MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmeldmressn Structured version   Visualization version   GIF version

Theorem eldmeldmressn 6054
Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
eldmeldmressn (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))

Proof of Theorem eldmeldmressn
StepHypRef Expression
1 eldmressnsn 6053 . 2 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
2 elinel2 4225 . . 3 (𝑋 ∈ ({𝑋} ∩ dom 𝐹) → 𝑋 ∈ dom 𝐹)
3 dmres 6041 . . 3 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
42, 3eleq2s 2862 . 2 (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → 𝑋 ∈ dom 𝐹)
51, 4impbii 209 1 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  cin 3975  {csn 4648  dom cdm 5700  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-res 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator