MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval3 Structured version   Visualization version   GIF version

Theorem alephval3 9521
Description: An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.)
Assertion
Ref Expression
alephval3 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephcard 9481 . . . 4 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3 alephgeom 9493 . . . 4 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
43biimpi 219 . . 3 (𝐴 ∈ On → ω ⊆ (ℵ‘𝐴))
5 alephord2i 9488 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
6 elirr 9045 . . . . . . 7 ¬ (ℵ‘𝑦) ∈ (ℵ‘𝑦)
7 eleq2 2878 . . . . . . 7 ((ℵ‘𝐴) = (ℵ‘𝑦) → ((ℵ‘𝑦) ∈ (ℵ‘𝐴) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝑦)))
86, 7mtbiri 330 . . . . . 6 ((ℵ‘𝐴) = (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (ℵ‘𝐴))
98con2i 141 . . . . 5 ((ℵ‘𝑦) ∈ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) = (ℵ‘𝑦))
105, 9syl6 35 . . . 4 (𝐴 ∈ On → (𝑦𝐴 → ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
1110ralrimiv 3148 . . 3 (𝐴 ∈ On → ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦))
12 fvex 6658 . . . 4 (ℵ‘𝐴) ∈ V
13 fveq2 6645 . . . . . 6 (𝑥 = (ℵ‘𝐴) → (card‘𝑥) = (card‘(ℵ‘𝐴)))
14 id 22 . . . . . 6 (𝑥 = (ℵ‘𝐴) → 𝑥 = (ℵ‘𝐴))
1513, 14eqeq12d 2814 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((card‘𝑥) = 𝑥 ↔ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)))
16 sseq2 3941 . . . . 5 (𝑥 = (ℵ‘𝐴) → (ω ⊆ 𝑥 ↔ ω ⊆ (ℵ‘𝐴)))
17 eqeq1 2802 . . . . . . 7 (𝑥 = (ℵ‘𝐴) → (𝑥 = (ℵ‘𝑦) ↔ (ℵ‘𝐴) = (ℵ‘𝑦)))
1817notbid 321 . . . . . 6 (𝑥 = (ℵ‘𝐴) → (¬ 𝑥 = (ℵ‘𝑦) ↔ ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
1918ralbidv 3162 . . . . 5 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦) ↔ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
2015, 16, 193anbi123d 1433 . . . 4 (𝑥 = (ℵ‘𝐴) → (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) ↔ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) ∧ ω ⊆ (ℵ‘𝐴) ∧ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦))))
2112, 20elab 3615 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) ∧ ω ⊆ (ℵ‘𝐴) ∧ ∀𝑦𝐴 ¬ (ℵ‘𝐴) = (ℵ‘𝑦)))
222, 4, 11, 21syl3anbrc 1340 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
23 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑧 = (ℵ‘𝑦) → (𝑧 ∈ (ℵ‘𝐴) ↔ (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
24 alephord2 9487 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦𝐴 ↔ (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
2524bicomd 226 . . . . . . . . . . . . . . 15 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → ((ℵ‘𝑦) ∈ (ℵ‘𝐴) ↔ 𝑦𝐴))
2623, 25sylan9bbr 514 . . . . . . . . . . . . . 14 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → (𝑧 ∈ (ℵ‘𝐴) ↔ 𝑦𝐴))
2726biimpcd 252 . . . . . . . . . . . . 13 (𝑧 ∈ (ℵ‘𝐴) → (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → 𝑦𝐴))
28 simpr 488 . . . . . . . . . . . . 13 (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → 𝑧 = (ℵ‘𝑦))
2927, 28jca2 517 . . . . . . . . . . . 12 (𝑧 ∈ (ℵ‘𝐴) → (((𝑦 ∈ On ∧ 𝐴 ∈ On) ∧ 𝑧 = (ℵ‘𝑦)) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))
3029exp4c 436 . . . . . . . . . . 11 (𝑧 ∈ (ℵ‘𝐴) → (𝑦 ∈ On → (𝐴 ∈ On → (𝑧 = (ℵ‘𝑦) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))))
3130com3r 87 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → (𝑦 ∈ On → (𝑧 = (ℵ‘𝑦) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))))
3231imp4b 425 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ((𝑦 ∈ On ∧ 𝑧 = (ℵ‘𝑦)) → (𝑦𝐴𝑧 = (ℵ‘𝑦))))
3332reximdv2 3230 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → (∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦) → ∃𝑦𝐴 𝑧 = (ℵ‘𝑦)))
34 cardalephex 9501 . . . . . . . . 9 (ω ⊆ 𝑧 → ((card‘𝑧) = 𝑧 ↔ ∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦)))
3534biimpac 482 . . . . . . . 8 (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) → ∃𝑦 ∈ On 𝑧 = (ℵ‘𝑦))
3633, 35impel 509 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ∃𝑦𝐴 𝑧 = (ℵ‘𝑦))
37 dfrex2 3202 . . . . . . 7 (∃𝑦𝐴 𝑧 = (ℵ‘𝑦) ↔ ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))
3836, 37sylib 221 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))
39 nan 828 . . . . . 6 (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))) ↔ (((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) ∧ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧)) → ¬ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
4038, 39mpbir 234 . . . . 5 ((𝐴 ∈ On ∧ 𝑧 ∈ (ℵ‘𝐴)) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
4140ex 416 . . . 4 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))))
42 vex 3444 . . . . . . 7 𝑧 ∈ V
43 fveq2 6645 . . . . . . . . 9 (𝑥 = 𝑧 → (card‘𝑥) = (card‘𝑧))
44 id 22 . . . . . . . . 9 (𝑥 = 𝑧𝑥 = 𝑧)
4543, 44eqeq12d 2814 . . . . . . . 8 (𝑥 = 𝑧 → ((card‘𝑥) = 𝑥 ↔ (card‘𝑧) = 𝑧))
46 sseq2 3941 . . . . . . . 8 (𝑥 = 𝑧 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑧))
47 eqeq1 2802 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 = (ℵ‘𝑦) ↔ 𝑧 = (ℵ‘𝑦)))
4847notbid 321 . . . . . . . . 9 (𝑥 = 𝑧 → (¬ 𝑥 = (ℵ‘𝑦) ↔ ¬ 𝑧 = (ℵ‘𝑦)))
4948ralbidv 3162 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦) ↔ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5045, 46, 493anbi123d 1433 . . . . . . 7 (𝑥 = 𝑧 → (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) ↔ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦))))
5142, 50elab 3615 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
52 df-3an 1086 . . . . . 6 (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧 ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)) ↔ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5351, 52bitri 278 . . . . 5 (𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5453notbii 323 . . . 4 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ↔ ¬ (((card‘𝑧) = 𝑧 ∧ ω ⊆ 𝑧) ∧ ∀𝑦𝐴 ¬ 𝑧 = (ℵ‘𝑦)))
5541, 54syl6ibr 255 . . 3 (𝐴 ∈ On → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}))
5655ralrimiv 3148 . 2 (𝐴 ∈ On → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
57 cardon 9357 . . . . . 6 (card‘𝑥) ∈ On
58 eleq1 2877 . . . . . 6 ((card‘𝑥) = 𝑥 → ((card‘𝑥) ∈ On ↔ 𝑥 ∈ On))
5957, 58mpbii 236 . . . . 5 ((card‘𝑥) = 𝑥𝑥 ∈ On)
60593ad2ant1 1130 . . . 4 (((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦)) → 𝑥 ∈ On)
6160abssi 3997 . . 3 {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ⊆ On
62 oneqmini 6210 . . 3 ({𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}))
6361, 62ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
6422, 56, 63syl2anc 587 1 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥 = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  wss 3881   cint 4838  Oncon0 6159  cfv 6324  ωcom 7560  cardccrd 9348  cale 9349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-har 9005  df-card 9352  df-aleph 9353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator