MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elidinxpid Structured version   Visualization version   GIF version

Theorem elidinxpid 5941
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elidinxpid (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥𝐴 𝐵 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elidinxpid
StepHypRef Expression
1 elidinxp 5940 . 2 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ (𝐴𝐴)𝐵 = ⟨𝑥, 𝑥⟩)
2 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
32rexeqi 3338 . 2 (∃𝑥 ∈ (𝐴𝐴)𝐵 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝐴 𝐵 = ⟨𝑥, 𝑥⟩)
41, 3bitri 274 1 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥𝐴 𝐵 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  wrex 3064  cin 3882  cop 4564   I cid 5479   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator