MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 6055
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 4031 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 6051 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 690 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3976  dom cdm 5700  cres 5702  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712
This theorem is referenced by:  resindm  6059  reldisjun  6061  relresdm1  6062  resdm2  6262  relresfld  6307  fimadmfoALT  6845  fnex  7254  dftpos2  8284  tfrlem11  8444  tfrlem15  8448  tfrlem16  8449  pmresg  8928  domss2  9202  axdc3lem4  10522  gruima  10871  nosupbnd2lem1  27778  nosupbnd2  27779  noinfbnd2lem1  27793  noinfbnd2  27794  noetasuplem2  27797  noetasuplem3  27798  noetasuplem4  27799  noetainflem2  27801  bnj1321  35003  funsseq  35731  alrmomodm  38315  relbrcoss  38402  unidmqs  38610  releldmqs  38614  releldmqscoss  38616  seff  44278  sblpnf  44279  f1cof1blem  46989  funfocofob  46993  itcoval1  48397
  Copyright terms: Public domain W3C validator