![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version |
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3999 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
2 | relssres 6027 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 1, 2 | mpan2 689 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊆ wss 3944 dom cdm 5678 ↾ cres 5680 Rel wrel 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-dm 5688 df-res 5690 |
This theorem is referenced by: resindm 6035 reldisjun 6037 relresdm1 6038 resdm2 6237 relresfld 6282 fimadmfoALT 6821 fnex 7229 dftpos2 8249 tfrlem11 8409 tfrlem15 8413 tfrlem16 8414 pmresg 8889 domss2 9161 axdc3lem4 10478 gruima 10827 nosupbnd2lem1 27694 nosupbnd2 27695 noinfbnd2lem1 27709 noinfbnd2 27710 noetasuplem2 27713 noetasuplem3 27714 noetasuplem4 27715 noetainflem2 27717 bnj1321 34789 funsseq 35494 alrmomodm 37961 relbrcoss 38048 unidmqs 38256 releldmqs 38260 releldmqscoss 38262 seff 43888 sblpnf 43889 f1cof1blem 46594 funfocofob 46596 itcoval1 47922 |
Copyright terms: Public domain | W3C validator |