MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmeldmressn Structured version   Visualization version   GIF version

Theorem eldmeldmressn 5999
Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
eldmeldmressn (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))

Proof of Theorem eldmeldmressn
StepHypRef Expression
1 eldmressnsn 5998 . 2 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
2 elinel2 4168 . . 3 (𝑋 ∈ ({𝑋} ∩ dom 𝐹) → 𝑋 ∈ dom 𝐹)
3 dmres 5986 . . 3 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
42, 3eleq2s 2847 . 2 (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → 𝑋 ∈ dom 𝐹)
51, 4impbii 209 1 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  cin 3916  {csn 4592  dom cdm 5641  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-dm 5651  df-res 5653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator