![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasng | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6084, remove, and relabel elimasng1 6084 to "elimasng". |
Ref | Expression |
---|---|
elimasng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng1 6084 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | |
2 | df-br 5148 | . 2 ⊢ (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴) | |
3 | 1, 2 | bitrdi 286 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 {csn 4627 ⟨cop 4633 class class class wbr 5147 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: elimasn 6087 inimasn 6154 dffv3 6886 fvimacnv 7053 fvrnressn 7160 elecg 8748 imasnopn 23414 imasncld 23415 imasncls 23416 ustelimasn 23947 blval2 24291 elbl4 24292 scutval 27538 iunsnima2 32115 1stpreimas 32194 opelco3 35050 funpartfv 35221 eltail 35562 elecALTV 37437 brtrclfv2 42780 frege77d 42799 dfafv23 46259 |
Copyright terms: Public domain | W3C validator |