Step | Hyp | Ref
| Expression |
1 | | prmrec.3 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | nnred 11997 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℝ) |
3 | 2 | rehalfcld 12229 |
. 2
⊢ (𝜑 → (𝑁 / 2) ∈ ℝ) |
4 | | fzfi 13701 |
. . . . . 6
⊢
(1...𝑁) ∈
Fin |
5 | | prmrec.4 |
. . . . . . 7
⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} |
6 | 5 | ssrab3 4016 |
. . . . . 6
⊢ 𝑀 ⊆ (1...𝑁) |
7 | | ssfi 8965 |
. . . . . 6
⊢
(((1...𝑁) ∈ Fin
∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin) |
8 | 4, 6, 7 | mp2an 689 |
. . . . 5
⊢ 𝑀 ∈ Fin |
9 | | hashcl 14080 |
. . . . 5
⊢ (𝑀 ∈ Fin →
(♯‘𝑀) ∈
ℕ0) |
10 | 8, 9 | ax-mp 5 |
. . . 4
⊢
(♯‘𝑀)
∈ ℕ0 |
11 | 10 | nn0rei 12253 |
. . 3
⊢
(♯‘𝑀)
∈ ℝ |
12 | 11 | a1i 11 |
. 2
⊢ (𝜑 → (♯‘𝑀) ∈
ℝ) |
13 | | 2nn 12055 |
. . . . 5
⊢ 2 ∈
ℕ |
14 | | prmrec.2 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
15 | 14 | nnnn0d 12302 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
16 | | nnexpcl 13804 |
. . . . 5
⊢ ((2
∈ ℕ ∧ 𝐾
∈ ℕ0) → (2↑𝐾) ∈ ℕ) |
17 | 13, 15, 16 | sylancr 587 |
. . . 4
⊢ (𝜑 → (2↑𝐾) ∈ ℕ) |
18 | 17 | nnred 11997 |
. . 3
⊢ (𝜑 → (2↑𝐾) ∈ ℝ) |
19 | 1 | nnrpd 12779 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
20 | 19 | rpsqrtcld 15132 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℝ+) |
21 | 20 | rpred 12781 |
. . 3
⊢ (𝜑 → (√‘𝑁) ∈
ℝ) |
22 | 18, 21 | remulcld 11014 |
. 2
⊢ (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ) |
23 | 2 | recnd 11012 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
24 | 23 | 2halvesd 12228 |
. . . . 5
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁) |
25 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ⊆ (1...𝑁)) |
26 | 14 | peano2nnd 11999 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 + 1) ∈ ℕ) |
27 | | elfzuz 13261 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) |
28 | | eluznn 12667 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ) |
29 | 26, 27, 28 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
30 | | eleq1w 2822 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
31 | | breq1 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑛 ↔ 𝑘 ∥ 𝑛)) |
32 | 30, 31 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛))) |
33 | 32 | rabbidv 3415 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
34 | | prmrec.7 |
. . . . . . . . . . . . . . 15
⊢ 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)}) |
35 | | ovex 7317 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑁) ∈
V |
36 | 35 | rabex 5257 |
. . . . . . . . . . . . . . 15
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ∈ V |
37 | 33, 34, 36 | fvmpt 6884 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
38 | 37 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
39 | | ssrab2 4014 |
. . . . . . . . . . . . 13
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ⊆ (1...𝑁) |
40 | 38, 39 | eqsstrdi 3976 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
41 | 29, 40 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
42 | 41 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
43 | | iunss 4976 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
44 | 42, 43 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
45 | 25, 44 | unssd 4121 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ⊆ (1...𝑁)) |
46 | | breq1 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝑛 ↔ 𝑞 ∥ 𝑛)) |
47 | 46 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑞 → (¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑛)) |
48 | 47 | cbvralvw 3384 |
. . . . . . . . . . . . . 14
⊢
(∀𝑝 ∈
(ℙ ∖ (1...𝐾))
¬ 𝑝 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖
(1...𝐾)) ¬ 𝑞 ∥ 𝑛) |
49 | | breq2 5079 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → (𝑞 ∥ 𝑛 ↔ 𝑞 ∥ 𝑥)) |
50 | 49 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → (¬ 𝑞 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑥)) |
51 | 50 | ralbidv 3113 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
52 | 48, 51 | bitrid 282 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
53 | 52, 5 | elrab2 3628 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
54 | | elun1 4111 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑀 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
55 | 53, 54 | sylbir 234 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
56 | 55 | ex 413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
57 | 56 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
58 | | dfrex2 3171 |
. . . . . . . . . 10
⊢
(∃𝑞 ∈
(ℙ ∖ (1...𝐾))𝑞 ∥ 𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥) |
59 | 14 | nnzd 12434 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℤ) |
60 | 59 | peano2zd 12438 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
61 | 60 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 + 1) ∈ ℤ) |
62 | 1 | nnzd 12434 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℤ) |
63 | 62 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑁 ∈ ℤ) |
64 | | eldifi 4062 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ (ℙ ∖
(1...𝐾)) → 𝑞 ∈
ℙ) |
65 | 64 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℙ) |
66 | | prmz 16389 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℤ) |
68 | | eldifn 4063 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ (ℙ ∖
(1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾)) |
69 | 68 | ad2antrl 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → ¬ 𝑞 ∈ (1...𝐾)) |
70 | | prmnn 16388 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℕ) |
71 | 65, 70 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℕ) |
72 | | nnuz 12630 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ =
(ℤ≥‘1) |
73 | 71, 72 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈
(ℤ≥‘1)) |
74 | 59 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 ∈ ℤ) |
75 | | elfz5 13257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈
(ℤ≥‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞 ≤ 𝐾)) |
76 | 73, 74, 75 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞 ≤ 𝐾)) |
77 | 69, 76 | mtbid 324 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → ¬ 𝑞 ≤ 𝐾) |
78 | 14 | nnred 11997 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈ ℝ) |
79 | 78 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 ∈ ℝ) |
80 | 71 | nnred 11997 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℝ) |
81 | 79, 80 | ltnled 11131 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞 ≤ 𝐾)) |
82 | 77, 81 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 < 𝑞) |
83 | | zltp1le 12379 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞)) |
84 | 74, 67, 83 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞)) |
85 | 82, 84 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 + 1) ≤ 𝑞) |
86 | | elfznn 13294 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) |
87 | 86 | ad2antlr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ℕ) |
88 | 87 | nnred 11997 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ℝ) |
89 | 2 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑁 ∈ ℝ) |
90 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∥ 𝑥) |
91 | | dvdsle 16028 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
92 | 67, 87, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
93 | 90, 92 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ≤ 𝑥) |
94 | | elfzle2 13269 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ≤ 𝑁) |
95 | 94 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ≤ 𝑁) |
96 | 80, 88, 89, 93, 95 | letrd 11141 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ≤ 𝑁) |
97 | 61, 63, 67, 85, 96 | elfzd 13256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁)) |
98 | 49 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥))) |
99 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (1...𝑁)) |
100 | 65, 90 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥)) |
101 | 98, 99, 100 | elrabd 3627 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
102 | | eleq1w 2822 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ)) |
103 | 102, 46 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛))) |
104 | 103 | rabbidv 3415 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
105 | 35 | rabex 5257 |
. . . . . . . . . . . . . . . 16
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)} ∈ V |
106 | 104, 34, 105 | fvmpt 6884 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℕ → (𝑊‘𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
107 | 71, 106 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑊‘𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
108 | 101, 107 | eleqtrrd 2843 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (𝑊‘𝑞)) |
109 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑞 → (𝑊‘𝑘) = (𝑊‘𝑞)) |
110 | 109 | eliuni 4931 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊‘𝑞)) → 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
111 | 97, 108, 110 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
112 | | elun2 4112 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
114 | 113 | rexlimdvaa 3215 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
115 | 58, 114 | syl5bir 242 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
116 | 57, 115 | pm2.61d 179 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
117 | 45, 116 | eqelssd 3943 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = (1...𝑁)) |
118 | 117 | fveq2d 6787 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = (♯‘(1...𝑁))) |
119 | 1 | nnnn0d 12302 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
120 | | hashfz1 14069 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
121 | 119, 120 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
122 | 118, 121 | eqtr2d 2780 |
. . . . 5
⊢ (𝜑 → 𝑁 = (♯‘(𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
123 | 8 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
124 | | ssfi 8965 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin) |
125 | 4, 44, 124 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin) |
126 | | breq1 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑥 ↔ 𝑘 ∥ 𝑥)) |
127 | 126 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → (¬ 𝑝 ∥ 𝑥 ↔ ¬ 𝑘 ∥ 𝑥)) |
128 | | breq2 5079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑥 → (𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝑥)) |
129 | 128 | notbid 318 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑥 → (¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ 𝑥)) |
130 | 129 | ralbidv 3113 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥)) |
131 | 130, 5 | elrab2 3628 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥)) |
132 | 131 | simprbi 497 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥) |
133 | 132 | ad2antlr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖
(1...𝐾)) ¬ 𝑝 ∥ 𝑥) |
134 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ) |
135 | | noel 4265 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝑘 ∈
∅ |
136 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)) |
137 | 136 | biantrud 532 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))) |
138 | | elin 3904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))) |
139 | 137, 138 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)))) |
140 | 78 | ltp1d 11914 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐾 < (𝐾 + 1)) |
141 | | fzdisj 13292 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
142 | 140, 141 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
143 | 142 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
144 | 143 | eleq2d 2825 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅)) |
145 | 139, 144 | bitrd 278 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅)) |
146 | 135, 145 | mtbiri 327 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾)) |
147 | 134, 146 | eldifd 3899 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾))) |
148 | 127, 133,
147 | rspcdva 3563 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∥ 𝑥) |
149 | 148 | expr 457 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘 ∥ 𝑥)) |
150 | | imnan 400 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℙ → ¬
𝑘 ∥ 𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
151 | 149, 150 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
152 | 29 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
153 | 152, 37 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
154 | 153 | eleq2d 2825 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊‘𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)})) |
155 | | breq2 5079 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑥 → (𝑘 ∥ 𝑛 ↔ 𝑘 ∥ 𝑥)) |
156 | 155 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
157 | 156 | elrab 3625 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
158 | 157 | simprbi 497 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
159 | 154, 158 | syl6bi 252 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊‘𝑘) → (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
160 | 151, 159 | mtod 197 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊‘𝑘)) |
161 | 160 | nrexdv 3199 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊‘𝑘)) |
162 | | eliun 4929 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊‘𝑘)) |
163 | 161, 162 | sylnibr 329 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
164 | 163 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
165 | | imnan 400 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ↔ ¬ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
166 | 164, 165 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
167 | | elin 3904 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ↔ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
168 | 166, 167 | sylnibr 329 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑥 ∈ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
169 | 168 | eq0rdv 4339 |
. . . . . 6
⊢ (𝜑 → (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = ∅) |
170 | | hashun 14106 |
. . . . . 6
⊢ ((𝑀 ∈ Fin ∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin ∧ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = ∅) → (♯‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
171 | 123, 125,
169, 170 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
172 | 24, 122, 171 | 3eqtrd 2783 |
. . . 4
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
173 | | hashcl 14080 |
. . . . . . 7
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈
ℕ0) |
174 | 125, 173 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈
ℕ0) |
175 | 174 | nn0red 12303 |
. . . . 5
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈ ℝ) |
176 | | fzfid 13702 |
. . . . . . . 8
⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) |
177 | 26, 28 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈
ℕ) |
178 | | nnrecre 12024 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
179 | | 0re 10986 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
180 | | ifcl 4505 |
. . . . . . . . . . 11
⊢ (((1 /
𝑘) ∈ ℝ ∧ 0
∈ ℝ) → if(𝑘
∈ ℙ, (1 / 𝑘), 0)
∈ ℝ) |
181 | 178, 179,
180 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
182 | 177, 181 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
183 | 27, 182 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
184 | 176, 183 | fsumrecl 15455 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
185 | 2, 184 | remulcld 11014 |
. . . . . 6
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) |
186 | | prmrec.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) |
187 | | prmrec.5 |
. . . . . . . 8
⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝
) |
188 | | prmrec.6 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) |
189 | 186, 14, 1, 5, 187, 188, 34 | prmreclem4 16629 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
190 | | eluz 12605 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈
(ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝐾)) |
191 | 62, 59, 190 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝐾)) |
192 | | nnleltp1 12384 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 ≤ 𝐾 ↔ 𝑁 < (𝐾 + 1))) |
193 | 1, 14, 192 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝐾 ↔ 𝑁 < (𝐾 + 1))) |
194 | | fzn 13281 |
. . . . . . . . . 10
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
195 | 60, 62, 194 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
196 | 191, 193,
195 | 3bitrd 305 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
197 | | 0le0 12083 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
198 | 23 | mul01d 11183 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 · 0) = 0) |
199 | 197, 198 | breqtrrid 5113 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑁 · 0)) |
200 | | iuneq1 4941 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1)...𝑁) = ∅ → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) = ∪ 𝑘 ∈ ∅ (𝑊‘𝑘)) |
201 | | 0iun 4993 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ ∅ (𝑊‘𝑘) = ∅ |
202 | 200, 201 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (((𝐾 + 1)...𝑁) = ∅ → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) = ∅) |
203 | 202 | fveq2d 6787 |
. . . . . . . . . . 11
⊢ (((𝐾 + 1)...𝑁) = ∅ → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) =
(♯‘∅)) |
204 | | hash0 14091 |
. . . . . . . . . . 11
⊢
(♯‘∅) = 0 |
205 | 203, 204 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝐾 + 1)...𝑁) = ∅ → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = 0) |
206 | | sumeq1 15409 |
. . . . . . . . . . . 12
⊢ (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
207 | | sum0 15442 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
∅ if(𝑘 ∈
ℙ, (1 / 𝑘), 0) =
0 |
208 | 206, 207 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0) |
209 | 208 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0)) |
210 | 205, 209 | breq12d 5088 |
. . . . . . . . 9
⊢ (((𝐾 + 1)...𝑁) = ∅ → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0))) |
211 | 199, 210 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
212 | 196, 211 | sylbid 239 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
213 | | uztric 12615 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝐾) ∨ 𝐾 ∈ (ℤ≥‘𝑁))) |
214 | 59, 62, 213 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) ∨ 𝐾 ∈ (ℤ≥‘𝑁))) |
215 | 189, 212,
214 | mpjaod 857 |
. . . . . 6
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
216 | | eqid 2739 |
. . . . . . . . . 10
⊢
(ℤ≥‘(𝐾 + 1)) =
(ℤ≥‘(𝐾 + 1)) |
217 | | eleq1w 2822 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
218 | | oveq2 7292 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘)) |
219 | 217, 218 | ifbieq1d 4484 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
220 | | ovex 7317 |
. . . . . . . . . . . . 13
⊢ (1 /
𝑘) ∈
V |
221 | | c0ex 10978 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
222 | 220, 221 | ifex 4510 |
. . . . . . . . . . . 12
⊢ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V |
223 | 219, 186,
222 | fvmpt 6884 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
224 | 177, 223 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
225 | 181 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ) |
226 | 223, 225 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℂ) |
227 | 226 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
228 | 72, 26, 227 | iserex 15377 |
. . . . . . . . . . 11
⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔
seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝
)) |
229 | 187, 228 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ) |
230 | 216, 60, 224, 182, 229 | isumrecl 15486 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
231 | | halfre 12196 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℝ |
232 | 231 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
233 | | fzssuz 13306 |
. . . . . . . . . . 11
⊢ ((𝐾 + 1)...𝑁) ⊆
(ℤ≥‘(𝐾 + 1)) |
234 | 233 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾 + 1)...𝑁) ⊆
(ℤ≥‘(𝐾 + 1))) |
235 | | nnrp 12750 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
236 | 235 | rpreccld 12791 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
237 | 236 | rpge0d 12785 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 0 ≤ (1
/ 𝑘)) |
238 | | breq2 5079 |
. . . . . . . . . . . . 13
⊢ ((1 /
𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
239 | | breq2 5079 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑘 ∈ ℙ, (1 /
𝑘), 0) → (0 ≤ 0
↔ 0 ≤ if(𝑘 ∈
ℙ, (1 / 𝑘),
0))) |
240 | 238, 239 | ifboth 4499 |
. . . . . . . . . . . 12
⊢ ((0 ≤
(1 / 𝑘) ∧ 0 ≤ 0)
→ 0 ≤ if(𝑘 ∈
ℙ, (1 / 𝑘),
0)) |
241 | 237, 197,
240 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 0 ≤
if(𝑘 ∈ ℙ, (1 /
𝑘), 0)) |
242 | 177, 241 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
243 | 216, 60, 176, 234, 224, 182, 242, 229 | isumless 15566 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
244 | 184, 230,
232, 243, 188 | lelttrd 11142 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) |
245 | 1 | nngt0d 12031 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑁) |
246 | | ltmul2 11835 |
. . . . . . . . 9
⊢
((Σ𝑘 ∈
((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈
ℝ ∧ (𝑁 ∈
ℝ ∧ 0 < 𝑁))
→ (Σ𝑘 ∈
((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))) |
247 | 184, 232,
2, 245, 246 | syl112anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))) |
248 | 244, 247 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))) |
249 | | 2cn 12057 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
250 | | 2ne0 12086 |
. . . . . . . . 9
⊢ 2 ≠
0 |
251 | | divrec 11658 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2))) |
252 | 249, 250,
251 | mp3an23 1452 |
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2))) |
253 | 23, 252 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2))) |
254 | 248, 253 | breqtrrd 5103 |
. . . . . 6
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2)) |
255 | 175, 185,
3, 215, 254 | lelttrd 11142 |
. . . . 5
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) < (𝑁 / 2)) |
256 | 175, 3, 12, 255 | ltadd2dd 11143 |
. . . 4
⊢ (𝜑 → ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) < ((♯‘𝑀) + (𝑁 / 2))) |
257 | 172, 256 | eqbrtrd 5097 |
. . 3
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2))) |
258 | 3, 12, 3 | ltadd1d 11577 |
. . 3
⊢ (𝜑 → ((𝑁 / 2) < (♯‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2)))) |
259 | 257, 258 | mpbird 256 |
. 2
⊢ (𝜑 → (𝑁 / 2) < (♯‘𝑀)) |
260 | | oveq1 7291 |
. . . . . . . 8
⊢ (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2)) |
261 | 260 | breq1d 5085 |
. . . . . . 7
⊢ (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥)) |
262 | 261 | cbvrabv 3427 |
. . . . . 6
⊢ {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} |
263 | | breq2 5079 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛)) |
264 | 263 | rabbidv 3415 |
. . . . . 6
⊢ (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}) |
265 | 262, 264 | eqtrid 2791 |
. . . . 5
⊢ (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}) |
266 | 265 | supeq1d 9214 |
. . . 4
⊢ (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < )) |
267 | 266 | cbvmptv 5188 |
. . 3
⊢ (𝑥 ∈ ℕ ↦
sup({𝑘 ∈ ℕ
∣ (𝑘↑2) ∥
𝑥}, ℝ, < )) =
(𝑛 ∈ ℕ ↦
sup({𝑟 ∈ ℕ
∣ (𝑟↑2) ∥
𝑛}, ℝ, <
)) |
268 | 186, 14, 1, 5, 267 | prmreclem3 16628 |
. 2
⊢ (𝜑 → (♯‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁))) |
269 | 3, 12, 22, 259, 268 | ltletrd 11144 |
1
⊢ (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁))) |