| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 6009 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 dom cdm 5654 ↾ cres 5656 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-res 5666 |
| This theorem is referenced by: resindm 6017 reldisjun 6019 relresdm1 6020 imadifssran 6140 resdm2 6220 relresfld 6265 fimadmfoALT 6801 fnex 7209 dftpos2 8242 tfrlem11 8402 tfrlem15 8406 tfrlem16 8407 pmresg 8884 domss2 9150 axdc3lem4 10467 gruima 10816 nosupbnd2lem1 27679 nosupbnd2 27680 noinfbnd2lem1 27694 noinfbnd2 27695 noetasuplem2 27698 noetasuplem3 27699 noetasuplem4 27700 noetainflem2 27702 bnj1321 35058 funsseq 35785 alrmomodm 38377 relbrcoss 38464 unidmqs 38672 releldmqs 38676 releldmqscoss 38678 seff 44333 sblpnf 44334 f1cof1blem 47103 funfocofob 47107 itcoval1 48643 |
| Copyright terms: Public domain | W3C validator |