| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 5993 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 |
| This theorem is referenced by: resindm 6001 reldisjun 6003 relresdm1 6004 imadifssran 6124 resdm2 6204 relresfld 6249 fimadmfoALT 6783 fnex 7191 dftpos2 8222 tfrlem11 8356 tfrlem15 8360 tfrlem16 8361 pmresg 8843 domss2 9100 axdc3lem4 10406 gruima 10755 nosupbnd2lem1 27627 nosupbnd2 27628 noinfbnd2lem1 27642 noinfbnd2 27643 noetasuplem2 27646 noetasuplem3 27647 noetasuplem4 27648 noetainflem2 27650 bnj1321 35017 funsseq 35755 alrmomodm 38341 relbrcoss 38437 unidmqs 38646 releldmqs 38650 releldmqscoss 38652 seff 44298 sblpnf 44299 f1cof1blem 47075 funfocofob 47079 itcoval1 48652 |
| Copyright terms: Public domain | W3C validator |