MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrid Structured version   Visualization version   GIF version

Theorem elrid 6017
Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elrid (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem elrid
StepHypRef Expression
1 df-res 5650 . . 3 ( I ↾ 𝑋) = ( I ∩ (𝑋 × V))
21eleq2i 2820 . 2 (𝐴 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ ( I ∩ (𝑋 × V)))
3 elidinxp 6015 . 2 (𝐴 ∈ ( I ∩ (𝑋 × V)) ↔ ∃𝑥 ∈ (𝑋 ∩ V)𝐴 = ⟨𝑥, 𝑥⟩)
4 inv1 4361 . . 3 (𝑋 ∩ V) = 𝑋
54rexeqi 3298 . 2 (∃𝑥 ∈ (𝑋 ∩ V)𝐴 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
62, 3, 53bitri 297 1 (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  cop 4595   I cid 5532   × cxp 5636  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-res 5650
This theorem is referenced by:  idinxpres  6018  idrefALT  6084  elid  6172
  Copyright terms: Public domain W3C validator