MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsdirfi Structured version   Visualization version   GIF version

Theorem drsdirfi 17406
Description: Any finite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs 17397 first comes into play; without it we would need an additional constraint that 𝑋 not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
drsdirfi.l = (le‘𝐾)
Assertion
Ref Expression
drsdirfi ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑋 ∈ Fin) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦)
Distinct variable groups:   𝑦,𝐾,𝑧   𝑦,𝐵,𝑧   𝑦, ,𝑧   𝑦,𝑋,𝑧

Proof of Theorem drsdirfi
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3883 . . . . . 6 (𝑎 = ∅ → (𝑎𝐵 ↔ ∅ ⊆ 𝐵))
21anbi2d 619 . . . . 5 (𝑎 = ∅ → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵)))
3 raleq 3346 . . . . . 6 (𝑎 = ∅ → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧 ∈ ∅ 𝑧 𝑦))
43rexbidv 3243 . . . . 5 (𝑎 = ∅ → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦))
52, 4imbi12d 337 . . . 4 (𝑎 = ∅ → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)))
6 sseq1 3883 . . . . . 6 (𝑎 = 𝑏 → (𝑎𝐵𝑏𝐵))
76anbi2d 619 . . . . 5 (𝑎 = 𝑏 → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ 𝑏𝐵)))
8 raleq 3346 . . . . . 6 (𝑎 = 𝑏 → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧𝑏 𝑧 𝑦))
98rexbidv 3243 . . . . 5 (𝑎 = 𝑏 → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧𝑏 𝑧 𝑦))
107, 9imbi12d 337 . . . 4 (𝑎 = 𝑏 → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦)))
11 sseq1 3883 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐵 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐵))
1211anbi2d 619 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵)))
13 raleq 3346 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
1413rexbidv 3243 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
1512, 14imbi12d 337 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)))
16 sseq1 3883 . . . . . 6 (𝑎 = 𝑋 → (𝑎𝐵𝑋𝐵))
1716anbi2d 619 . . . . 5 (𝑎 = 𝑋 → ((𝐾 ∈ Dirset ∧ 𝑎𝐵) ↔ (𝐾 ∈ Dirset ∧ 𝑋𝐵)))
18 raleq 3346 . . . . . 6 (𝑎 = 𝑋 → (∀𝑧𝑎 𝑧 𝑦 ↔ ∀𝑧𝑋 𝑧 𝑦))
1918rexbidv 3243 . . . . 5 (𝑎 = 𝑋 → (∃𝑦𝐵𝑧𝑎 𝑧 𝑦 ↔ ∃𝑦𝐵𝑧𝑋 𝑧 𝑦))
2017, 19imbi12d 337 . . . 4 (𝑎 = 𝑋 → (((𝐾 ∈ Dirset ∧ 𝑎𝐵) → ∃𝑦𝐵𝑧𝑎 𝑧 𝑦) ↔ ((𝐾 ∈ Dirset ∧ 𝑋𝐵) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦)))
21 drsbn0.b . . . . . . 7 𝐵 = (Base‘𝐾)
2221drsbn0 17405 . . . . . 6 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)
23 ral0 4339 . . . . . . . . 9 𝑧 ∈ ∅ 𝑧 𝑦
2423jctr 517 . . . . . . . 8 (𝑦𝐵 → (𝑦𝐵 ∧ ∀𝑧 ∈ ∅ 𝑧 𝑦))
2524eximi 1797 . . . . . . 7 (∃𝑦 𝑦𝐵 → ∃𝑦(𝑦𝐵 ∧ ∀𝑧 ∈ ∅ 𝑧 𝑦))
26 n0 4197 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
27 df-rex 3095 . . . . . . 7 (∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦 ↔ ∃𝑦(𝑦𝐵 ∧ ∀𝑧 ∈ ∅ 𝑧 𝑦))
2825, 26, 273imtr4i 284 . . . . . 6 (𝐵 ≠ ∅ → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
2922, 28syl 17 . . . . 5 (𝐾 ∈ Dirset → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
3029adantr 473 . . . 4 ((𝐾 ∈ Dirset ∧ ∅ ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ ∅ 𝑧 𝑦)
31 ssun1 4038 . . . . . . . . 9 𝑏 ⊆ (𝑏 ∪ {𝑐})
32 sstr 3867 . . . . . . . . 9 ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → 𝑏𝐵)
3331, 32mpan 677 . . . . . . . 8 ((𝑏 ∪ {𝑐}) ⊆ 𝐵𝑏𝐵)
3433anim2i 607 . . . . . . 7 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (𝐾 ∈ Dirset ∧ 𝑏𝐵))
35 breq2 4933 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑧 𝑦𝑧 𝑎))
3635ralbidv 3148 . . . . . . . . 9 (𝑦 = 𝑎 → (∀𝑧𝑏 𝑧 𝑦 ↔ ∀𝑧𝑏 𝑧 𝑎))
3736cbvrexv 3385 . . . . . . . 8 (∃𝑦𝐵𝑧𝑏 𝑧 𝑦 ↔ ∃𝑎𝐵𝑧𝑏 𝑧 𝑎)
38 simplrr 765 . . . . . . . . . . . 12 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧𝑏 𝑧 𝑎)
39 drsprs 17404 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Dirset → 𝐾 ∈ Proset )
4039ad5antr 721 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝐾 ∈ Proset )
4133ad2antlr 714 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) → 𝑏𝐵)
4241adantr 473 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑏𝐵)
4342sselda 3859 . . . . . . . . . . . . . . . . 17 (((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) → 𝑧𝐵)
4443adantr 473 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑧𝐵)
45 simp-4r 771 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑎𝐵)
46 simprl 758 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑦𝐵)
4746ad2antrr 713 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑦𝐵)
48 simpr 477 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑧 𝑎)
49 simprrl 768 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑎 𝑦)
5049ad2antrr 713 . . . . . . . . . . . . . . . 16 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑎 𝑦)
51 drsdirfi.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
5221, 51prstr 17401 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Proset ∧ (𝑧𝐵𝑎𝐵𝑦𝐵) ∧ (𝑧 𝑎𝑎 𝑦)) → 𝑧 𝑦)
5340, 44, 45, 47, 48, 50, 52syl132anc 1368 . . . . . . . . . . . . . . 15 ((((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) ∧ 𝑧 𝑎) → 𝑧 𝑦)
5453ex 405 . . . . . . . . . . . . . 14 (((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) ∧ 𝑧𝑏) → (𝑧 𝑎𝑧 𝑦))
5554ralimdva 3128 . . . . . . . . . . . . 13 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ 𝑎𝐵) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → (∀𝑧𝑏 𝑧 𝑎 → ∀𝑧𝑏 𝑧 𝑦))
5655adantlrr 708 . . . . . . . . . . . 12 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → (∀𝑧𝑏 𝑧 𝑎 → ∀𝑧𝑏 𝑧 𝑦))
5738, 56mpd 15 . . . . . . . . . . 11 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧𝑏 𝑧 𝑦)
58 simprrr 769 . . . . . . . . . . . 12 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → 𝑐 𝑦)
59 vex 3419 . . . . . . . . . . . . 13 𝑐 ∈ V
60 breq1 4932 . . . . . . . . . . . . 13 (𝑧 = 𝑐 → (𝑧 𝑦𝑐 𝑦))
6159, 60ralsn 4493 . . . . . . . . . . . 12 (∀𝑧 ∈ {𝑐}𝑧 𝑦𝑐 𝑦)
6258, 61sylibr 226 . . . . . . . . . . 11 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧 ∈ {𝑐}𝑧 𝑦)
63 ralun 4057 . . . . . . . . . . 11 ((∀𝑧𝑏 𝑧 𝑦 ∧ ∀𝑧 ∈ {𝑐}𝑧 𝑦) → ∀𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)
6457, 62, 63syl2anc 576 . . . . . . . . . 10 ((((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) ∧ (𝑦𝐵 ∧ (𝑎 𝑦𝑐 𝑦))) → ∀𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)
65 simpll 754 . . . . . . . . . . 11 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → 𝐾 ∈ Dirset)
66 simprl 758 . . . . . . . . . . 11 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → 𝑎𝐵)
67 ssun2 4039 . . . . . . . . . . . . . 14 {𝑐} ⊆ (𝑏 ∪ {𝑐})
68 sstr 3867 . . . . . . . . . . . . . 14 (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → {𝑐} ⊆ 𝐵)
6967, 68mpan 677 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑐}) ⊆ 𝐵 → {𝑐} ⊆ 𝐵)
7059snss 4592 . . . . . . . . . . . . 13 (𝑐𝐵 ↔ {𝑐} ⊆ 𝐵)
7169, 70sylibr 226 . . . . . . . . . . . 12 ((𝑏 ∪ {𝑐}) ⊆ 𝐵𝑐𝐵)
7271ad2antlr 714 . . . . . . . . . . 11 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → 𝑐𝐵)
7321, 51drsdir 17403 . . . . . . . . . . 11 ((𝐾 ∈ Dirset ∧ 𝑎𝐵𝑐𝐵) → ∃𝑦𝐵 (𝑎 𝑦𝑐 𝑦))
7465, 66, 72, 73syl3anc 1351 . . . . . . . . . 10 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → ∃𝑦𝐵 (𝑎 𝑦𝑐 𝑦))
7564, 74reximddv 3221 . . . . . . . . 9 (((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) ∧ (𝑎𝐵 ∧ ∀𝑧𝑏 𝑧 𝑎)) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)
7675rexlimdvaa 3231 . . . . . . . 8 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (∃𝑎𝐵𝑧𝑏 𝑧 𝑎 → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
7737, 76syl5bi 234 . . . . . . 7 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (∃𝑦𝐵𝑧𝑏 𝑧 𝑦 → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
7834, 77embantd 59 . . . . . 6 ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → (((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
7978com12 32 . . . . 5 (((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦) → ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦))
8079a1i 11 . . . 4 (𝑏 ∈ Fin → (((𝐾 ∈ Dirset ∧ 𝑏𝐵) → ∃𝑦𝐵𝑧𝑏 𝑧 𝑦) → ((𝐾 ∈ Dirset ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐵) → ∃𝑦𝐵𝑧 ∈ (𝑏 ∪ {𝑐})𝑧 𝑦)))
815, 10, 15, 20, 30, 80findcard2 8553 . . 3 (𝑋 ∈ Fin → ((𝐾 ∈ Dirset ∧ 𝑋𝐵) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦))
8281com12 32 . 2 ((𝐾 ∈ Dirset ∧ 𝑋𝐵) → (𝑋 ∈ Fin → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦))
83823impia 1097 1 ((𝐾 ∈ Dirset ∧ 𝑋𝐵𝑋 ∈ Fin) → ∃𝑦𝐵𝑧𝑋 𝑧 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wex 1742  wcel 2050  wne 2968  wral 3089  wrex 3090  cun 3828  wss 3830  c0 4179  {csn 4441   class class class wbr 4929  cfv 6188  Fincfn 8306  Basecbs 16339  lecple 16428   Proset cproset 17394  Dirsetcdrs 17395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-om 7397  df-1o 7905  df-er 8089  df-en 8307  df-fin 8310  df-proset 17396  df-drs 17397
This theorem is referenced by:  isdrs2  17407  ipodrsfi  17631
  Copyright terms: Public domain W3C validator