![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmressnsn | Structured version Visualization version GIF version |
Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
eldmressnsn | ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4398 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ {𝐴}) | |
2 | dmressnsn 5650 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | |
3 | 1, 2 | eleqtrrd 2881 | 1 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {csn 4368 dom cdm 5312 ↾ cres 5314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-dm 5322 df-res 5324 |
This theorem is referenced by: eldmeldmressn 5652 fvn0fvelrn 6658 funressndmfvrn 41927 dfdfat2 41982 |
Copyright terms: Public domain | W3C validator |