Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv1n Structured version   Visualization version   GIF version

Theorem prv1n 35399
Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv1n ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ {𝑋}⊧(𝐼𝑔𝐽))

Proof of Theorem prv1n
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 (ω × {𝑋}) = (ω × {𝑋})
2 omex 9712 . . . . . . . 8 ω ∈ V
3 snex 5451 . . . . . . . 8 {𝑋} ∈ V
42, 3xpex 7788 . . . . . . 7 (ω × {𝑋}) ∈ V
5 eqeq1 2744 . . . . . . 7 (𝑎 = (ω × {𝑋}) → (𝑎 = (ω × {𝑋}) ↔ (ω × {𝑋}) = (ω × {𝑋})))
64, 5spcev 3619 . . . . . 6 ((ω × {𝑋}) = (ω × {𝑋}) → ∃𝑎 𝑎 = (ω × {𝑋}))
71, 6mp1i 13 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∃𝑎 𝑎 = (ω × {𝑋}))
83, 2pm3.2i 470 . . . . . . . 8 ({𝑋} ∈ V ∧ ω ∈ V)
9 elmapg 8897 . . . . . . . 8 (({𝑋} ∈ V ∧ ω ∈ V) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎:ω⟶{𝑋}))
108, 9mp1i 13 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎:ω⟶{𝑋}))
11 fconst2g 7240 . . . . . . . 8 (𝑋𝑉 → (𝑎:ω⟶{𝑋} ↔ 𝑎 = (ω × {𝑋})))
12113ad2ant3 1135 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎:ω⟶{𝑋} ↔ 𝑎 = (ω × {𝑋})))
1310, 12bitrd 279 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎 = (ω × {𝑋})))
1413exbidv 1920 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (∃𝑎 𝑎 ∈ ({𝑋} ↑m ω) ↔ ∃𝑎 𝑎 = (ω × {𝑋})))
157, 14mpbird 257 . . . 4 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∃𝑎 𝑎 ∈ ({𝑋} ↑m ω))
16 neq0 4375 . . . 4 (¬ ({𝑋} ↑m ω) = ∅ ↔ ∃𝑎 𝑎 ∈ ({𝑋} ↑m ω))
1715, 16sylibr 234 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ ({𝑋} ↑m ω) = ∅)
18 eqcom 2747 . . 3 (({𝑋} ↑m ω) = ∅ ↔ ∅ = ({𝑋} ↑m ω))
1917, 18sylnib 328 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ ∅ = ({𝑋} ↑m ω))
20 ovex 7481 . . . . 5 (𝐼𝑔𝐽) ∈ V
213, 20pm3.2i 470 . . . 4 ({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ V)
22 prv 35396 . . . 4 (({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ V) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω)))
2321, 22mp1i 13 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω)))
24 goel 35315 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
25 0ex 5325 . . . . . . . . . . . 12 ∅ ∈ V
2625snid 4684 . . . . . . . . . . 11 ∅ ∈ {∅}
2726a1i 11 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ {∅})
28 opelxpi 5737 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
2927, 28opelxpd 5739 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ ({∅} × (ω × ω)))
3024, 29eqeltrd 2844 . . . . . . . 8 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ ({∅} × (ω × ω)))
31 fmla0xp 35351 . . . . . . . 8 (Fmla‘∅) = ({∅} × (ω × ω))
3230, 31eleqtrrdi 2855 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (Fmla‘∅))
33323adant3 1132 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝐼𝑔𝐽) ∈ (Fmla‘∅))
34 satefvfmla0 35386 . . . . . 6 (({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ (Fmla‘∅)) → ({𝑋} Sat (𝐼𝑔𝐽)) = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))})
353, 33, 34sylancr 586 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋} Sat (𝐼𝑔𝐽)) = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))})
3624fveq2d 6924 . . . . . . . . . . . . 13 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(𝐼𝑔𝐽)) = (2nd ‘⟨∅, ⟨𝐼, 𝐽⟩⟩))
37 opex 5484 . . . . . . . . . . . . . 14 𝐼, 𝐽⟩ ∈ V
3825, 37op2nd 8039 . . . . . . . . . . . . 13 (2nd ‘⟨∅, ⟨𝐼, 𝐽⟩⟩) = ⟨𝐼, 𝐽
3936, 38eqtrdi 2796 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(𝐼𝑔𝐽)) = ⟨𝐼, 𝐽⟩)
4039fveq2d 6924 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘(2nd ‘(𝐼𝑔𝐽))) = (1st ‘⟨𝐼, 𝐽⟩))
41 op1stg 8042 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘⟨𝐼, 𝐽⟩) = 𝐼)
4240, 41eqtrd 2780 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘(2nd ‘(𝐼𝑔𝐽))) = 𝐼)
4342fveq2d 6924 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) = (𝑎𝐼))
4439fveq2d 6924 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(2nd ‘(𝐼𝑔𝐽))) = (2nd ‘⟨𝐼, 𝐽⟩))
45 op2ndg 8043 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘⟨𝐼, 𝐽⟩) = 𝐽)
4644, 45eqtrd 2780 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(2nd ‘(𝐼𝑔𝐽))) = 𝐽)
4746fveq2d 6924 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽)))) = (𝑎𝐽))
4843, 47eleq12d 2838 . . . . . . . 8 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ((𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽)))) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
4948rabbidv 3451 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)})
50493adant3 1132 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)})
51 elmapi 8907 . . . . . . . . . 10 (𝑎 ∈ ({𝑋} ↑m ω) → 𝑎:ω⟶{𝑋})
52 elirr 9666 . . . . . . . . . . . 12 ¬ 𝑋𝑋
53 fvconst 7198 . . . . . . . . . . . . . 14 ((𝑎:ω⟶{𝑋} ∧ 𝐼 ∈ ω) → (𝑎𝐼) = 𝑋)
54533ad2antr1 1188 . . . . . . . . . . . . 13 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → (𝑎𝐼) = 𝑋)
55 fvconst 7198 . . . . . . . . . . . . . 14 ((𝑎:ω⟶{𝑋} ∧ 𝐽 ∈ ω) → (𝑎𝐽) = 𝑋)
56553ad2antr2 1189 . . . . . . . . . . . . 13 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → (𝑎𝐽) = 𝑋)
5754, 56eleq12d 2838 . . . . . . . . . . . 12 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → ((𝑎𝐼) ∈ (𝑎𝐽) ↔ 𝑋𝑋))
5852, 57mtbiri 327 . . . . . . . . . . 11 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → ¬ (𝑎𝐼) ∈ (𝑎𝐽))
5958ex 412 . . . . . . . . . 10 (𝑎:ω⟶{𝑋} → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
6051, 59syl 17 . . . . . . . . 9 (𝑎 ∈ ({𝑋} ↑m ω) → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
6160impcom 407 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) ∧ 𝑎 ∈ ({𝑋} ↑m ω)) → ¬ (𝑎𝐼) ∈ (𝑎𝐽))
6261ralrimiva 3152 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∀𝑎 ∈ ({𝑋} ↑m ω) ¬ (𝑎𝐼) ∈ (𝑎𝐽))
63 rabeq0 4411 . . . . . . 7 ({𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)} = ∅ ↔ ∀𝑎 ∈ ({𝑋} ↑m ω) ¬ (𝑎𝐼) ∈ (𝑎𝐽))
6462, 63sylibr 234 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)} = ∅)
6550, 64eqtrd 2780 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = ∅)
6635, 65eqtrd 2780 . . . 4 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋} Sat (𝐼𝑔𝐽)) = ∅)
6766eqeq1d 2742 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω) ↔ ∅ = ({𝑋} ↑m ω)))
6823, 67bitrd 279 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ∅ = ({𝑋} ↑m ω)))
6919, 68mtbird 325 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ {𝑋}⊧(𝐼𝑔𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  c0 4352  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  1st c1st 8028  2nd c2nd 8029  m cmap 8884  𝑔cgoe 35301  Fmlacfmla 35305   Sat csate 35306  cprv 35307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313  df-prv 35314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator