MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5986
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3966 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5982 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 691 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3911  dom cdm 5631  cres 5633  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-res 5643
This theorem is referenced by:  resindm  5990  reldisjun  5992  relresdm1  5993  imadifssran  6112  resdm2  6192  relresfld  6237  fimadmfoALT  6765  fnex  7173  dftpos2  8199  tfrlem11  8333  tfrlem15  8337  tfrlem16  8338  pmresg  8820  domss2  9077  axdc3lem4  10382  gruima  10731  nosupbnd2lem1  27603  nosupbnd2  27604  noinfbnd2lem1  27618  noinfbnd2  27619  noetasuplem2  27622  noetasuplem3  27623  noetasuplem4  27624  noetainflem2  27626  bnj1321  34990  funsseq  35728  alrmomodm  38314  relbrcoss  38410  unidmqs  38619  releldmqs  38623  releldmqscoss  38625  seff  44271  sblpnf  44272  f1cof1blem  47048  funfocofob  47052  itcoval1  48625
  Copyright terms: Public domain W3C validator