| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrid | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
| Ref | Expression |
|---|---|
| elrid | ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5635 | . . 3 ⊢ ( I ↾ 𝑋) = ( I ∩ (𝑋 × V)) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ ( I ∩ (𝑋 × V))) |
| 3 | elidinxp 5999 | . 2 ⊢ (𝐴 ∈ ( I ∩ (𝑋 × V)) ↔ ∃𝑥 ∈ (𝑋 ∩ V)𝐴 = 〈𝑥, 𝑥〉) | |
| 4 | inv1 4351 | . . 3 ⊢ (𝑋 ∩ V) = 𝑋 | |
| 5 | 4 | rexeqi 3289 | . 2 ⊢ (∃𝑥 ∈ (𝑋 ∩ V)𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
| 6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 〈cop 4585 I cid 5517 × cxp 5621 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-res 5635 |
| This theorem is referenced by: idinxpres 6002 idrefALT 6066 elid 6152 |
| Copyright terms: Public domain | W3C validator |