MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn1 Structured version   Visualization version   GIF version

Theorem elimasn1 6106
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5144 and shorten proof. (Revised by BJ, 16-Oct-2024.)
Hypotheses
Ref Expression
elimasn1.1 𝐵 ∈ V
elimasn1.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)

Proof of Theorem elimasn1
StepHypRef Expression
1 elimasn1.1 . 2 𝐵 ∈ V
2 elimasn1.2 . 2 𝐶 ∈ V
3 elimasng1 6105 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3480  {csn 4626   class class class wbr 5143  cima 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator