|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eldmressnsn | Structured version Visualization version GIF version | ||
| Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) | 
| Ref | Expression | 
|---|---|
| eldmressnsn | ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snidg 4660 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ {𝐴}) | |
| 2 | dmressnsn 6041 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | |
| 3 | 1, 2 | eleqtrrd 2844 | 1 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 {csn 4626 dom cdm 5685 ↾ cres 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-res 5697 | 
| This theorem is referenced by: eldmeldmressn 6043 fvn0fvelrnOLD 7183 funressndmfvrn 47056 dfdfat2 47140 | 
| Copyright terms: Public domain | W3C validator |