MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmressnsn Structured version   Visualization version   GIF version

Theorem eldmressnsn 5883
Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
eldmressnsn (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))

Proof of Theorem eldmressnsn
StepHypRef Expression
1 snidg 4565 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴})
2 dmressnsn 5882 . 2 (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})
31, 2eleqtrrd 2837 1 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  {csn 4531  dom cdm 5540  cres 5542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-br 5044  df-opab 5106  df-xp 5546  df-dm 5550  df-res 5552
This theorem is referenced by:  eldmeldmressn  5884  fvn0fvelrn  6967  funressndmfvrn  44164  dfdfat2  44246
  Copyright terms: Public domain W3C validator