MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrid Structured version   Visualization version   GIF version

Theorem elrid 5953
Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elrid (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem elrid
StepHypRef Expression
1 df-res 5601 . . 3 ( I ↾ 𝑋) = ( I ∩ (𝑋 × V))
21eleq2i 2830 . 2 (𝐴 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ ( I ∩ (𝑋 × V)))
3 elidinxp 5951 . 2 (𝐴 ∈ ( I ∩ (𝑋 × V)) ↔ ∃𝑥 ∈ (𝑋 ∩ V)𝐴 = ⟨𝑥, 𝑥⟩)
4 inv1 4328 . . 3 (𝑋 ∩ V) = 𝑋
54rexeqi 3347 . 2 (∃𝑥 ∈ (𝑋 ∩ V)𝐴 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
62, 3, 53bitri 297 1 (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cin 3886  cop 4567   I cid 5488   × cxp 5587  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by:  idinxpres  5954  idrefALT  6018  elid  6102
  Copyright terms: Public domain W3C validator