![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version |
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
2 | relssres 6051 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-res 5712 |
This theorem is referenced by: resindm 6059 reldisjun 6061 relresdm1 6062 resdm2 6262 relresfld 6307 fimadmfoALT 6845 fnex 7254 dftpos2 8284 tfrlem11 8444 tfrlem15 8448 tfrlem16 8449 pmresg 8928 domss2 9202 axdc3lem4 10522 gruima 10871 nosupbnd2lem1 27778 nosupbnd2 27779 noinfbnd2lem1 27793 noinfbnd2 27794 noetasuplem2 27797 noetasuplem3 27798 noetasuplem4 27799 noetainflem2 27801 bnj1321 35003 funsseq 35731 alrmomodm 38315 relbrcoss 38402 unidmqs 38610 releldmqs 38614 releldmqscoss 38616 seff 44278 sblpnf 44279 f1cof1blem 46989 funfocofob 46993 itcoval1 48397 |
Copyright terms: Public domain | W3C validator |