![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrid | Structured version Visualization version GIF version |
Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elrid | ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5687 | . . 3 ⊢ ( I ↾ 𝑋) = ( I ∩ (𝑋 × V)) | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ ( I ∩ (𝑋 × V))) |
3 | elidinxp 6041 | . 2 ⊢ (𝐴 ∈ ( I ∩ (𝑋 × V)) ↔ ∃𝑥 ∈ (𝑋 ∩ V)𝐴 = 〈𝑥, 𝑥〉) | |
4 | inv1 4393 | . . 3 ⊢ (𝑋 ∩ V) = 𝑋 | |
5 | 4 | rexeqi 3324 | . 2 ⊢ (∃𝑥 ∈ (𝑋 ∩ V)𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
6 | 2, 3, 5 | 3bitri 296 | 1 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∩ cin 3946 〈cop 4633 I cid 5572 × cxp 5673 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-res 5687 |
This theorem is referenced by: idinxpres 6044 idrefALT 6109 elid 6195 |
Copyright terms: Public domain | W3C validator |