Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version |
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
2 | relssres 5921 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 |
This theorem is referenced by: resindm 5929 resdm2 6123 relresfld 6168 fimadmfoALT 6683 fnex 7075 dftpos2 8030 tfrlem11 8190 tfrlem15 8194 tfrlem16 8195 pmresg 8616 domss2 8872 axdc3lem4 10140 gruima 10489 reldisjun 30843 funresdm1 30845 bnj1321 32907 funsseq 33648 nosupbnd2lem1 33845 nosupbnd2 33846 noinfbnd2lem1 33860 noinfbnd2 33861 noetasuplem2 33864 noetasuplem3 33865 noetasuplem4 33866 noetainflem2 33868 alrmomodm 36418 relbrcoss 36491 unidmqs 36693 releldmqs 36697 releldmqscoss 36699 seff 41816 sblpnf 41817 f1cof1blem 44455 funfocofob 44457 itcoval1 45897 |
Copyright terms: Public domain | W3C validator |