Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmressnsn Structured version   Visualization version   GIF version

Theorem eldmressnsn 5861
 Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
eldmressnsn (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))

Proof of Theorem eldmressnsn
StepHypRef Expression
1 snidg 4559 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴})
2 dmressnsn 5860 . 2 (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})
31, 2eleqtrrd 2893 1 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2111  {csn 4525  dom cdm 5519   ↾ cres 5521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-dm 5529  df-res 5531 This theorem is referenced by:  eldmeldmressn  5862  fvn0fvelrn  6902  funressndmfvrn  43634  dfdfat2  43682
 Copyright terms: Public domain W3C validator