Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv1n Structured version   Visualization version   GIF version

Theorem prv1n 35425
Description: No wff encoded as a Godel-set of membership is true in a model with only one element. (Contributed by AV, 19-Nov-2023.)
Assertion
Ref Expression
prv1n ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ {𝑋}⊧(𝐼𝑔𝐽))

Proof of Theorem prv1n
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . 6 (ω × {𝑋}) = (ω × {𝑋})
2 omex 9603 . . . . . . . 8 ω ∈ V
3 snex 5394 . . . . . . . 8 {𝑋} ∈ V
42, 3xpex 7732 . . . . . . 7 (ω × {𝑋}) ∈ V
5 eqeq1 2734 . . . . . . 7 (𝑎 = (ω × {𝑋}) → (𝑎 = (ω × {𝑋}) ↔ (ω × {𝑋}) = (ω × {𝑋})))
64, 5spcev 3575 . . . . . 6 ((ω × {𝑋}) = (ω × {𝑋}) → ∃𝑎 𝑎 = (ω × {𝑋}))
71, 6mp1i 13 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∃𝑎 𝑎 = (ω × {𝑋}))
83, 2pm3.2i 470 . . . . . . . 8 ({𝑋} ∈ V ∧ ω ∈ V)
9 elmapg 8815 . . . . . . . 8 (({𝑋} ∈ V ∧ ω ∈ V) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎:ω⟶{𝑋}))
108, 9mp1i 13 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎:ω⟶{𝑋}))
11 fconst2g 7180 . . . . . . . 8 (𝑋𝑉 → (𝑎:ω⟶{𝑋} ↔ 𝑎 = (ω × {𝑋})))
12113ad2ant3 1135 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎:ω⟶{𝑋} ↔ 𝑎 = (ω × {𝑋})))
1310, 12bitrd 279 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝑎 ∈ ({𝑋} ↑m ω) ↔ 𝑎 = (ω × {𝑋})))
1413exbidv 1921 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (∃𝑎 𝑎 ∈ ({𝑋} ↑m ω) ↔ ∃𝑎 𝑎 = (ω × {𝑋})))
157, 14mpbird 257 . . . 4 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∃𝑎 𝑎 ∈ ({𝑋} ↑m ω))
16 neq0 4318 . . . 4 (¬ ({𝑋} ↑m ω) = ∅ ↔ ∃𝑎 𝑎 ∈ ({𝑋} ↑m ω))
1715, 16sylibr 234 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ ({𝑋} ↑m ω) = ∅)
18 eqcom 2737 . . 3 (({𝑋} ↑m ω) = ∅ ↔ ∅ = ({𝑋} ↑m ω))
1917, 18sylnib 328 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ ∅ = ({𝑋} ↑m ω))
20 ovex 7423 . . . . 5 (𝐼𝑔𝐽) ∈ V
213, 20pm3.2i 470 . . . 4 ({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ V)
22 prv 35422 . . . 4 (({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ V) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω)))
2321, 22mp1i 13 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω)))
24 goel 35341 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) = ⟨∅, ⟨𝐼, 𝐽⟩⟩)
25 0ex 5265 . . . . . . . . . . . 12 ∅ ∈ V
2625snid 4629 . . . . . . . . . . 11 ∅ ∈ {∅}
2726a1i 11 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ∅ ∈ {∅})
28 opelxpi 5678 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨𝐼, 𝐽⟩ ∈ (ω × ω))
2927, 28opelxpd 5680 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ⟨∅, ⟨𝐼, 𝐽⟩⟩ ∈ ({∅} × (ω × ω)))
3024, 29eqeltrd 2829 . . . . . . . 8 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ ({∅} × (ω × ω)))
31 fmla0xp 35377 . . . . . . . 8 (Fmla‘∅) = ({∅} × (ω × ω))
3230, 31eleqtrrdi 2840 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝐼𝑔𝐽) ∈ (Fmla‘∅))
33323adant3 1132 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (𝐼𝑔𝐽) ∈ (Fmla‘∅))
34 satefvfmla0 35412 . . . . . 6 (({𝑋} ∈ V ∧ (𝐼𝑔𝐽) ∈ (Fmla‘∅)) → ({𝑋} Sat (𝐼𝑔𝐽)) = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))})
353, 33, 34sylancr 587 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋} Sat (𝐼𝑔𝐽)) = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))})
3624fveq2d 6865 . . . . . . . . . . . . 13 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(𝐼𝑔𝐽)) = (2nd ‘⟨∅, ⟨𝐼, 𝐽⟩⟩))
37 opex 5427 . . . . . . . . . . . . . 14 𝐼, 𝐽⟩ ∈ V
3825, 37op2nd 7980 . . . . . . . . . . . . 13 (2nd ‘⟨∅, ⟨𝐼, 𝐽⟩⟩) = ⟨𝐼, 𝐽
3936, 38eqtrdi 2781 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(𝐼𝑔𝐽)) = ⟨𝐼, 𝐽⟩)
4039fveq2d 6865 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘(2nd ‘(𝐼𝑔𝐽))) = (1st ‘⟨𝐼, 𝐽⟩))
41 op1stg 7983 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘⟨𝐼, 𝐽⟩) = 𝐼)
4240, 41eqtrd 2765 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (1st ‘(2nd ‘(𝐼𝑔𝐽))) = 𝐼)
4342fveq2d 6865 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) = (𝑎𝐼))
4439fveq2d 6865 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(2nd ‘(𝐼𝑔𝐽))) = (2nd ‘⟨𝐼, 𝐽⟩))
45 op2ndg 7984 . . . . . . . . . . 11 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘⟨𝐼, 𝐽⟩) = 𝐽)
4644, 45eqtrd 2765 . . . . . . . . . 10 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (2nd ‘(2nd ‘(𝐼𝑔𝐽))) = 𝐽)
4746fveq2d 6865 . . . . . . . . 9 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽)))) = (𝑎𝐽))
4843, 47eleq12d 2823 . . . . . . . 8 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ((𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽)))) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
4948rabbidv 3416 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)})
50493adant3 1132 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)})
51 elmapi 8825 . . . . . . . . . 10 (𝑎 ∈ ({𝑋} ↑m ω) → 𝑎:ω⟶{𝑋})
52 elirr 9557 . . . . . . . . . . . 12 ¬ 𝑋𝑋
53 fvconst 7139 . . . . . . . . . . . . . 14 ((𝑎:ω⟶{𝑋} ∧ 𝐼 ∈ ω) → (𝑎𝐼) = 𝑋)
54533ad2antr1 1189 . . . . . . . . . . . . 13 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → (𝑎𝐼) = 𝑋)
55 fvconst 7139 . . . . . . . . . . . . . 14 ((𝑎:ω⟶{𝑋} ∧ 𝐽 ∈ ω) → (𝑎𝐽) = 𝑋)
56553ad2antr2 1190 . . . . . . . . . . . . 13 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → (𝑎𝐽) = 𝑋)
5754, 56eleq12d 2823 . . . . . . . . . . . 12 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → ((𝑎𝐼) ∈ (𝑎𝐽) ↔ 𝑋𝑋))
5852, 57mtbiri 327 . . . . . . . . . . 11 ((𝑎:ω⟶{𝑋} ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉)) → ¬ (𝑎𝐼) ∈ (𝑎𝐽))
5958ex 412 . . . . . . . . . 10 (𝑎:ω⟶{𝑋} → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
6051, 59syl 17 . . . . . . . . 9 (𝑎 ∈ ({𝑋} ↑m ω) → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
6160impcom 407 . . . . . . . 8 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) ∧ 𝑎 ∈ ({𝑋} ↑m ω)) → ¬ (𝑎𝐼) ∈ (𝑎𝐽))
6261ralrimiva 3126 . . . . . . 7 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ∀𝑎 ∈ ({𝑋} ↑m ω) ¬ (𝑎𝐼) ∈ (𝑎𝐽))
63 rabeq0 4354 . . . . . . 7 ({𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)} = ∅ ↔ ∀𝑎 ∈ ({𝑋} ↑m ω) ¬ (𝑎𝐼) ∈ (𝑎𝐽))
6462, 63sylibr 234 . . . . . 6 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎𝐼) ∈ (𝑎𝐽)} = ∅)
6550, 64eqtrd 2765 . . . . 5 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → {𝑎 ∈ ({𝑋} ↑m ω) ∣ (𝑎‘(1st ‘(2nd ‘(𝐼𝑔𝐽)))) ∈ (𝑎‘(2nd ‘(2nd ‘(𝐼𝑔𝐽))))} = ∅)
6635, 65eqtrd 2765 . . . 4 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋} Sat (𝐼𝑔𝐽)) = ∅)
6766eqeq1d 2732 . . 3 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → (({𝑋} Sat (𝐼𝑔𝐽)) = ({𝑋} ↑m ω) ↔ ∅ = ({𝑋} ↑m ω)))
6823, 67bitrd 279 . 2 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ({𝑋}⊧(𝐼𝑔𝐽) ↔ ∅ = ({𝑋} ↑m ω)))
6919, 68mtbird 325 1 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝑋𝑉) → ¬ {𝑋}⊧(𝐼𝑔𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  c0 4299  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  2nd c2nd 7970  m cmap 8802  𝑔cgoe 35327  Fmlacfmla 35331   Sat csate 35332  cprv 35333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-sate 35338  df-fmla 35339  df-prv 35340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator