![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasn1 | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5156 and shorten proof. (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elimasn1.1 | ⊢ 𝐵 ∈ V |
elimasn1.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elimasn1 | ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasn1.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elimasn1.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | elimasng1 6098 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 Vcvv 3462 {csn 4633 class class class wbr 5155 “ cima 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5156 df-opab 5218 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |