MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 6031
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3999 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 6027 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 689 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wss 3944  dom cdm 5678  cres 5680  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-dm 5688  df-res 5690
This theorem is referenced by:  resindm  6035  reldisjun  6037  relresdm1  6038  resdm2  6237  relresfld  6282  fimadmfoALT  6821  fnex  7229  dftpos2  8249  tfrlem11  8409  tfrlem15  8413  tfrlem16  8414  pmresg  8889  domss2  9161  axdc3lem4  10478  gruima  10827  nosupbnd2lem1  27694  nosupbnd2  27695  noinfbnd2lem1  27709  noinfbnd2  27710  noetasuplem2  27713  noetasuplem3  27714  noetasuplem4  27715  noetainflem2  27717  bnj1321  34789  funsseq  35494  alrmomodm  37961  relbrcoss  38048  unidmqs  38256  releldmqs  38260  releldmqscoss  38262  seff  43888  sblpnf  43889  f1cof1blem  46594  funfocofob  46596  itcoval1  47922
  Copyright terms: Public domain W3C validator