Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elidinxpid | Structured version Visualization version GIF version |
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elidinxpid | ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elidinxp 5883 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = 〈𝑥, 𝑥〉) | |
2 | inidm 4123 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | rexeqi 3328 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
4 | 1, 3 | bitri 278 | 1 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ∩ cin 3857 〈cop 4528 I cid 5429 × cxp 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |