MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn1 Structured version   Visualization version   GIF version

Theorem elimasn1 6099
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5156 and shorten proof. (Revised by BJ, 16-Oct-2024.)
Hypotheses
Ref Expression
elimasn1.1 𝐵 ∈ V
elimasn1.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)

Proof of Theorem elimasn1
StepHypRef Expression
1 elimasn1.1 . 2 𝐵 ∈ V
2 elimasn1.2 . 2 𝐶 ∈ V
3 elimasng1 6098 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
41, 2, 3mp2an 690 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2099  Vcvv 3462  {csn 4633   class class class wbr 5155  cima 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pr 5435
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5156  df-opab 5218  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator