MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrid Structured version   Visualization version   GIF version

Theorem elrid 6045
Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elrid (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem elrid
StepHypRef Expression
1 df-res 5688 . . 3 ( I ↾ 𝑋) = ( I ∩ (𝑋 × V))
21eleq2i 2825 . 2 (𝐴 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ ( I ∩ (𝑋 × V)))
3 elidinxp 6043 . 2 (𝐴 ∈ ( I ∩ (𝑋 × V)) ↔ ∃𝑥 ∈ (𝑋 ∩ V)𝐴 = ⟨𝑥, 𝑥⟩)
4 inv1 4394 . . 3 (𝑋 ∩ V) = 𝑋
54rexeqi 3324 . 2 (∃𝑥 ∈ (𝑋 ∩ V)𝐴 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
62, 3, 53bitri 296 1 (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  cin 3947  cop 4634   I cid 5573   × cxp 5674  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-res 5688
This theorem is referenced by:  idinxpres  6046  idrefALT  6112  elid  6198
  Copyright terms: Public domain W3C validator