| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimasng | Structured version Visualization version GIF version | ||
| Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6074, remove, and relabel elimasng1 6074 to "elimasng". |
| Ref | Expression |
|---|---|
| elimasng | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng1 6074 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) | |
| 2 | df-br 5120 | . 2 ⊢ (𝐵𝐴𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐴) | |
| 3 | 1, 2 | bitrdi 287 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 〈𝐵, 𝐶〉 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 {csn 4601 〈cop 4607 class class class wbr 5119 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: elimasn 6077 inimasn 6145 dffv3 6872 fvimacnv 7043 fvrnressn 7151 elecg 8763 imasnopn 23628 imasncld 23629 imasncls 23630 ustelimasn 24161 blval2 24501 elbl4 24502 scutval 27764 iunsnima2 32599 1stpreimas 32683 opelco3 35792 funpartfv 35963 eltail 36392 elecALTV 38284 brtrclfv2 43751 frege77d 43770 dfafv23 47282 |
| Copyright terms: Public domain | W3C validator |