| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 5982 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 |
| This theorem is referenced by: resindm 5990 reldisjun 5992 relresdm1 5993 imadifssran 6112 resdm2 6192 relresfld 6237 fimadmfoALT 6765 fnex 7173 dftpos2 8199 tfrlem11 8333 tfrlem15 8337 tfrlem16 8338 pmresg 8820 domss2 9077 axdc3lem4 10382 gruima 10731 nosupbnd2lem1 27603 nosupbnd2 27604 noinfbnd2lem1 27618 noinfbnd2 27619 noetasuplem2 27622 noetasuplem3 27623 noetasuplem4 27624 noetainflem2 27626 bnj1321 34990 funsseq 35728 alrmomodm 38314 relbrcoss 38410 unidmqs 38619 releldmqs 38623 releldmqscoss 38625 seff 44271 sblpnf 44272 f1cof1blem 47048 funfocofob 47052 itcoval1 48625 |
| Copyright terms: Public domain | W3C validator |