MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasn1 Structured version   Visualization version   GIF version

Theorem elimasn1 6087
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Use df-br 5150 and shorten proof. (Revised by BJ, 16-Oct-2024.)
Hypotheses
Ref Expression
elimasn1.1 𝐵 ∈ V
elimasn1.2 𝐶 ∈ V
Assertion
Ref Expression
elimasn1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)

Proof of Theorem elimasn1
StepHypRef Expression
1 elimasn1.1 . 2 𝐵 ∈ V
2 elimasn1.2 . 2 𝐶 ∈ V
3 elimasng1 6086 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
41, 2, 3mp2an 691 1 (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107  Vcvv 3475  {csn 4629   class class class wbr 5149  cima 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator