Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elidinxpid | Structured version Visualization version GIF version |
Description: Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elidinxpid | ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elidinxp 5940 | . 2 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = 〈𝑥, 𝑥〉) | |
2 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
3 | 2 | rexeqi 3338 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐴)𝐵 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥 ∈ 𝐴 𝐵 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 〈cop 4564 I cid 5479 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |