| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resdm | Structured version Visualization version GIF version | ||
| Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resdm | ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ dom 𝐴 ⊆ dom 𝐴 | |
| 2 | relssres 5978 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 dom cdm 5621 ↾ cres 5623 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-res 5633 |
| This theorem is referenced by: resindm 5986 reldisjun 5988 relresdm1 5989 imadifssran 6106 resdm2 6186 relresfld 6231 fimadmfoALT 6754 fnex 7160 dftpos2 8182 tfrlem11 8316 tfrlem15 8320 tfrlem16 8321 pmresg 8804 domss2 9060 axdc3lem4 10355 gruima 10704 nosupbnd2lem1 27674 nosupbnd2 27675 noinfbnd2lem1 27689 noinfbnd2 27690 noetasuplem2 27693 noetasuplem3 27694 noetasuplem4 27695 noetainflem2 27697 bnj1321 35111 funsseq 35884 alrmomodm 38464 relbrcoss 38621 unidmqs 38825 releldmqs 38829 releldmqscoss 38831 seff 44466 sblpnf 44467 f1cof1blem 47236 funfocofob 47240 itcoval1 48825 |
| Copyright terms: Public domain | W3C validator |