| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 5966 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3897 dom cdm 5611 ↾ cres 5613 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 df-res 5623 |
| This theorem is referenced by: resindm 5974 reldisjun 5976 relresdm1 5977 imadifssran 6093 resdm2 6173 relresfld 6218 fimadmfoALT 6741 fnex 7146 dftpos2 8168 tfrlem11 8302 tfrlem15 8306 tfrlem16 8307 pmresg 8789 domss2 9044 axdc3lem4 10339 gruima 10688 nosupbnd2lem1 27649 nosupbnd2 27650 noinfbnd2lem1 27664 noinfbnd2 27665 noetasuplem2 27668 noetasuplem3 27669 noetasuplem4 27670 noetainflem2 27672 bnj1321 35031 funsseq 35804 alrmomodm 38387 relbrcoss 38483 unidmqs 38692 releldmqs 38696 releldmqscoss 38698 seff 44342 sblpnf 44343 f1cof1blem 47105 funfocofob 47109 itcoval1 48695 |
| Copyright terms: Public domain | W3C validator |