MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5982
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3953 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5978 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 691 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3898  dom cdm 5621  cres 5623  Rel wrel 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-dm 5631  df-res 5633
This theorem is referenced by:  resindm  5986  reldisjun  5988  relresdm1  5989  imadifssran  6106  resdm2  6186  relresfld  6231  fimadmfoALT  6754  fnex  7160  dftpos2  8182  tfrlem11  8316  tfrlem15  8320  tfrlem16  8321  pmresg  8804  domss2  9060  axdc3lem4  10355  gruima  10704  nosupbnd2lem1  27674  nosupbnd2  27675  noinfbnd2lem1  27689  noinfbnd2  27690  noetasuplem2  27693  noetasuplem3  27694  noetasuplem4  27695  noetainflem2  27697  bnj1321  35111  funsseq  35884  alrmomodm  38464  relbrcoss  38621  unidmqs  38825  releldmqs  38829  releldmqscoss  38831  seff  44466  sblpnf  44467  f1cof1blem  47236  funfocofob  47240  itcoval1  48825
  Copyright terms: Public domain W3C validator