MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdm Structured version   Visualization version   GIF version

Theorem resdm 5936
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3943 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 5932 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 688 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3887  dom cdm 5589  cres 5591  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-res 5601
This theorem is referenced by:  resindm  5940  resdm2  6134  relresfld  6179  fimadmfoALT  6699  fnex  7093  dftpos2  8059  tfrlem11  8219  tfrlem15  8223  tfrlem16  8224  pmresg  8658  domss2  8923  axdc3lem4  10209  gruima  10558  reldisjun  30942  funresdm1  30944  bnj1321  33007  funsseq  33742  nosupbnd2lem1  33918  nosupbnd2  33919  noinfbnd2lem1  33933  noinfbnd2  33934  noetasuplem2  33937  noetasuplem3  33938  noetasuplem4  33939  noetainflem2  33941  alrmomodm  36491  relbrcoss  36564  unidmqs  36766  releldmqs  36770  releldmqscoss  36772  seff  41927  sblpnf  41928  f1cof1blem  44568  funfocofob  44570  itcoval1  46009
  Copyright terms: Public domain W3C validator