MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng Structured version   Visualization version   GIF version

Theorem elimasng 6090
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) TODO: replace existing usages by usages of elimasng1 6088, remove, and relabel elimasng1 6088 to "elimasng".
Assertion
Ref Expression
elimasng ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))

Proof of Theorem elimasng
StepHypRef Expression
1 elimasng1 6088 . 2 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
2 df-br 5146 . 2 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
31, 2bitrdi 286 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  {csn 4623  cop 4629   class class class wbr 5145  cima 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5146  df-opab 5208  df-xp 5680  df-cnv 5682  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687
This theorem is referenced by:  elimasn  6091  inimasn  6159  dffv3  6889  fvimacnv  7058  fvrnressn  7167  elecg  8770  imasnopn  23682  imasncld  23683  imasncls  23684  ustelimasn  24215  blval2  24559  elbl4  24560  scutval  27827  iunsnima2  32539  1stpreimas  32617  opelco3  35611  funpartfv  35782  eltail  36099  elecALTV  37977  brtrclfv2  43431  frege77d  43450  dfafv23  46902
  Copyright terms: Public domain W3C validator