![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elidinxpid | Structured version Visualization version GIF version |
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elidinxpid | ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = ⟨𝑥, 𝑥⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elidinxp 6037 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = ⟨𝑥, 𝑥⟩) | |
2 | inidm 4213 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | rexeqi 3318 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥 ∈ 𝐴 𝐵 = ⟨𝑥, 𝑥⟩) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = ⟨𝑥, 𝑥⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ∩ cin 3942 ⟨cop 4629 I cid 5566 × cxp 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |