| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3979 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 6006 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3924 dom cdm 5651 ↾ cres 5653 Rel wrel 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-xp 5657 df-rel 5658 df-dm 5661 df-res 5663 |
| This theorem is referenced by: resindm 6014 reldisjun 6016 relresdm1 6017 imadifssran 6137 resdm2 6217 relresfld 6262 fimadmfoALT 6797 fnex 7205 dftpos2 8236 tfrlem11 8396 tfrlem15 8400 tfrlem16 8401 pmresg 8878 domss2 9144 axdc3lem4 10459 gruima 10808 nosupbnd2lem1 27663 nosupbnd2 27664 noinfbnd2lem1 27678 noinfbnd2 27679 noetasuplem2 27682 noetasuplem3 27683 noetasuplem4 27684 noetainflem2 27686 bnj1321 34979 funsseq 35706 alrmomodm 38298 relbrcoss 38385 unidmqs 38593 releldmqs 38597 releldmqscoss 38599 seff 44259 sblpnf 44260 f1cof1blem 47031 funfocofob 47035 itcoval1 48529 |
| Copyright terms: Public domain | W3C validator |