MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5925
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3939 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5921 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 687 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3883  dom cdm 5580  cres 5582  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dm 5590  df-res 5592
This theorem is referenced by:  resindm  5929  resdm2  6123  relresfld  6168  fimadmfoALT  6683  fnex  7075  dftpos2  8030  tfrlem11  8190  tfrlem15  8194  tfrlem16  8195  pmresg  8616  domss2  8872  axdc3lem4  10140  gruima  10489  reldisjun  30843  funresdm1  30845  bnj1321  32907  funsseq  33648  nosupbnd2lem1  33845  nosupbnd2  33846  noinfbnd2lem1  33860  noinfbnd2  33861  noetasuplem2  33864  noetasuplem3  33865  noetasuplem4  33866  noetainflem2  33868  alrmomodm  36418  relbrcoss  36491  unidmqs  36693  releldmqs  36697  releldmqscoss  36699  seff  41816  sblpnf  41817  f1cof1blem  44455  funfocofob  44457  itcoval1  45897
  Copyright terms: Public domain W3C validator