![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elidinxpid | Structured version Visualization version GIF version |
Description: Characterization of elements of the intersection of identity relation with square Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elidinxpid | ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elidinxp 5692 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = 〈𝑥, 𝑥〉) | |
2 | inidm 4047 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | rexeqi 3355 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
4 | 1, 3 | bitri 267 | 1 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1656 ∈ wcel 2164 ∃wrex 3118 ∩ cin 3797 〈cop 4403 I cid 5249 × cxp 5340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 |
This theorem is referenced by: idinxpres 5696 |
Copyright terms: Public domain | W3C validator |