MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem5 Structured version   Visualization version   GIF version

Theorem prmreclem5 16953
Description: Lemma for prmrec 16955. Here we show the inequality 𝑁 / 2 < ♯𝑀 by decomposing the set (1...𝑁) into the disjoint union of the set 𝑀 of those numbers that are not divisible by any "large" primes (above 𝐾) and the indexed union over 𝐾 < 𝑘 of the numbers 𝑊𝑘 that divide the prime 𝑘. By prmreclem4 16952 the second of these has size less than 𝑁 times the prime reciprocal series, which is less than 1 / 2 by assumption, we find that the complementary part 𝑀 must be at least 𝑁 / 2 large. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem5 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem5
Dummy variables 𝑟 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmrec.3 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 12278 . . 3 (𝜑𝑁 ∈ ℝ)
32rehalfcld 12510 . 2 (𝜑 → (𝑁 / 2) ∈ ℝ)
4 fzfi 14009 . . . . . 6 (1...𝑁) ∈ Fin
5 prmrec.4 . . . . . . 7 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
65ssrab3 4091 . . . . . 6 𝑀 ⊆ (1...𝑁)
7 ssfi 9211 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin)
84, 6, 7mp2an 692 . . . . 5 𝑀 ∈ Fin
9 hashcl 14391 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
108, 9ax-mp 5 . . . 4 (♯‘𝑀) ∈ ℕ0
1110nn0rei 12534 . . 3 (♯‘𝑀) ∈ ℝ
1211a1i 11 . 2 (𝜑 → (♯‘𝑀) ∈ ℝ)
13 2nn 12336 . . . . 5 2 ∈ ℕ
14 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
1514nnnn0d 12584 . . . . 5 (𝜑𝐾 ∈ ℕ0)
16 nnexpcl 14111 . . . . 5 ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℕ)
1713, 15, 16sylancr 587 . . . 4 (𝜑 → (2↑𝐾) ∈ ℕ)
1817nnred 12278 . . 3 (𝜑 → (2↑𝐾) ∈ ℝ)
191nnrpd 13072 . . . . 5 (𝜑𝑁 ∈ ℝ+)
2019rpsqrtcld 15446 . . . 4 (𝜑 → (√‘𝑁) ∈ ℝ+)
2120rpred 13074 . . 3 (𝜑 → (√‘𝑁) ∈ ℝ)
2218, 21remulcld 11288 . 2 (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ)
232recnd 11286 . . . . . 6 (𝜑𝑁 ∈ ℂ)
24232halvesd 12509 . . . . 5 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
256a1i 11 . . . . . . . . 9 (𝜑𝑀 ⊆ (1...𝑁))
2614peano2nnd 12280 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℕ)
27 elfzuz 13556 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
28 eluznn 12957 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
2926, 27, 28syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
30 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
31 breq1 5150 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
3230, 31anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
3332rabbidv 3440 . . . . . . . . . . . . . . 15 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
34 prmrec.7 . . . . . . . . . . . . . . 15 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
35 ovex 7463 . . . . . . . . . . . . . . . 16 (1...𝑁) ∈ V
3635rabex 5344 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
3733, 34, 36fvmpt 7015 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
3837adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
39 ssrab2 4089 . . . . . . . . . . . . 13 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
4038, 39eqsstrdi 4049 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
4129, 40syldan 591 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) ⊆ (1...𝑁))
4241ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
43 iunss 5049 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4442, 43sylibr 234 . . . . . . . . 9 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4525, 44unssd 4201 . . . . . . . 8 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ⊆ (1...𝑁))
46 breq1 5150 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑛𝑞𝑛))
4746notbid 318 . . . . . . . . . . . . . . 15 (𝑝 = 𝑞 → (¬ 𝑝𝑛 ↔ ¬ 𝑞𝑛))
4847cbvralvw 3234 . . . . . . . . . . . . . 14 (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛)
49 breq2 5151 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝑞𝑛𝑞𝑥))
5049notbid 318 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (¬ 𝑞𝑛 ↔ ¬ 𝑞𝑥))
5150ralbidv 3175 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5248, 51bitrid 283 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5352, 5elrab2 3697 . . . . . . . . . . . 12 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
54 elun1 4191 . . . . . . . . . . . 12 (𝑥𝑀𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5553, 54sylbir 235 . . . . . . . . . . 11 ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5655ex 412 . . . . . . . . . 10 (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
5756adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
58 dfrex2 3070 . . . . . . . . . 10 (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥)
5914nnzd 12637 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ ℤ)
6059peano2zd 12722 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 + 1) ∈ ℤ)
6160ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ∈ ℤ)
621nnzd 12637 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
6362ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℤ)
64 eldifi 4140 . . . . . . . . . . . . . . . 16 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → 𝑞 ∈ ℙ)
6564ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℙ)
66 prmz 16708 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℤ)
68 eldifn 4141 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾))
6968ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞 ∈ (1...𝐾))
70 prmnn 16707 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
7165, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℕ)
72 nnuz 12918 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
7371, 72eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ (ℤ‘1))
7459ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℤ)
75 elfz5 13552 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ (ℤ‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7673, 74, 75syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7769, 76mtbid 324 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞𝐾)
7814nnred 12278 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7978ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℝ)
8071nnred 12278 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℝ)
8179, 80ltnled 11405 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞𝐾))
8277, 81mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 < 𝑞)
83 zltp1le 12664 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8474, 67, 83syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8582, 84mpbid 232 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ≤ 𝑞)
86 elfznn 13589 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
8786ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℕ)
8887nnred 12278 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℝ)
892ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℝ)
90 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
91 dvdsle 16343 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
9267, 87, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞𝑥𝑞𝑥))
9390, 92mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
94 elfzle2 13564 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑁) → 𝑥𝑁)
9594ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥𝑁)
9680, 88, 89, 93, 95letrd 11415 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑁)
9761, 63, 67, 85, 96elfzd 13551 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁))
9849anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑥)))
99 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (1...𝑁))
10065, 90jca 511 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞𝑥))
10198, 99, 100elrabd 3696 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
102 eleq1w 2821 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ))
103102, 46anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑛)))
104103rabbidv 3440 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10535rabex 5344 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)} ∈ V
106104, 34, 105fvmpt 7015 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10771, 106syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
108101, 107eleqtrrd 2841 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑊𝑞))
109 fveq2 6906 . . . . . . . . . . . . . 14 (𝑘 = 𝑞 → (𝑊𝑘) = (𝑊𝑞))
110109eliuni 5001 . . . . . . . . . . . . 13 ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊𝑞)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
11197, 108, 110syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
112 elun2 4192 . . . . . . . . . . . 12 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
113111, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
114113rexlimdvaa 3153 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11558, 114biimtrrid 243 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11657, 115pm2.61d 179 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
11745, 116eqelssd 4016 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (1...𝑁))
118117fveq2d 6910 . . . . . 6 (𝜑 → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = (♯‘(1...𝑁)))
1191nnnn0d 12584 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
120 hashfz1 14381 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
121119, 120syl 17 . . . . . 6 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
122118, 121eqtr2d 2775 . . . . 5 (𝜑𝑁 = (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
1238a1i 11 . . . . . 6 (𝜑𝑀 ∈ Fin)
124 ssfi 9211 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
1254, 44, 124sylancr 587 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
126 breq1 5150 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑥𝑘𝑥))
127126notbid 318 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → (¬ 𝑝𝑥 ↔ ¬ 𝑘𝑥))
128 breq2 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑥 → (𝑝𝑛𝑝𝑥))
129128notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑥 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑥))
130129ralbidv 3175 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
131130, 5elrab2 3697 . . . . . . . . . . . . . . . . . 18 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
132131simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑥𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
133132ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
134 simprr 773 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ)
135 noel 4343 . . . . . . . . . . . . . . . . . 18 ¬ 𝑘 ∈ ∅
136 simprl 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁))
137136biantrud 531 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))))
138 elin 3978 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))
139137, 138bitr4di 289 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁))))
14078ltp1d 12195 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 < (𝐾 + 1))
141 fzdisj 13587 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
142140, 141syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
143142ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
144143eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅))
145139, 144bitrd 279 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅))
146135, 145mtbiri 327 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾))
147134, 146eldifd 3973 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾)))
148127, 133, 147rspcdva 3622 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘𝑥)
149148expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘𝑥))
150 imnan 399 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℙ → ¬ 𝑘𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
151149, 150sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
15229adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
153152, 37syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
154153eleq2d 2824 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)}))
155 breq2 5151 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (𝑘𝑛𝑘𝑥))
156155anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
157156elrab 3694 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
158157simprbi 496 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘𝑥))
159154, 158biimtrdi 253 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) → (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
160151, 159mtod 198 . . . . . . . . . . . 12 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊𝑘))
161160nrexdv 3146 . . . . . . . . . . 11 ((𝜑𝑥𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
162 eliun 4999 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
163161, 162sylnibr 329 . . . . . . . . . 10 ((𝜑𝑥𝑀) → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
164163ex 412 . . . . . . . . 9 (𝜑 → (𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
165 imnan 399 . . . . . . . . 9 ((𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
166164, 165sylib 218 . . . . . . . 8 (𝜑 → ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
167 elin 3978 . . . . . . . 8 (𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
168166, 167sylnibr 329 . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
169168eq0rdv 4412 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅)
170 hashun 14417 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin ∧ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅) → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
171123, 125, 169, 170syl3anc 1370 . . . . 5 (𝜑 → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
17224, 122, 1713eqtrd 2778 . . . 4 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
173 hashcl 14391 . . . . . . 7 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
174125, 173syl 17 . . . . . 6 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
175174nn0red 12585 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℝ)
176 fzfid 14010 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
17726, 28sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
178 nnrecre 12305 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
179 0re 11260 . . . . . . . . . . 11 0 ∈ ℝ
180 ifcl 4575 . . . . . . . . . . 11 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
181178, 179, 180sylancl 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
182177, 181syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
18327, 182sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
184176, 183fsumrecl 15766 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
1852, 184remulcld 11288 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
186 prmrec.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
187 prmrec.5 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
188 prmrec.6 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
189186, 14, 1, 5, 187, 188, 34prmreclem4 16952 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
190 eluz 12889 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
19162, 59, 190syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
192 nnleltp1 12670 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾𝑁 < (𝐾 + 1)))
1931, 14, 192syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁𝐾𝑁 < (𝐾 + 1)))
194 fzn 13576 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
19560, 62, 194syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
196191, 193, 1953bitrd 305 . . . . . . . 8 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅))
197 0le0 12364 . . . . . . . . . 10 0 ≤ 0
19823mul01d 11457 . . . . . . . . . 10 (𝜑 → (𝑁 · 0) = 0)
199197, 198breqtrrid 5185 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 · 0))
200 iuneq1 5012 . . . . . . . . . . . . 13 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
201 0iun 5067 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑊𝑘) = ∅
202200, 201eqtrdi 2790 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = ∅)
203202fveq2d 6910 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (♯‘∅))
204 hash0 14402 . . . . . . . . . . 11 (♯‘∅) = 0
205203, 204eqtrdi 2790 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = 0)
206 sumeq1 15721 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
207 sum0 15753 . . . . . . . . . . . 12 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
208206, 207eqtrdi 2790 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
209208oveq2d 7446 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
210205, 209breq12d 5160 . . . . . . . . 9 (((𝐾 + 1)...𝑁) = ∅ → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0)))
211199, 210syl5ibrcom 247 . . . . . . . 8 (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
212196, 211sylbid 240 . . . . . . 7 (𝜑 → (𝐾 ∈ (ℤ𝑁) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
213 uztric 12899 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
21459, 62, 213syl2anc 584 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
215189, 212, 214mpjaod 860 . . . . . 6 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
216 eqid 2734 . . . . . . . . . 10 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
217 eleq1w 2821 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
218 oveq2 7438 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
219217, 218ifbieq1d 4554 . . . . . . . . . . . 12 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
220 ovex 7463 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
221 c0ex 11252 . . . . . . . . . . . . 13 0 ∈ V
222220, 221ifex 4580 . . . . . . . . . . . 12 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V
223219, 186, 222fvmpt 7015 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
224177, 223syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
225181recnd 11286 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
226223, 225eqeltrd 2838 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
227226adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22872, 26, 227iserex 15689 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ))
229187, 228mpbid 232 . . . . . . . . . 10 (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ )
230216, 60, 224, 182, 229isumrecl 15797 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
231 halfre 12477 . . . . . . . . . 10 (1 / 2) ∈ ℝ
232231a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
233 fzssuz 13601 . . . . . . . . . . 11 ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1))
234233a1i 11 . . . . . . . . . 10 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1)))
235 nnrp 13043 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
236235rpreccld 13084 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
237236rpge0d 13078 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
238 breq2 5151 . . . . . . . . . . . . 13 ((1 / 𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
239 breq2 5151 . . . . . . . . . . . . 13 (0 = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
240238, 239ifboth 4569 . . . . . . . . . . . 12 ((0 ≤ (1 / 𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
241237, 197, 240sylancl 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
242177, 241syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
243216, 60, 176, 234, 224, 182, 242, 229isumless 15877 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
244184, 230, 232, 243, 188lelttrd 11416 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
2451nngt0d 12312 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
246 ltmul2 12115 . . . . . . . . 9 ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
247184, 232, 2, 245, 246syl112anc 1373 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
248244, 247mpbid 232 . . . . . . 7 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))
249 2cn 12338 . . . . . . . . 9 2 ∈ ℂ
250 2ne0 12367 . . . . . . . . 9 2 ≠ 0
251 divrec 11935 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2)))
252249, 250, 251mp3an23 1452 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2)))
25323, 252syl 17 . . . . . . 7 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
254248, 253breqtrrd 5175 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2))
255175, 185, 3, 215, 254lelttrd 11416 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) < (𝑁 / 2))
256175, 3, 12, 255ltadd2dd 11417 . . . 4 (𝜑 → ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) < ((♯‘𝑀) + (𝑁 / 2)))
257172, 256eqbrtrd 5169 . . 3 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2)))
2583, 12, 3ltadd1d 11853 . . 3 (𝜑 → ((𝑁 / 2) < (♯‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2))))
259257, 258mpbird 257 . 2 (𝜑 → (𝑁 / 2) < (♯‘𝑀))
260 oveq1 7437 . . . . . . . 8 (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2))
261260breq1d 5157 . . . . . . 7 (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥))
262261cbvrabv 3443 . . . . . 6 {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥}
263 breq2 5151 . . . . . . 7 (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛))
264263rabbidv 3440 . . . . . 6 (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
265262, 264eqtrid 2786 . . . . 5 (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
266265supeq1d 9483 . . . 4 (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
267266cbvmptv 5260 . . 3 (𝑥 ∈ ℕ ↦ sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < )) = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
268186, 14, 1, 5, 267prmreclem3 16951 . 2 (𝜑 → (♯‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁)))
2693, 12, 22, 259, 268ltletrd 11418 1 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  ifcif 4530   ciun 4995   class class class wbr 5147  cmpt 5230  dom cdm 5688  cfv 6562  (class class class)co 7430  Fincfn 8983  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543  seqcseq 14038  cexp 14098  chash 14365  csqrt 15268  cli 15516  Σcsu 15718  cdvds 16286  cprime 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870
This theorem is referenced by:  prmreclem6  16954
  Copyright terms: Public domain W3C validator