑋 𝑧 𝑦))
2017, 19imbi12d 348 . . . 4 (𝑎 = 𝑋 → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ 𝑋𝐵) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦)))
21 drsbn0.b . . . . . . 7 𝐵 = (Base‘𝐾)
2221drsbn0 17765 . . . . . 6 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)
23 ral0 4410 . . . . . . . . 9 𝑧 ∈ ∅ 𝑧 𝑦
2423jctr 528 . . . . . . . 8 (𝑦𝐵 → (𝑦𝐵 ∧ ∀𝑧 ∈ ∅ 𝑧 𝑦))
2524eximi 1842 . . . . . . 7 (∃𝑦 𝑦𝐵 → ∃𝑦(𝑦𝐵 ∧ ∀𝑧 ∈ ∅ 𝑧 𝑦))
26 n0 4247 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
27 df-rex 3057 . . . . . . 7 (∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦 ↔ ∃𝑦(𝑦𝐵 ∧ ∀𝑧 ∈ ∅ 𝑧 𝑦))
2825, 26, 273imtr4i 295 . . . . . 6 (𝐵 ≠ ∅ → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
2922, 28syl 17 . . . . 5 (𝐾 ∈ Dirset → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
3029adantr 484 . . . 4 ((𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
31 ssun1 4072 . . . . . . . . 9 𝑏 ⊆ (𝑏 ∪ {𝑐})
32 sstr 3895 . . . . . . . . 9 ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → 𝑏𝐵)
3331, 32mpan 690 . . . . . . . 8 ((𝑏 ∪ {𝑐}) ⊆ 𝐵𝑏𝐵)
3433anim2i 620 . . . . . . 7 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (𝐾 ∈ Dirset ∧ 𝑏𝐵))
35 breq2 5043 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑧 𝑦𝑧 𝑎))
3635ralbidv 3108 . . . . . . . . 9 (𝑦 = 𝑎 → (∀𝑧𝑏 𝑧 𝑦 ↔ ∀𝑧𝑏 𝑧 𝑎))
3736cbvrexvw 3349 . . . . . . . 8 (∃𝑦𝐵𝑧𝑏 𝑧 𝑦 ↔ ∃𝑎𝐵𝑧𝑏 𝑧 𝑎)
38 simplrr 778 . . . . . . . . . . . 12 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧𝑏 𝑧 𝑎)
39 drsprs 17764 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Dirset → 𝐾 ∈ Proset )
4039ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝐾 ∈ Proset )
4133ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) → 𝑏𝐵)
4241adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑏𝐵)
4342sselda 3887 . . . . . . . . . . . . . . . . 17 (((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) → 𝑧𝐵)
4443adantr 484 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑧𝐵)
45 simp-4r 784 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑎𝐵)
46 simprl 771 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑦𝐵)
4746ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑦𝐵)
48 simpr 488 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑧 𝑎)
49 simprrl 781 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑎 𝑦)
5049ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑎 𝑦)
51 drsdirfi.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
5221, 51prstr 17761 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Proset ∧ (𝑧𝐵𝑎𝐵𝑦𝐵) ∧ (𝑧 𝑎𝑎 𝑦)) → 𝑧 𝑦)
5340, 44, 45, 47, 48, 50, 52syl132anc 1390 . . . . . . . . . . . . . . 15 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑧 𝑦)
5453ex 416 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) → (𝑧 𝑎𝑧 𝑦))
5554ralimdva 3090 . . . . . . . . . . . . 13 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → (∀𝑧𝑏 𝑧 𝑎 → ∀𝑧𝑏 𝑧 𝑦))
5655adantlrr 721 . . . . . . . . . . . 12 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → (∀𝑧𝑏 𝑧 𝑎 → ∀𝑧𝑏 𝑧 𝑦))
5738, 56mpd 15 . . . . . . . . . . 11 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧𝑏 𝑧 𝑦)
58 simprrr 782 . . . . . . . . . . . 12 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑐 𝑦)
59 vex 3402 . . . . . . . . . . . . 13 𝑐 ∈ V
60 breq1 5042 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → (𝑧 𝑦𝑐 𝑦))
6159, 60ralsn 4583 . . . . . . . . . . . 12 (∀𝑧 ∈ {𝑐}𝑧 𝑦𝑐 𝑦)
6258, 61sylibr 237 . . . . . . . . . . 11 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧 ∈ {𝑐}𝑧 𝑦)
63 ralun 4092 . . . . . . . . . . 11 ((∀𝑧𝑏 𝑧 𝑦 ∧ ∀𝑧 ∈ {𝑐}𝑧 𝑦) → ∀𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)
6457, 62, 63syl2anc 587 . . . . . . . . . 10 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)
65 simpll 767 . . . . . . . . . . 11 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → 𝐾 ∈ Dirset)
66 simprl 771 . . . . . . . . . . 11 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → 𝑎𝐵)
67 ssun2 4073 . . . . . . . . . . . . . 14 {𝑐} ⊆ (𝑏 ∪ {𝑐})
68 sstr 3895 . . . . . . . . . . . . . 14 (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → {𝑐} ⊆ 𝐵)
6967, 68mpan 690 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑐}) ⊆ 𝐵 → {𝑐} ⊆ 𝐵)
7059snss 4685 . . . . . . . . . . . . 13 (𝑐𝐵 ↔ {𝑐} ⊆ 𝐵)
7169, 70sylibr 237 . . . . . . . . . . . 12 ((𝑏 ∪ {𝑐}) ⊆ 𝐵𝑐𝐵)
7271ad2antlr 727 . . . . . . . . . . 11 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → 𝑐𝐵)
7321, 51drsdir 17763 . . . . . . . . . . 11 ((𝐾 ∈ Dirset ∧ 𝑎𝐵𝑐𝐵) → ∃𝑦𝐵 (𝑎 𝑦𝑐 𝑦))
7465, 66, 72, 73syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → ∃𝑦𝐵 (𝑎 𝑦𝑐 𝑦))
7564, 74reximddv 3184 . . . . . . . . 9 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)
7675rexlimdvaa 3194 . . . . . . . 8 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (∃𝑎𝐵𝑧𝑏 𝑧 𝑎 → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
7737, 76syl5bi 245 . . . . . . 7 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (∃𝑦𝐵𝑧𝑏 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
7834, 77embantd 59 . . . . . 6 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
7978com12 32 . . . . 5 (((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦) → ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
8079a1i 11 . . . 4 (𝑏 ∈ Fin → (((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦) → ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)))
815, 10, 15, 20, 30, 80findcard2 8820 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ Dirset ∧ 𝑋𝐵) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦))
8281com12 32 . 2 ((𝐾 ∈ Dirset ∧ 𝑋𝐵) → (𝑋 ∈ Fin → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦))
83823impia 1119 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑋 ∈ Fin) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wral 3051  wrex 3052  cun 3851  wss 3853  c0 4223  {csn 4527   class class class wbr 5039  cfv 6358  Fincfn 8604  Basecbs 16666  lecple 16756   Proset cproset 17754  Dirsetcdrs 17755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-en 8605  df-fin 8608  df-proset 17756  df-drs 17757
This theorem is referenced by:  isdrs2  17767  ipodrsfi  17999
  Copyright terms: Public domain W3C validator