Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv1n Structured version   Visualization version   GIF version

Theorem prv1n 34025
Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv1n ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ {𝑋}⊧(𝐼𝑔𝐽))

Proof of Theorem prv1n
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (ω × {𝑋}) = (ω × {𝑋})
2 omex 9579 . . . . . . . 8 ω ∈ V
3 snex 5388 . . . . . . . 8 {𝑋} ∈ V
42, 3xpex 7687 . . . . . . 7 (ω × {𝑋}) ∈ V
5 eqeq1 2740 . . . . . . 7 (𝑎 = (ω × {𝑋}) → (𝑎 = (ω × {𝑋}) ↔ (ω × {𝑋}) = (ω × {𝑋})))
64, 5spcev 3565 . . . . . 6 ((ω × {𝑋}) = (ω × {𝑋}) → ∃𝑎 𝑎 = (ω × {𝑋}))
71, 6mp1i 13 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∃𝑎 𝑎 = (ω × {𝑋}))
83, 2pm3.2i 471 . . . . . . . 8 ({𝑋} ∈ V ∧ ω ∈ V)
9 elmapg 8778 . . . . . . . 8 (({𝑋} ∈ V ∧ ω ∈ V) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎:ω⟶{𝑋}))
108, 9mp1i 13 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎:ω⟶{𝑋}))
11 fconst2g 7152 . . . . . . . 8 (𝑋𝑉 → (𝑎:ω⟶{𝑋} ↔ 𝑎 = (ω × {𝑋})))
12113ad2ant3 1135 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎:ω⟶{𝑋} ↔ 𝑎 = (ω × {𝑋})))
1310, 12bitrd 278 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎 = (ω × {𝑋})))
1413exbidv 1924 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (∃𝑎 𝑎 ∈ ({𝑋} ↑m ω) ↔ ∃𝑎 𝑎 = (ω × {𝑋})))
157, 14mpbird 256 . . . 4 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∃𝑎 𝑎 ∈ ({𝑋} ↑m ω))
16 neq0 4305 . . . 4 (¬ ({𝑋} ↑m ω) = ∅ ↔ ∃𝑎 𝑎 ∈ ({𝑋} ↑m ω))
1715, 16sylibr 233 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ ({𝑋} ↑m ω) = ∅)
18 eqcom 2743 . . 3 (({𝑋} ↑m ω) = ∅ ↔ ∅ = ({𝑋} ↑m ω))
1917, 18sylnib 327 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ ∅ = ({𝑋} ↑m ω))
20 ovex 7390 . . . . 5 (𝐼𝑔𝐽) ∈ V
213, 20pm3.2i 471 . . . 4 ({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ V)
22 prv 34022 . . . 4 (({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ V) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω)))
2321, 22mp1i 13 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω)))
24 goel 33941 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
25 0ex 5264 . . . . . . . . . . . 12 ∅ ∈ V
2625snid 4622 . . . . . . . . . . 11 ∅ ∈ {∅}
2726a1i 11 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ {∅})
28 opelxpi 5670 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
2927, 28opelxpd 5671 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ ({∅} × (ω × ω)))
3024, 29eqeltrd 2838 . . . . . . . 8 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ ({∅} × (ω × ω)))
31 fmla0xp 33977 . . . . . . . 8 (Fmla‘∅) = ({∅} × (ω × ω))
3230, 31eleqtrrdi 2849 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (Fmla‘∅))
33323adant3 1132 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝐼𝑔𝐽) ∈ (Fmla‘∅))
34 satefvfmla0 34012 . . . . . 6 (({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ (Fmla‘∅)) → ({𝑋} Sat (𝐼𝑔𝐽)) = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))})
353, 33, 34sylancr 587 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋} Sat (𝐼𝑔𝐽)) = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))})
3624fveq2d 6846 . . . . . . . . . . . . 13 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(𝐼𝑔𝐽)) = (2nd ‘⟨∅, ⟨𝐼, 𝐽⟩⟩))
37 opex 5421 . . . . . . . . . . . . . 14 𝐼, 𝐽⟩ ∈ V
3825, 37op2nd 7930 . . . . . . . . . . . . 13 (2nd ‘⟨∅, ⟨𝐼, 𝐽⟩⟩) = ⟨𝐼, 𝐽
3936, 38eqtrdi 2792 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(𝐼𝑔𝐽)) = ⟨𝐼, 𝐽⟩)
4039fveq2d 6846 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘(2nd ‘(𝐼𝑔𝐽))) = (1st ‘⟨𝐼, 𝐽⟩))
41 op1stg 7933 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘⟨𝐼, 𝐽⟩) = 𝐼)
4240, 41eqtrd 2776 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘(2nd ‘(𝐼𝑔𝐽))) = 𝐼)
4342fveq2d 6846 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) = (𝑎𝐼))
4439fveq2d 6846 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(2nd ‘(𝐼𝑔𝐽))) = (2nd ‘⟨𝐼, 𝐽⟩))
45 op2ndg 7934 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘⟨𝐼, 𝐽⟩) = 𝐽)
4644, 45eqtrd 2776 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(2nd ‘(𝐼𝑔𝐽))) = 𝐽)
4746fveq2d 6846 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽)))) = (𝑎𝐽))
4843, 47eleq12d 2832 . . . . . . . 8 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ((𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽)))) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
4948rabbidv 3415 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)})
50493adant3 1132 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)})
51 elmapi 8787 . . . . . . . . . 10 (𝑎 ∈ ({𝑋} ↑m ω) → 𝑎:ω⟶{𝑋})
52 elirr 9533 . . . . . . . . . . . 12 ¬ 𝑋𝑋
53 fvconst 7110 . . . . . . . . . . . . . 14 ((𝑎:ω⟶{𝑋} ∧ 𝐼 ∈ ω) → (𝑎𝐼) = 𝑋)
54533ad2antr1 1188 . . . . . . . . . . . . 13 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → (𝑎𝐼) = 𝑋)
55 fvconst 7110 . . . . . . . . . . . . . 14 ((𝑎:ω⟶{𝑋} ∧ 𝐽 ∈ ω) → (𝑎𝐽) = 𝑋)
56553ad2antr2 1189 . . . . . . . . . . . . 13 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → (𝑎𝐽) = 𝑋)
5754, 56eleq12d 2832 . . . . . . . . . . . 12 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → ((𝑎𝐼) ∈ (𝑎𝐽) ↔ 𝑋𝑋))
5852, 57mtbiri 326 . . . . . . . . . . 11 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → ¬ (𝑎𝐼) ∈ (𝑎𝐽))
5958ex 413 . . . . . . . . . 10 (𝑎:ω⟶{𝑋} → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
6051, 59syl 17 . . . . . . . . 9 (𝑎 ∈ ({𝑋} ↑m ω) → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
6160impcom 408 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) ∧ 𝑎 ∈ ({𝑋} ↑m ω)) → ¬ (𝑎𝐼) ∈ (𝑎𝐽))
6261ralrimiva 3143 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∀𝑎 ∈ ({𝑋} ↑m ω) ¬ (𝑎𝐼) ∈ (𝑎𝐽))
63 rabeq0 4344 . . . . . . 7 ({𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)} = ∅ ↔ ∀𝑎 ∈ ({𝑋} ↑m ω) ¬ (𝑎𝐼) ∈ (𝑎𝐽))
6462, 63sylibr 233 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)} = ∅)
6550, 64eqtrd 2776 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = ∅)
6635, 65eqtrd 2776 . . . 4 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋} Sat (𝐼𝑔𝐽)) = ∅)
6766eqeq1d 2738 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω) ↔ ∅ = ({𝑋} ↑m ω)))
6823, 67bitrd 278 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ∅ = ({𝑋} ↑m ω)))
6919, 68mtbird 324 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ {𝑋}⊧(𝐼𝑔𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  c0 4282  {csn 4586  cop 4592   class class class wbr 5105   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  1st c1st 7919  2nd c2nd 7920  m cmap 8765  𝑔cgoe 33927  Fmlacfmla 33931   Sat csate 33932  cprv 33933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577  ax-ac2 10399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-ac 10052  df-goel 33934  df-gona 33935  df-goal 33936  df-sat 33937  df-sate 33938  df-fmla 33939  df-prv 33940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator