MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Visualization version   GIF version

Theorem alephval3 10107
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3 (𝐴 ∈ On β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))})
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem alephval3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephcard 10067 . . . 4 (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)
21a1i 11 . . 3 (𝐴 ∈ On β†’ (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄))
3 alephgeom 10079 . . . 4 (𝐴 ∈ On ↔ Ο‰ βŠ† (β„΅β€˜π΄))
43biimpi 215 . . 3 (𝐴 ∈ On β†’ Ο‰ βŠ† (β„΅β€˜π΄))
5 alephord2i 10074 . . . . 5 (𝐴 ∈ On β†’ (𝑦 ∈ 𝐴 β†’ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄)))
6 elirr 9594 . . . . . . 7 Β¬ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π‘¦)
7 eleq2 2822 . . . . . . 7 ((β„΅β€˜π΄) = (β„΅β€˜π‘¦) β†’ ((β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄) ↔ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π‘¦)))
86, 7mtbiri 326 . . . . . 6 ((β„΅β€˜π΄) = (β„΅β€˜π‘¦) β†’ Β¬ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄))
98con2i 139 . . . . 5 ((β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄) β†’ Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦))
105, 9syl6 35 . . . 4 (𝐴 ∈ On β†’ (𝑦 ∈ 𝐴 β†’ Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦)))
1110ralrimiv 3145 . . 3 (𝐴 ∈ On β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦))
12 fvex 6904 . . . 4 (β„΅β€˜π΄) ∈ V
13 fveq2 6891 . . . . . 6 (π‘₯ = (β„΅β€˜π΄) β†’ (cardβ€˜π‘₯) = (cardβ€˜(β„΅β€˜π΄)))
14 id 22 . . . . . 6 (π‘₯ = (β„΅β€˜π΄) β†’ π‘₯ = (β„΅β€˜π΄))
1513, 14eqeq12d 2748 . . . . 5 (π‘₯ = (β„΅β€˜π΄) β†’ ((cardβ€˜π‘₯) = π‘₯ ↔ (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)))
16 sseq2 4008 . . . . 5 (π‘₯ = (β„΅β€˜π΄) β†’ (Ο‰ βŠ† π‘₯ ↔ Ο‰ βŠ† (β„΅β€˜π΄)))
17 eqeq1 2736 . . . . . . 7 (π‘₯ = (β„΅β€˜π΄) β†’ (π‘₯ = (β„΅β€˜π‘¦) ↔ (β„΅β€˜π΄) = (β„΅β€˜π‘¦)))
1817notbid 317 . . . . . 6 (π‘₯ = (β„΅β€˜π΄) β†’ (Β¬ π‘₯ = (β„΅β€˜π‘¦) ↔ Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦)))
1918ralbidv 3177 . . . . 5 (π‘₯ = (β„΅β€˜π΄) β†’ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦) ↔ βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦)))
2015, 16, 193anbi123d 1436 . . . 4 (π‘₯ = (β„΅β€˜π΄) β†’ (((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦)) ↔ ((cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄) ∧ Ο‰ βŠ† (β„΅β€˜π΄) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦))))
2112, 20elab 3668 . . 3 ((β„΅β€˜π΄) ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} ↔ ((cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄) ∧ Ο‰ βŠ† (β„΅β€˜π΄) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π΄) = (β„΅β€˜π‘¦)))
222, 4, 11, 21syl3anbrc 1343 . 2 (𝐴 ∈ On β†’ (β„΅β€˜π΄) ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))})
23 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑧 = (β„΅β€˜π‘¦) β†’ (𝑧 ∈ (β„΅β€˜π΄) ↔ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄)))
24 alephord2 10073 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐴 ∈ On) β†’ (𝑦 ∈ 𝐴 ↔ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄)))
2524bicomd 222 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐴 ∈ On) β†’ ((β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄) ↔ 𝑦 ∈ 𝐴))
2623, 25sylan9bbr 511 . . . . . . . . . . . . . 14 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (β„΅β€˜π‘¦)) β†’ (𝑧 ∈ (β„΅β€˜π΄) ↔ 𝑦 ∈ 𝐴))
2726biimpcd 248 . . . . . . . . . . . . 13 (𝑧 ∈ (β„΅β€˜π΄) β†’ (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (β„΅β€˜π‘¦)) β†’ 𝑦 ∈ 𝐴))
28 simpr 485 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (β„΅β€˜π‘¦)) β†’ 𝑧 = (β„΅β€˜π‘¦))
2927, 28jca2 514 . . . . . . . . . . . 12 (𝑧 ∈ (β„΅β€˜π΄) β†’ (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (β„΅β€˜π‘¦)) β†’ (𝑦 ∈ 𝐴 ∧ 𝑧 = (β„΅β€˜π‘¦))))
3029exp4c 433 . . . . . . . . . . 11 (𝑧 ∈ (β„΅β€˜π΄) β†’ (𝑦 ∈ On β†’ (𝐴 ∈ On β†’ (𝑧 = (β„΅β€˜π‘¦) β†’ (𝑦 ∈ 𝐴 ∧ 𝑧 = (β„΅β€˜π‘¦))))))
3130com3r 87 . . . . . . . . . 10 (𝐴 ∈ On β†’ (𝑧 ∈ (β„΅β€˜π΄) β†’ (𝑦 ∈ On β†’ (𝑧 = (β„΅β€˜π‘¦) β†’ (𝑦 ∈ 𝐴 ∧ 𝑧 = (β„΅β€˜π‘¦))))))
3231imp4b 422 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) β†’ ((𝑦 ∈ On ∧ 𝑧 = (β„΅β€˜π‘¦)) β†’ (𝑦 ∈ 𝐴 ∧ 𝑧 = (β„΅β€˜π‘¦))))
3332reximdv2 3164 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) β†’ (βˆƒπ‘¦ ∈ On 𝑧 = (β„΅β€˜π‘¦) β†’ βˆƒπ‘¦ ∈ 𝐴 𝑧 = (β„΅β€˜π‘¦)))
34 cardalephex 10087 . . . . . . . . 9 (Ο‰ βŠ† 𝑧 β†’ ((cardβ€˜π‘§) = 𝑧 ↔ βˆƒπ‘¦ ∈ On 𝑧 = (β„΅β€˜π‘¦)))
3534biimpac 479 . . . . . . . 8 (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) β†’ βˆƒπ‘¦ ∈ On 𝑧 = (β„΅β€˜π‘¦))
3633, 35impel 506 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) ∧ ((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧)) β†’ βˆƒπ‘¦ ∈ 𝐴 𝑧 = (β„΅β€˜π‘¦))
37 dfrex2 3073 . . . . . . 7 (βˆƒπ‘¦ ∈ 𝐴 𝑧 = (β„΅β€˜π‘¦) ↔ Β¬ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦))
3836, 37sylib 217 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) ∧ ((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧)) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦))
39 nan 828 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) β†’ Β¬ (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦))) ↔ (((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) ∧ ((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧)) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
4038, 39mpbir 230 . . . . 5 ((𝐴 ∈ On ∧ 𝑧 ∈ (β„΅β€˜π΄)) β†’ Β¬ (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
4140ex 413 . . . 4 (𝐴 ∈ On β†’ (𝑧 ∈ (β„΅β€˜π΄) β†’ Β¬ (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦))))
42 vex 3478 . . . . . . 7 𝑧 ∈ V
43 fveq2 6891 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ (cardβ€˜π‘₯) = (cardβ€˜π‘§))
44 id 22 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ π‘₯ = 𝑧)
4543, 44eqeq12d 2748 . . . . . . . 8 (π‘₯ = 𝑧 β†’ ((cardβ€˜π‘₯) = π‘₯ ↔ (cardβ€˜π‘§) = 𝑧))
46 sseq2 4008 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (Ο‰ βŠ† π‘₯ ↔ Ο‰ βŠ† 𝑧))
47 eqeq1 2736 . . . . . . . . . 10 (π‘₯ = 𝑧 β†’ (π‘₯ = (β„΅β€˜π‘¦) ↔ 𝑧 = (β„΅β€˜π‘¦)))
4847notbid 317 . . . . . . . . 9 (π‘₯ = 𝑧 β†’ (Β¬ π‘₯ = (β„΅β€˜π‘¦) ↔ Β¬ 𝑧 = (β„΅β€˜π‘¦)))
4948ralbidv 3177 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦) ↔ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
5045, 46, 493anbi123d 1436 . . . . . . 7 (π‘₯ = 𝑧 β†’ (((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦)) ↔ ((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧 ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦))))
5142, 50elab 3668 . . . . . 6 (𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} ↔ ((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧 ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
52 df-3an 1089 . . . . . 6 (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧 ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)) ↔ (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
5351, 52bitri 274 . . . . 5 (𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} ↔ (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
5453notbii 319 . . . 4 (Β¬ 𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} ↔ Β¬ (((cardβ€˜π‘§) = 𝑧 ∧ Ο‰ βŠ† 𝑧) ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ 𝑧 = (β„΅β€˜π‘¦)))
5541, 54imbitrrdi 251 . . 3 (𝐴 ∈ On β†’ (𝑧 ∈ (β„΅β€˜π΄) β†’ Β¬ 𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))}))
5655ralrimiv 3145 . 2 (𝐴 ∈ On β†’ βˆ€π‘§ ∈ (β„΅β€˜π΄) Β¬ 𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))})
57 cardon 9941 . . . . . 6 (cardβ€˜π‘₯) ∈ On
58 eleq1 2821 . . . . . 6 ((cardβ€˜π‘₯) = π‘₯ β†’ ((cardβ€˜π‘₯) ∈ On ↔ π‘₯ ∈ On))
5957, 58mpbii 232 . . . . 5 ((cardβ€˜π‘₯) = π‘₯ β†’ π‘₯ ∈ On)
60593ad2ant1 1133 . . . 4 (((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦)) β†’ π‘₯ ∈ On)
6160abssi 4067 . . 3 {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} βŠ† On
62 oneqmini 6416 . . 3 ({π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} βŠ† On β†’ (((β„΅β€˜π΄) ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄) Β¬ 𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))}) β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))}))
6361, 62ax-mp 5 . 2 (((β„΅β€˜π΄) ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))} ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄) Β¬ 𝑧 ∈ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))}) β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))})
6422, 56, 63syl2anc 584 1 (𝐴 ∈ On β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∣ ((cardβ€˜π‘₯) = π‘₯ ∧ Ο‰ βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ = (β„΅β€˜π‘¦))})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3948  βˆ© cint 4950  Oncon0 6364  β€˜cfv 6543  Ο‰com 7857  cardccrd 9932  β„΅cale 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator