Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version |
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
2 | relssres 5932 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 |
This theorem is referenced by: resindm 5940 resdm2 6134 relresfld 6179 fimadmfoALT 6699 fnex 7093 dftpos2 8059 tfrlem11 8219 tfrlem15 8223 tfrlem16 8224 pmresg 8658 domss2 8923 axdc3lem4 10209 gruima 10558 reldisjun 30942 funresdm1 30944 bnj1321 33007 funsseq 33742 nosupbnd2lem1 33918 nosupbnd2 33919 noinfbnd2lem1 33933 noinfbnd2 33934 noetasuplem2 33937 noetasuplem3 33938 noetasuplem4 33939 noetainflem2 33941 alrmomodm 36491 relbrcoss 36564 unidmqs 36766 releldmqs 36770 releldmqscoss 36772 seff 41927 sblpnf 41928 f1cof1blem 44568 funfocofob 44570 itcoval1 46009 |
Copyright terms: Public domain | W3C validator |