MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Visualization version   GIF version

Theorem alephval3 10063
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephcard 10023 . . . 4 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3 alephgeom 10035 . . . 4 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
43biimpi 216 . . 3 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
5 alephord2i 10030 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
6 elirr 9550 . . . . . . 7 ¬ (ℵ‘𝑦) ∈ (ℵ‘𝑦)
7 eleq2 2817 . . . . . . 7 ((ℵ‘𝐴) = (ℵ‘𝑦) → ((ℵ‘𝑦) ∈ (ℵ‘𝐴) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑦)))
86, 7mtbiri 327 . . . . . 6 ((ℵ‘𝐴) = (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (ℵ‘𝐴))
98con2i 139 . . . . 5 ((ℵ‘𝑦) ∈ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) = (ℵ‘𝑦))
105, 9syl6 35 . . . 4 (𝐴 ∈ On → (𝑦𝐴 → ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
1110ralrimiv 3124 . . 3 (𝐴 ∈ On → ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦))
12 fvex 6871 . . . 4 (ℵ‘𝐴) ∈ V
13 fveq2 6858 . . . . . 6 (𝑥 = (ℵ‘𝐴) → (card‘𝑥) = (card‘(ℵ‘𝐴)))
14 id 22 . . . . . 6 (𝑥 = (ℵ‘𝐴) → 𝑥 = (ℵ‘𝐴))
1513, 14eqeq12d 2745 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)))
16 sseq2 3973 . . . . 5 (𝑥 = (ℵ‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (ℵ‘𝐴)))
17 eqeq1 2733 . . . . . . 7 (𝑥 = (ℵ‘𝐴) → (𝑥 = (ℵ‘𝑦) ↔ (ℵ‘𝐴) = (ℵ‘𝑦)))
1817notbid 318 . . . . . 6 (𝑥 = (ℵ‘𝐴) → (¬ 𝑥 = (ℵ‘𝑦) ↔ ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
1918ralbidv 3156 . . . . 5 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦) ↔ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
2015, 16, 193anbi123d 1438 . . . 4 (𝑥 = (ℵ‘𝐴) → (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) ↔ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) ∧ ω ⊆ (ℵ‘𝐴) ∧ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦))))
2112, 20elab 3646 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) ∧ ω ⊆ (ℵ‘𝐴) ∧ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
222, 4, 11, 21syl3anbrc 1344 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
23 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑧 = (ℵ‘𝑦) → (𝑧 ∈ (ℵ‘𝐴) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
24 alephord2 10029 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
2524bicomd 223 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((ℵ‘𝑦) ∈ (ℵ‘𝐴) ↔ 𝑦𝐴))
2623, 25sylan9bbr 510 . . . . . . . . . . . . . 14 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → (𝑧 ∈ (ℵ‘𝐴) ↔ 𝑦𝐴))
2726biimpcd 249 . . . . . . . . . . . . 13 (𝑧 ∈ (ℵ‘𝐴) → (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → 𝑦𝐴))
28 simpr 484 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → 𝑧 = (ℵ‘𝑦))
2927, 28jca2 513 . . . . . . . . . . . 12 (𝑧 ∈ (ℵ‘𝐴) → (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))
3029exp4c 432 . . . . . . . . . . 11 (𝑧 ∈ (ℵ‘𝐴) → (𝑦 ∈ On → (𝐴 ∈ On → (𝑧 = (ℵ‘𝑦) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))))
3130com3r 87 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → (𝑦 ∈ On → (𝑧 = (ℵ‘𝑦) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))))
3231imp4b 421 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ((𝑦 ∈ On ∧ 𝑧 = (ℵ‘𝑦)) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))
3332reximdv2 3143 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → (∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦) → ∃𝑦𝐴 𝑧 = (ℵ‘𝑦)))
34 cardalephex 10043 . . . . . . . . 9 (ω ⊆ 𝑧 → ((card‘𝑧) = 𝑧 ↔ ∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦)))
3534biimpac 478 . . . . . . . 8 (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) → ∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦))
3633, 35impel 505 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ∃𝑦𝐴 𝑧 = (ℵ‘𝑦))
37 dfrex2 3056 . . . . . . 7 (∃𝑦𝐴 𝑧 = (ℵ‘𝑦) ↔ ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))
3836, 37sylib 218 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))
39 nan 829 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))) ↔ (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
4038, 39mpbir 231 . . . . 5 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
4140ex 412 . . . 4 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))))
42 vex 3451 . . . . . . 7 𝑧 ∈ V
43 fveq2 6858 . . . . . . . . 9 (𝑥 = 𝑧 → (card‘𝑥) = (card‘𝑧))
44 id 22 . . . . . . . . 9 (𝑥 = 𝑧𝑥 = 𝑧)
4543, 44eqeq12d 2745 . . . . . . . 8 (𝑥 = 𝑧 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑧) = 𝑧))
46 sseq2 3973 . . . . . . . 8 (𝑥 = 𝑧 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑧))
47 eqeq1 2733 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (ℵ‘𝑦) ↔ 𝑧 = (ℵ‘𝑦)))
4847notbid 318 . . . . . . . . 9 (𝑥 = 𝑧 → (¬ 𝑥 = (ℵ‘𝑦) ↔ ¬ 𝑧 = (ℵ‘𝑦)))
4948ralbidv 3156 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦) ↔ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5045, 46, 493anbi123d 1438 . . . . . . 7 (𝑥 = 𝑧 → (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) ↔ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))))
5142, 50elab 3646 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
52 df-3an 1088 . . . . . 6 (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)) ↔ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5351, 52bitri 275 . . . . 5 (𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5453notbii 320 . . . 4 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5541, 54imbitrrdi 252 . . 3 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}))
5655ralrimiv 3124 . 2 (𝐴 ∈ On → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
57 cardon 9897 . . . . . 6 (card‘𝑥) ∈ On
58 eleq1 2816 . . . . . 6 ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On))
5957, 58mpbii 233 . . . . 5 ((card‘𝑥) = 𝑥𝑥 ∈ On)
60593ad2ant1 1133 . . . 4 (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) → 𝑥 ∈ On)
6160abssi 4033 . . 3 {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ⊆ On
62 oneqmini 6385 . . 3 ({𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}))
6361, 62ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
6422, 56, 63syl2anc 584 1 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3914   cint 4910  Oncon0 6332  cfv 6511  ωcom 7842  cardccrd 9888  cale 9889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-har 9510  df-card 9892  df-aleph 9893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator