| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmressnsn | Structured version Visualization version GIF version | ||
| Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| eldmressnsn | ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4612 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ {𝐴}) | |
| 2 | dmressnsn 5977 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | |
| 3 | 1, 2 | eleqtrrd 2834 | 1 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {csn 4575 dom cdm 5619 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-res 5631 |
| This theorem is referenced by: eldmeldmressn 5979 funressndmfvrn 47149 dfdfat2 47233 |
| Copyright terms: Public domain | W3C validator |