| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3960 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 5977 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 dom cdm 5623 ↾ cres 5625 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-res 5635 |
| This theorem is referenced by: resindm 5985 reldisjun 5987 relresdm1 5988 imadifssran 6104 resdm2 6184 relresfld 6228 fimadmfoALT 6751 fnex 7157 dftpos2 8183 tfrlem11 8317 tfrlem15 8321 tfrlem16 8322 pmresg 8804 domss2 9060 axdc3lem4 10366 gruima 10715 nosupbnd2lem1 27644 nosupbnd2 27645 noinfbnd2lem1 27659 noinfbnd2 27660 noetasuplem2 27663 noetasuplem3 27664 noetasuplem4 27665 noetainflem2 27667 bnj1321 35013 funsseq 35760 alrmomodm 38346 relbrcoss 38442 unidmqs 38651 releldmqs 38655 releldmqscoss 38657 seff 44302 sblpnf 44303 f1cof1blem 47078 funfocofob 47082 itcoval1 48668 |
| Copyright terms: Public domain | W3C validator |