| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 5996 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-res 5653 |
| This theorem is referenced by: resindm 6004 reldisjun 6006 relresdm1 6007 imadifssran 6127 resdm2 6207 relresfld 6252 fimadmfoALT 6786 fnex 7194 dftpos2 8225 tfrlem11 8359 tfrlem15 8363 tfrlem16 8364 pmresg 8846 domss2 9106 axdc3lem4 10413 gruima 10762 nosupbnd2lem1 27634 nosupbnd2 27635 noinfbnd2lem1 27649 noinfbnd2 27650 noetasuplem2 27653 noetasuplem3 27654 noetasuplem4 27655 noetainflem2 27657 bnj1321 35024 funsseq 35762 alrmomodm 38348 relbrcoss 38444 unidmqs 38653 releldmqs 38657 releldmqscoss 38659 seff 44305 sblpnf 44306 f1cof1blem 47079 funfocofob 47083 itcoval1 48656 |
| Copyright terms: Public domain | W3C validator |