![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmeldmressn | Structured version Visualization version GIF version |
Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
eldmeldmressn | ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmressnsn 6024 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | |
2 | elinel2 4196 | . . 3 ⊢ (𝑋 ∈ ({𝑋} ∩ dom 𝐹) → 𝑋 ∈ dom 𝐹) | |
3 | dmres 6003 | . . 3 ⊢ dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹) | |
4 | 2, 3 | eleq2s 2850 | . 2 ⊢ (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → 𝑋 ∈ dom 𝐹) |
5 | 1, 4 | impbii 208 | 1 ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 ∩ cin 3947 {csn 4628 dom cdm 5676 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-dm 5686 df-res 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |