![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrid | Structured version Visualization version GIF version |
Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) |
Ref | Expression |
---|---|
elrid | ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5324 | . . 3 ⊢ ( I ↾ 𝑋) = ( I ∩ (𝑋 × V)) | |
2 | 1 | eleq2i 2870 | . 2 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ 𝐴 ∈ ( I ∩ (𝑋 × V))) |
3 | elidinxp 5667 | . 2 ⊢ (𝐴 ∈ ( I ∩ (𝑋 × V)) ↔ ∃𝑥 ∈ (𝑋 ∩ V)𝐴 = 〈𝑥, 𝑥〉) | |
4 | inv1 4166 | . . 3 ⊢ (𝑋 ∩ V) = 𝑋 | |
5 | 4 | rexeqi 3326 | . 2 ⊢ (∃𝑥 ∈ (𝑋 ∩ V)𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
6 | 2, 3, 5 | 3bitri 289 | 1 ⊢ (𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐴 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 Vcvv 3385 ∩ cin 3768 〈cop 4374 I cid 5219 × cxp 5310 ↾ cres 5314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-res 5324 |
This theorem is referenced by: elid 5671 idinxpres 5672 idrefALT 5726 |
Copyright terms: Public domain | W3C validator |