![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmeldmressn | Structured version Visualization version GIF version |
Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
eldmeldmressn | ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmressnsn 6032 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | |
2 | elinel2 4196 | . . 3 ⊢ (𝑋 ∈ ({𝑋} ∩ dom 𝐹) → 𝑋 ∈ dom 𝐹) | |
3 | dmres 6020 | . . 3 ⊢ dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹) | |
4 | 2, 3 | eleq2s 2843 | . 2 ⊢ (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → 𝑋 ∈ dom 𝐹) |
5 | 1, 4 | impbii 208 | 1 ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∩ cin 3945 {csn 4632 dom cdm 5681 ↾ cres 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5687 df-dm 5691 df-res 5693 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |