MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5970
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3952 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5966 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 691 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3897  dom cdm 5611  cres 5613  Rel wrel 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-dm 5621  df-res 5623
This theorem is referenced by:  resindm  5974  reldisjun  5976  relresdm1  5977  imadifssran  6093  resdm2  6173  relresfld  6218  fimadmfoALT  6741  fnex  7146  dftpos2  8168  tfrlem11  8302  tfrlem15  8306  tfrlem16  8307  pmresg  8789  domss2  9044  axdc3lem4  10339  gruima  10688  nosupbnd2lem1  27649  nosupbnd2  27650  noinfbnd2lem1  27664  noinfbnd2  27665  noetasuplem2  27668  noetasuplem3  27669  noetasuplem4  27670  noetainflem2  27672  bnj1321  35031  funsseq  35804  alrmomodm  38387  relbrcoss  38483  unidmqs  38692  releldmqs  38696  releldmqscoss  38698  seff  44342  sblpnf  44343  f1cof1blem  47105  funfocofob  47109  itcoval1  48695
  Copyright terms: Public domain W3C validator