MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5981
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3960 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5977 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 691 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3905  dom cdm 5623  cres 5625  Rel wrel 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-dm 5633  df-res 5635
This theorem is referenced by:  resindm  5985  reldisjun  5987  relresdm1  5988  imadifssran  6104  resdm2  6184  relresfld  6228  fimadmfoALT  6751  fnex  7157  dftpos2  8183  tfrlem11  8317  tfrlem15  8321  tfrlem16  8322  pmresg  8804  domss2  9060  axdc3lem4  10366  gruima  10715  nosupbnd2lem1  27644  nosupbnd2  27645  noinfbnd2lem1  27659  noinfbnd2  27660  noetasuplem2  27663  noetasuplem3  27664  noetasuplem4  27665  noetainflem2  27667  bnj1321  35013  funsseq  35760  alrmomodm  38346  relbrcoss  38442  unidmqs  38651  releldmqs  38655  releldmqscoss  38657  seff  44302  sblpnf  44303  f1cof1blem  47078  funfocofob  47082  itcoval1  48668
  Copyright terms: Public domain W3C validator