MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem5 Structured version   Visualization version   GIF version

Theorem prmreclem5 16891
Description: Lemma for prmrec 16893. Here we show the inequality 𝑁 / 2 < ♯𝑀 by decomposing the set (1...𝑁) into the disjoint union of the set 𝑀 of those numbers that are not divisible by any "large" primes (above 𝐾) and the indexed union over 𝐾 < 𝑘 of the numbers 𝑊𝑘 that divide the prime 𝑘. By prmreclem4 16890 the second of these has size less than 𝑁 times the prime reciprocal series, which is less than 1 / 2 by assumption, we find that the complementary part 𝑀 must be at least 𝑁 / 2 large. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem5 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem5
Dummy variables 𝑟 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmrec.3 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 12201 . . 3 (𝜑𝑁 ∈ ℝ)
32rehalfcld 12429 . 2 (𝜑 → (𝑁 / 2) ∈ ℝ)
4 fzfi 13937 . . . . . 6 (1...𝑁) ∈ Fin
5 prmrec.4 . . . . . . 7 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
65ssrab3 4045 . . . . . 6 𝑀 ⊆ (1...𝑁)
7 ssfi 9137 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin)
84, 6, 7mp2an 692 . . . . 5 𝑀 ∈ Fin
9 hashcl 14321 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
108, 9ax-mp 5 . . . 4 (♯‘𝑀) ∈ ℕ0
1110nn0rei 12453 . . 3 (♯‘𝑀) ∈ ℝ
1211a1i 11 . 2 (𝜑 → (♯‘𝑀) ∈ ℝ)
13 2nn 12259 . . . . 5 2 ∈ ℕ
14 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
1514nnnn0d 12503 . . . . 5 (𝜑𝐾 ∈ ℕ0)
16 nnexpcl 14039 . . . . 5 ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℕ)
1713, 15, 16sylancr 587 . . . 4 (𝜑 → (2↑𝐾) ∈ ℕ)
1817nnred 12201 . . 3 (𝜑 → (2↑𝐾) ∈ ℝ)
191nnrpd 12993 . . . . 5 (𝜑𝑁 ∈ ℝ+)
2019rpsqrtcld 15378 . . . 4 (𝜑 → (√‘𝑁) ∈ ℝ+)
2120rpred 12995 . . 3 (𝜑 → (√‘𝑁) ∈ ℝ)
2218, 21remulcld 11204 . 2 (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ)
232recnd 11202 . . . . . 6 (𝜑𝑁 ∈ ℂ)
24232halvesd 12428 . . . . 5 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
256a1i 11 . . . . . . . . 9 (𝜑𝑀 ⊆ (1...𝑁))
2614peano2nnd 12203 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℕ)
27 elfzuz 13481 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
28 eluznn 12877 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
2926, 27, 28syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
30 eleq1w 2811 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
31 breq1 5110 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
3230, 31anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
3332rabbidv 3413 . . . . . . . . . . . . . . 15 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
34 prmrec.7 . . . . . . . . . . . . . . 15 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
35 ovex 7420 . . . . . . . . . . . . . . . 16 (1...𝑁) ∈ V
3635rabex 5294 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
3733, 34, 36fvmpt 6968 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
3837adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
39 ssrab2 4043 . . . . . . . . . . . . 13 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
4038, 39eqsstrdi 3991 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
4129, 40syldan 591 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) ⊆ (1...𝑁))
4241ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
43 iunss 5009 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4442, 43sylibr 234 . . . . . . . . 9 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4525, 44unssd 4155 . . . . . . . 8 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ⊆ (1...𝑁))
46 breq1 5110 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑛𝑞𝑛))
4746notbid 318 . . . . . . . . . . . . . . 15 (𝑝 = 𝑞 → (¬ 𝑝𝑛 ↔ ¬ 𝑞𝑛))
4847cbvralvw 3215 . . . . . . . . . . . . . 14 (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛)
49 breq2 5111 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝑞𝑛𝑞𝑥))
5049notbid 318 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (¬ 𝑞𝑛 ↔ ¬ 𝑞𝑥))
5150ralbidv 3156 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5248, 51bitrid 283 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5352, 5elrab2 3662 . . . . . . . . . . . 12 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
54 elun1 4145 . . . . . . . . . . . 12 (𝑥𝑀𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5553, 54sylbir 235 . . . . . . . . . . 11 ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5655ex 412 . . . . . . . . . 10 (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
5756adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
58 dfrex2 3056 . . . . . . . . . 10 (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥)
5914nnzd 12556 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ ℤ)
6059peano2zd 12641 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 + 1) ∈ ℤ)
6160ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ∈ ℤ)
621nnzd 12556 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
6362ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℤ)
64 eldifi 4094 . . . . . . . . . . . . . . . 16 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → 𝑞 ∈ ℙ)
6564ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℙ)
66 prmz 16645 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℤ)
68 eldifn 4095 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾))
6968ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞 ∈ (1...𝐾))
70 prmnn 16644 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
7165, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℕ)
72 nnuz 12836 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
7371, 72eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ (ℤ‘1))
7459ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℤ)
75 elfz5 13477 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ (ℤ‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7673, 74, 75syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7769, 76mtbid 324 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞𝐾)
7814nnred 12201 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7978ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℝ)
8071nnred 12201 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℝ)
8179, 80ltnled 11321 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞𝐾))
8277, 81mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 < 𝑞)
83 zltp1le 12583 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8474, 67, 83syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8582, 84mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ≤ 𝑞)
86 elfznn 13514 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
8786ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℕ)
8887nnred 12201 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℝ)
892ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℝ)
90 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
91 dvdsle 16280 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
9267, 87, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞𝑥𝑞𝑥))
9390, 92mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
94 elfzle2 13489 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑁) → 𝑥𝑁)
9594ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥𝑁)
9680, 88, 89, 93, 95letrd 11331 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑁)
9761, 63, 67, 85, 96elfzd 13476 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁))
9849anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑥)))
99 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (1...𝑁))
10065, 90jca 511 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞𝑥))
10198, 99, 100elrabd 3661 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
102 eleq1w 2811 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ))
103102, 46anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑛)))
104103rabbidv 3413 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10535rabex 5294 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)} ∈ V
106104, 34, 105fvmpt 6968 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10771, 106syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
108101, 107eleqtrrd 2831 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑊𝑞))
109 fveq2 6858 . . . . . . . . . . . . . 14 (𝑘 = 𝑞 → (𝑊𝑘) = (𝑊𝑞))
110109eliuni 4961 . . . . . . . . . . . . 13 ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊𝑞)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
11197, 108, 110syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
112 elun2 4146 . . . . . . . . . . . 12 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
113111, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
114113rexlimdvaa 3135 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11558, 114biimtrrid 243 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11657, 115pm2.61d 179 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
11745, 116eqelssd 3968 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (1...𝑁))
118117fveq2d 6862 . . . . . 6 (𝜑 → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = (♯‘(1...𝑁)))
1191nnnn0d 12503 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
120 hashfz1 14311 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
121119, 120syl 17 . . . . . 6 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
122118, 121eqtr2d 2765 . . . . 5 (𝜑𝑁 = (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
1238a1i 11 . . . . . 6 (𝜑𝑀 ∈ Fin)
124 ssfi 9137 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
1254, 44, 124sylancr 587 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
126 breq1 5110 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑥𝑘𝑥))
127126notbid 318 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → (¬ 𝑝𝑥 ↔ ¬ 𝑘𝑥))
128 breq2 5111 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑥 → (𝑝𝑛𝑝𝑥))
129128notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑥 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑥))
130129ralbidv 3156 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
131130, 5elrab2 3662 . . . . . . . . . . . . . . . . . 18 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
132131simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑥𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
133132ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
134 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ)
135 noel 4301 . . . . . . . . . . . . . . . . . 18 ¬ 𝑘 ∈ ∅
136 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁))
137136biantrud 531 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))))
138 elin 3930 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))
139137, 138bitr4di 289 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁))))
14078ltp1d 12113 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 < (𝐾 + 1))
141 fzdisj 13512 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
142140, 141syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
143142ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
144143eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅))
145139, 144bitrd 279 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅))
146135, 145mtbiri 327 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾))
147134, 146eldifd 3925 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾)))
148127, 133, 147rspcdva 3589 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘𝑥)
149148expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘𝑥))
150 imnan 399 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℙ → ¬ 𝑘𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
151149, 150sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
15229adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
153152, 37syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
154153eleq2d 2814 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)}))
155 breq2 5111 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (𝑘𝑛𝑘𝑥))
156155anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
157156elrab 3659 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
158157simprbi 496 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘𝑥))
159154, 158biimtrdi 253 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) → (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
160151, 159mtod 198 . . . . . . . . . . . 12 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊𝑘))
161160nrexdv 3128 . . . . . . . . . . 11 ((𝜑𝑥𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
162 eliun 4959 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
163161, 162sylnibr 329 . . . . . . . . . 10 ((𝜑𝑥𝑀) → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
164163ex 412 . . . . . . . . 9 (𝜑 → (𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
165 imnan 399 . . . . . . . . 9 ((𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
166164, 165sylib 218 . . . . . . . 8 (𝜑 → ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
167 elin 3930 . . . . . . . 8 (𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
168166, 167sylnibr 329 . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
169168eq0rdv 4370 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅)
170 hashun 14347 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin ∧ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅) → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
171123, 125, 169, 170syl3anc 1373 . . . . 5 (𝜑 → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
17224, 122, 1713eqtrd 2768 . . . 4 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
173 hashcl 14321 . . . . . . 7 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
174125, 173syl 17 . . . . . 6 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
175174nn0red 12504 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℝ)
176 fzfid 13938 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
17726, 28sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
178 nnrecre 12228 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
179 0re 11176 . . . . . . . . . . 11 0 ∈ ℝ
180 ifcl 4534 . . . . . . . . . . 11 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
181178, 179, 180sylancl 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
182177, 181syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
18327, 182sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
184176, 183fsumrecl 15700 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
1852, 184remulcld 11204 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
186 prmrec.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
187 prmrec.5 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
188 prmrec.6 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
189186, 14, 1, 5, 187, 188, 34prmreclem4 16890 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
190 eluz 12807 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
19162, 59, 190syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
192 nnleltp1 12589 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾𝑁 < (𝐾 + 1)))
1931, 14, 192syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁𝐾𝑁 < (𝐾 + 1)))
194 fzn 13501 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
19560, 62, 194syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
196191, 193, 1953bitrd 305 . . . . . . . 8 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅))
197 0le0 12287 . . . . . . . . . 10 0 ≤ 0
19823mul01d 11373 . . . . . . . . . 10 (𝜑 → (𝑁 · 0) = 0)
199197, 198breqtrrid 5145 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 · 0))
200 iuneq1 4972 . . . . . . . . . . . . 13 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
201 0iun 5027 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑊𝑘) = ∅
202200, 201eqtrdi 2780 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = ∅)
203202fveq2d 6862 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (♯‘∅))
204 hash0 14332 . . . . . . . . . . 11 (♯‘∅) = 0
205203, 204eqtrdi 2780 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = 0)
206 sumeq1 15655 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
207 sum0 15687 . . . . . . . . . . . 12 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
208206, 207eqtrdi 2780 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
209208oveq2d 7403 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
210205, 209breq12d 5120 . . . . . . . . 9 (((𝐾 + 1)...𝑁) = ∅ → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0)))
211199, 210syl5ibrcom 247 . . . . . . . 8 (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
212196, 211sylbid 240 . . . . . . 7 (𝜑 → (𝐾 ∈ (ℤ𝑁) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
213 uztric 12817 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
21459, 62, 213syl2anc 584 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
215189, 212, 214mpjaod 860 . . . . . 6 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
216 eqid 2729 . . . . . . . . . 10 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
217 eleq1w 2811 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
218 oveq2 7395 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
219217, 218ifbieq1d 4513 . . . . . . . . . . . 12 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
220 ovex 7420 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
221 c0ex 11168 . . . . . . . . . . . . 13 0 ∈ V
222220, 221ifex 4539 . . . . . . . . . . . 12 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V
223219, 186, 222fvmpt 6968 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
224177, 223syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
225181recnd 11202 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
226223, 225eqeltrd 2828 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
227226adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22872, 26, 227iserex 15623 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ))
229187, 228mpbid 232 . . . . . . . . . 10 (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ )
230216, 60, 224, 182, 229isumrecl 15731 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
231 halfre 12395 . . . . . . . . . 10 (1 / 2) ∈ ℝ
232231a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
233 fzssuz 13526 . . . . . . . . . . 11 ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1))
234233a1i 11 . . . . . . . . . 10 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1)))
235 nnrp 12963 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
236235rpreccld 13005 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
237236rpge0d 12999 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
238 breq2 5111 . . . . . . . . . . . . 13 ((1 / 𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
239 breq2 5111 . . . . . . . . . . . . 13 (0 = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
240238, 239ifboth 4528 . . . . . . . . . . . 12 ((0 ≤ (1 / 𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
241237, 197, 240sylancl 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
242177, 241syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
243216, 60, 176, 234, 224, 182, 242, 229isumless 15811 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
244184, 230, 232, 243, 188lelttrd 11332 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
2451nngt0d 12235 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
246 ltmul2 12033 . . . . . . . . 9 ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
247184, 232, 2, 245, 246syl112anc 1376 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
248244, 247mpbid 232 . . . . . . 7 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))
249 2cn 12261 . . . . . . . . 9 2 ∈ ℂ
250 2ne0 12290 . . . . . . . . 9 2 ≠ 0
251 divrec 11853 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2)))
252249, 250, 251mp3an23 1455 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2)))
25323, 252syl 17 . . . . . . 7 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
254248, 253breqtrrd 5135 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2))
255175, 185, 3, 215, 254lelttrd 11332 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) < (𝑁 / 2))
256175, 3, 12, 255ltadd2dd 11333 . . . 4 (𝜑 → ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) < ((♯‘𝑀) + (𝑁 / 2)))
257172, 256eqbrtrd 5129 . . 3 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2)))
2583, 12, 3ltadd1d 11771 . . 3 (𝜑 → ((𝑁 / 2) < (♯‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2))))
259257, 258mpbird 257 . 2 (𝜑 → (𝑁 / 2) < (♯‘𝑀))
260 oveq1 7394 . . . . . . . 8 (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2))
261260breq1d 5117 . . . . . . 7 (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥))
262261cbvrabv 3416 . . . . . 6 {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥}
263 breq2 5111 . . . . . . 7 (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛))
264263rabbidv 3413 . . . . . 6 (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
265262, 264eqtrid 2776 . . . . 5 (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
266265supeq1d 9397 . . . 4 (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
267266cbvmptv 5211 . . 3 (𝑥 ∈ ℕ ↦ sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < )) = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
268186, 14, 1, 5, 267prmreclem3 16889 . 2 (𝜑 → (♯‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁)))
2693, 12, 22, 259, 268ltletrd 11334 1 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488   ciun 4955   class class class wbr 5107  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  Fincfn 8918  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  cexp 14026  chash 14295  csqrt 15199  cli 15450  Σcsu 15652  cdvds 16222  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808
This theorem is referenced by:  prmreclem6  16892
  Copyright terms: Public domain W3C validator