Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version |
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3944 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
2 | relssres 5927 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3888 dom cdm 5586 ↾ cres 5588 Rel wrel 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-xp 5592 df-rel 5593 df-dm 5596 df-res 5598 |
This theorem is referenced by: resindm 5935 resdm2 6129 relresfld 6174 fimadmfoALT 6693 fnex 7087 dftpos2 8048 tfrlem11 8208 tfrlem15 8212 tfrlem16 8213 pmresg 8647 domss2 8912 axdc3lem4 10198 gruima 10547 reldisjun 30929 funresdm1 30931 bnj1321 32994 funsseq 33729 nosupbnd2lem1 33905 nosupbnd2 33906 noinfbnd2lem1 33920 noinfbnd2 33921 noetasuplem2 33924 noetasuplem3 33925 noetasuplem4 33926 noetainflem2 33928 alrmomodm 36478 relbrcoss 36551 unidmqs 36753 releldmqs 36757 releldmqscoss 36759 seff 41887 sblpnf 41888 f1cof1blem 44525 funfocofob 44527 itcoval1 45966 |
Copyright terms: Public domain | W3C validator |