MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmressnsn Structured version   Visualization version   GIF version

Theorem eldmressnsn 6053
Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
eldmressnsn (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))

Proof of Theorem eldmressnsn
StepHypRef Expression
1 snidg 4682 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴})
2 dmressnsn 6052 . 2 (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})
31, 2eleqtrrd 2847 1 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {csn 4648  dom cdm 5700  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-res 5712
This theorem is referenced by:  eldmeldmressn  6054  fvn0fvelrnOLD  7197  funressndmfvrn  46959  dfdfat2  47043
  Copyright terms: Public domain W3C validator