MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng Structured version   Visualization version   GIF version

Theorem elimasng 6076
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6074, remove, and relabel elimasng1 6074 to "elimasng".
Assertion
Ref Expression
elimasng ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))

Proof of Theorem elimasng
StepHypRef Expression
1 elimasng1 6074 . 2 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
2 df-br 5120 . 2 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
31, 2bitrdi 287 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  {csn 4601  cop 4607   class class class wbr 5119  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  elimasn  6077  inimasn  6145  dffv3  6872  fvimacnv  7043  fvrnressn  7151  elecg  8763  imasnopn  23628  imasncld  23629  imasncls  23630  ustelimasn  24161  blval2  24501  elbl4  24502  scutval  27764  iunsnima2  32599  1stpreimas  32683  opelco3  35792  funpartfv  35963  eltail  36392  elecALTV  38284  brtrclfv2  43751  frege77d  43770  dfafv23  47282
  Copyright terms: Public domain W3C validator