| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmressnsn | Structured version Visualization version GIF version | ||
| Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| eldmressnsn | ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4641 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ {𝐴}) | |
| 2 | dmressnsn 6015 | . 2 ⊢ (𝐴 ∈ dom 𝐹 → dom (𝐹 ↾ {𝐴}) = {𝐴}) | |
| 3 | 1, 2 | eleqtrrd 2838 | 1 ⊢ (𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom (𝐹 ↾ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {csn 4606 dom cdm 5659 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-res 5671 |
| This theorem is referenced by: eldmeldmressn 6017 fvn0fvelrnOLD 7158 funressndmfvrn 47040 dfdfat2 47124 |
| Copyright terms: Public domain | W3C validator |