MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng Structured version   Visualization version   GIF version

Theorem elimasng 5927
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
Assertion
Ref Expression
elimasng ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))

Proof of Theorem elimasng
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4532 . . . . 5 (𝑦 = 𝐵 → {𝑦} = {𝐵})
21imaeq2d 5901 . . . 4 (𝑦 = 𝐵 → (𝐴 “ {𝑦}) = (𝐴 “ {𝐵}))
32eleq2d 2837 . . 3 (𝑦 = 𝐵 → (𝑧 ∈ (𝐴 “ {𝑦}) ↔ 𝑧 ∈ (𝐴 “ {𝐵})))
4 opeq1 4761 . . . 4 (𝑦 = 𝐵 → ⟨𝑦, 𝑧⟩ = ⟨𝐵, 𝑧⟩)
54eleq1d 2836 . . 3 (𝑦 = 𝐵 → (⟨𝑦, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴))
63, 5bibi12d 349 . 2 (𝑦 = 𝐵 → ((𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴) ↔ (𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴)))
7 eleq1 2839 . . 3 (𝑧 = 𝐶 → (𝑧 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ (𝐴 “ {𝐵})))
8 opeq2 4763 . . . 4 (𝑧 = 𝐶 → ⟨𝐵, 𝑧⟩ = ⟨𝐵, 𝐶⟩)
98eleq1d 2836 . . 3 (𝑧 = 𝐶 → (⟨𝐵, 𝑧⟩ ∈ 𝐴 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
107, 9bibi12d 349 . 2 (𝑧 = 𝐶 → ((𝑧 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝑧⟩ ∈ 𝐴) ↔ (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)))
11 vex 3413 . . 3 𝑦 ∈ V
12 vex 3413 . . 3 𝑧 ∈ V
1311, 12elimasn 5926 . 2 (𝑧 ∈ (𝐴 “ {𝑦}) ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)
146, 10, 13vtocl2g 3490 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {csn 4522  cop 4528  cima 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537
This theorem is referenced by:  elimasni  5928  eliniseg  5930  inimasn  5985  elpredim  6138  elpredg  6140  dffv3  6654  fvimacnv  6814  fvrnressn  6914  elecg  8342  imasnopn  22390  imasncld  22391  imasncls  22392  ustelimasn  22923  blval2  23264  elbl4  23265  iunsnima2  30481  1stpreimas  30562  opelco3  33265  scutval  33557  funpartfv  33796  eltail  34112  elecALTV  35967  brtrclfv2  40801  frege77d  40820  dfafv23  44177
  Copyright terms: Public domain W3C validator