MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmressnsn Structured version   Visualization version   GIF version

Theorem eldmressnsn 5923
Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
eldmressnsn (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))

Proof of Theorem eldmressnsn
StepHypRef Expression
1 snidg 4592 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴})
2 dmressnsn 5922 . 2 (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴})
31, 2eleqtrrd 2842 1 (𝐴 ∈ dom 𝐹𝐴 ∈ dom (𝐹 ↾ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {csn 4558  dom cdm 5580  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-res 5592
This theorem is referenced by:  eldmeldmressn  5924  fvn0fvelrn  7017  funressndmfvrn  44425  dfdfat2  44507
  Copyright terms: Public domain W3C validator