MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem5 Structured version   Visualization version   GIF version

Theorem prmreclem5 16719
Description: Lemma for prmrec 16721. Here we show the inequality 𝑁 / 2 < ♯𝑀 by decomposing the set (1...𝑁) into the disjoint union of the set 𝑀 of those numbers that are not divisible by any "large" primes (above 𝐾) and the indexed union over 𝐾 < 𝑘 of the numbers 𝑊𝑘 that divide the prime 𝑘. By prmreclem4 16718 the second of these has size less than 𝑁 times the prime reciprocal series, which is less than 1 / 2 by assumption, we find that the complementary part 𝑀 must be at least 𝑁 / 2 large. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmrec.5 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
prmrec.6 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
prmrec.7 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
Assertion
Ref Expression
prmreclem5 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Distinct variable groups:   𝑘,𝑛,𝑝,𝐹   𝑘,𝐾,𝑛,𝑝   𝑘,𝑀,𝑛,𝑝   𝜑,𝑘,𝑛,𝑝   𝑘,𝑊   𝑘,𝑁,𝑛,𝑝
Allowed substitution hints:   𝑊(𝑛,𝑝)

Proof of Theorem prmreclem5
Dummy variables 𝑟 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmrec.3 . . . 4 (𝜑𝑁 ∈ ℕ)
21nnred 12090 . . 3 (𝜑𝑁 ∈ ℝ)
32rehalfcld 12322 . 2 (𝜑 → (𝑁 / 2) ∈ ℝ)
4 fzfi 13794 . . . . . 6 (1...𝑁) ∈ Fin
5 prmrec.4 . . . . . . 7 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
65ssrab3 4028 . . . . . 6 𝑀 ⊆ (1...𝑁)
7 ssfi 9039 . . . . . 6 (((1...𝑁) ∈ Fin ∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin)
84, 6, 7mp2an 689 . . . . 5 𝑀 ∈ Fin
9 hashcl 14172 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
108, 9ax-mp 5 . . . 4 (♯‘𝑀) ∈ ℕ0
1110nn0rei 12346 . . 3 (♯‘𝑀) ∈ ℝ
1211a1i 11 . 2 (𝜑 → (♯‘𝑀) ∈ ℝ)
13 2nn 12148 . . . . 5 2 ∈ ℕ
14 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
1514nnnn0d 12395 . . . . 5 (𝜑𝐾 ∈ ℕ0)
16 nnexpcl 13897 . . . . 5 ((2 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (2↑𝐾) ∈ ℕ)
1713, 15, 16sylancr 587 . . . 4 (𝜑 → (2↑𝐾) ∈ ℕ)
1817nnred 12090 . . 3 (𝜑 → (2↑𝐾) ∈ ℝ)
191nnrpd 12872 . . . . 5 (𝜑𝑁 ∈ ℝ+)
2019rpsqrtcld 15223 . . . 4 (𝜑 → (√‘𝑁) ∈ ℝ+)
2120rpred 12874 . . 3 (𝜑 → (√‘𝑁) ∈ ℝ)
2218, 21remulcld 11107 . 2 (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ)
232recnd 11105 . . . . . 6 (𝜑𝑁 ∈ ℂ)
24232halvesd 12321 . . . . 5 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁)
256a1i 11 . . . . . . . . 9 (𝜑𝑀 ⊆ (1...𝑁))
2614peano2nnd 12092 . . . . . . . . . . . . 13 (𝜑 → (𝐾 + 1) ∈ ℕ)
27 elfzuz 13354 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
28 eluznn 12760 . . . . . . . . . . . . 13 (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
2926, 27, 28syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
30 eleq1w 2819 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ))
31 breq1 5096 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑛𝑘𝑛))
3230, 31anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑛)))
3332rabbidv 3411 . . . . . . . . . . . . . . 15 (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
34 prmrec.7 . . . . . . . . . . . . . . 15 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)})
35 ovex 7371 . . . . . . . . . . . . . . . 16 (1...𝑁) ∈ V
3635rabex 5277 . . . . . . . . . . . . . . 15 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ∈ V
3733, 34, 36fvmpt 6932 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
3837adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
39 ssrab2 4025 . . . . . . . . . . . . 13 {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ⊆ (1...𝑁)
4038, 39eqsstrdi 3986 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑊𝑘) ⊆ (1...𝑁))
4129, 40syldan 591 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) ⊆ (1...𝑁))
4241ralrimiva 3139 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
43 iunss 4993 . . . . . . . . . 10 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4442, 43sylibr 233 . . . . . . . . 9 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁))
4525, 44unssd 4134 . . . . . . . 8 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ⊆ (1...𝑁))
46 breq1 5096 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (𝑝𝑛𝑞𝑛))
4746notbid 317 . . . . . . . . . . . . . . 15 (𝑝 = 𝑞 → (¬ 𝑝𝑛 ↔ ¬ 𝑞𝑛))
4847cbvralvw 3221 . . . . . . . . . . . . . 14 (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛)
49 breq2 5097 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝑞𝑛𝑞𝑥))
5049notbid 317 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (¬ 𝑞𝑛 ↔ ¬ 𝑞𝑥))
5150ralbidv 3170 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5248, 51bitrid 282 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
5352, 5elrab2 3637 . . . . . . . . . . . 12 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥))
54 elun1 4124 . . . . . . . . . . . 12 (𝑥𝑀𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5553, 54sylbir 234 . . . . . . . . . . 11 ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
5655ex 413 . . . . . . . . . 10 (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
5756adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
58 dfrex2 3073 . . . . . . . . . 10 (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥)
5914nnzd 12527 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ ℤ)
6059peano2zd 12531 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 + 1) ∈ ℤ)
6160ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ∈ ℤ)
621nnzd 12527 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
6362ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℤ)
64 eldifi 4074 . . . . . . . . . . . . . . . 16 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → 𝑞 ∈ ℙ)
6564ad2antrl 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℙ)
66 prmz 16478 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℤ)
68 eldifn 4075 . . . . . . . . . . . . . . . . . 18 (𝑞 ∈ (ℙ ∖ (1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾))
6968ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞 ∈ (1...𝐾))
70 prmnn 16477 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
7165, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℕ)
72 nnuz 12723 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
7371, 72eleqtrdi 2847 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ (ℤ‘1))
7459ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℤ)
75 elfz5 13350 . . . . . . . . . . . . . . . . . 18 ((𝑞 ∈ (ℤ‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7673, 74, 75syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞𝐾))
7769, 76mtbid 323 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → ¬ 𝑞𝐾)
7814nnred 12090 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7978ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 ∈ ℝ)
8071nnred 12090 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ℝ)
8179, 80ltnled 11224 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞𝐾))
8277, 81mpbird 256 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝐾 < 𝑞)
83 zltp1le 12472 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8474, 67, 83syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞))
8582, 84mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝐾 + 1) ≤ 𝑞)
86 elfznn 13387 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
8786ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℕ)
8887nnred 12090 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ ℝ)
892ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑁 ∈ ℝ)
90 simprr 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
91 dvdsle 16119 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
9267, 87, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞𝑥𝑞𝑥))
9390, 92mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑥)
94 elfzle2 13362 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑁) → 𝑥𝑁)
9594ad2antlr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥𝑁)
9680, 88, 89, 93, 95letrd 11234 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞𝑁)
9761, 63, 67, 85, 96elfzd 13349 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁))
9849anbi2d 629 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑥)))
99 simplr 766 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (1...𝑁))
10065, 90jca 512 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞𝑥))
10198, 99, 100elrabd 3636 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
102 eleq1w 2819 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ))
103102, 46anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞𝑛)))
104103rabbidv 3411 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10535rabex 5277 . . . . . . . . . . . . . . . 16 {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)} ∈ V
106104, 34, 105fvmpt 6932 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
10771, 106syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → (𝑊𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞𝑛)})
108101, 107eleqtrrd 2840 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑊𝑞))
109 fveq2 6826 . . . . . . . . . . . . . 14 (𝑘 = 𝑞 → (𝑊𝑘) = (𝑊𝑞))
110109eliuni 4948 . . . . . . . . . . . . 13 ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊𝑞)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
11197, 108, 110syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
112 elun2 4125 . . . . . . . . . . . 12 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
113111, 112syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞𝑥)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
114113rexlimdvaa 3149 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11558, 114syl5bir 242 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞𝑥𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
11657, 115pm2.61d 179 . . . . . . . 8 ((𝜑𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
11745, 116eqelssd 3953 . . . . . . 7 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (1...𝑁))
118117fveq2d 6830 . . . . . 6 (𝜑 → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = (♯‘(1...𝑁)))
1191nnnn0d 12395 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
120 hashfz1 14162 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
121119, 120syl 17 . . . . . 6 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
122118, 121eqtr2d 2777 . . . . 5 (𝜑𝑁 = (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
1238a1i 11 . . . . . 6 (𝜑𝑀 ∈ Fin)
124 ssfi 9039 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ⊆ (1...𝑁)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
1254, 44, 124sylancr 587 . . . . . 6 (𝜑 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin)
126 breq1 5096 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑘 → (𝑝𝑥𝑘𝑥))
127126notbid 317 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑘 → (¬ 𝑝𝑥 ↔ ¬ 𝑘𝑥))
128 breq2 5097 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑥 → (𝑝𝑛𝑝𝑥))
129128notbid 317 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑥 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑥))
130129ralbidv 3170 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
131130, 5elrab2 3637 . . . . . . . . . . . . . . . . . 18 (𝑥𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥))
132131simprbi 497 . . . . . . . . . . . . . . . . 17 (𝑥𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
133132ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑥)
134 simprr 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ)
135 noel 4278 . . . . . . . . . . . . . . . . . 18 ¬ 𝑘 ∈ ∅
136 simprl 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁))
137136biantrud 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))))
138 elin 3914 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))
139137, 138bitr4di 288 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁))))
14078ltp1d 12007 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐾 < (𝐾 + 1))
141 fzdisj 13385 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
142140, 141syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
143142ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
144143eleq2d 2822 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅))
145139, 144bitrd 278 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅))
146135, 145mtbiri 326 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾))
147134, 146eldifd 3909 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾)))
148127, 133, 147rspcdva 3571 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘𝑥)
149148expr 457 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘𝑥))
150 imnan 400 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℙ → ¬ 𝑘𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
151149, 150sylib 217 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘𝑥))
15229adantlr 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ)
153152, 37syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)})
154153eleq2d 2822 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)}))
155 breq2 5097 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (𝑘𝑛𝑘𝑥))
156155anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
157156elrab 3634 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
158157simprbi 497 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘𝑥))
159154, 158syl6bi 252 . . . . . . . . . . . . 13 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊𝑘) → (𝑘 ∈ ℙ ∧ 𝑘𝑥)))
160151, 159mtod 197 . . . . . . . . . . . 12 (((𝜑𝑥𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊𝑘))
161160nrexdv 3142 . . . . . . . . . . 11 ((𝜑𝑥𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
162 eliun 4946 . . . . . . . . . . 11 (𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊𝑘))
163161, 162sylnibr 328 . . . . . . . . . 10 ((𝜑𝑥𝑀) → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))
164163ex 413 . . . . . . . . 9 (𝜑 → (𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
165 imnan 400 . . . . . . . . 9 ((𝑥𝑀 → ¬ 𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
166164, 165sylib 217 . . . . . . . 8 (𝜑 → ¬ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
167 elin 3914 . . . . . . . 8 (𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ↔ (𝑥𝑀𝑥 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
168166, 167sylnibr 328 . . . . . . 7 (𝜑 → ¬ 𝑥 ∈ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)))
169168eq0rdv 4352 . . . . . 6 (𝜑 → (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅)
170 hashun 14198 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin ∧ (𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = ∅) → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
171123, 125, 169, 170syl3anc 1370 . . . . 5 (𝜑 → (♯‘(𝑀 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
17224, 122, 1713eqtrd 2780 . . . 4 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))))
173 hashcl 14172 . . . . . . 7 ( 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) ∈ Fin → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
174125, 173syl 17 . . . . . 6 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℕ0)
175174nn0red 12396 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ∈ ℝ)
176 fzfid 13795 . . . . . . . 8 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
17726, 28sylan 580 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ)
178 nnrecre 12117 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
179 0re 11079 . . . . . . . . . . 11 0 ∈ ℝ
180 ifcl 4519 . . . . . . . . . . 11 (((1 / 𝑘) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
181178, 179, 180sylancl 586 . . . . . . . . . 10 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
182177, 181syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
18327, 182sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
184176, 183fsumrecl 15546 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
1852, 184remulcld 11107 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ)
186 prmrec.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
187 prmrec.5 . . . . . . . 8 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
188 prmrec.6 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
189186, 14, 1, 5, 187, 188, 34prmreclem4 16718 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
190 eluz 12698 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
19162, 59, 190syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ 𝑁𝐾))
192 nnleltp1 12477 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾𝑁 < (𝐾 + 1)))
1931, 14, 192syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁𝐾𝑁 < (𝐾 + 1)))
194 fzn 13374 . . . . . . . . . 10 (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
19560, 62, 194syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅))
196191, 193, 1953bitrd 304 . . . . . . . 8 (𝜑 → (𝐾 ∈ (ℤ𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅))
197 0le0 12176 . . . . . . . . . 10 0 ≤ 0
19823mul01d 11276 . . . . . . . . . 10 (𝜑 → (𝑁 · 0) = 0)
199197, 198breqtrrid 5131 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑁 · 0))
200 iuneq1 4958 . . . . . . . . . . . . 13 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = 𝑘 ∈ ∅ (𝑊𝑘))
201 0iun 5011 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑊𝑘) = ∅
202200, 201eqtrdi 2792 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘) = ∅)
203202fveq2d 6830 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = (♯‘∅))
204 hash0 14183 . . . . . . . . . . 11 (♯‘∅) = 0
205203, 204eqtrdi 2792 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) = 0)
206 sumeq1 15500 . . . . . . . . . . . 12 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
207 sum0 15533 . . . . . . . . . . . 12 Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0
208206, 207eqtrdi 2792 . . . . . . . . . . 11 (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0)
209208oveq2d 7354 . . . . . . . . . 10 (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0))
210205, 209breq12d 5106 . . . . . . . . 9 (((𝐾 + 1)...𝑁) = ∅ → ((♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0)))
211199, 210syl5ibrcom 246 . . . . . . . 8 (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
212196, 211sylbid 239 . . . . . . 7 (𝜑 → (𝐾 ∈ (ℤ𝑁) → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))))
213 uztric 12708 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
21459, 62, 213syl2anc 584 . . . . . . 7 (𝜑 → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
215189, 212, 214mpjaod 857 . . . . . 6 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
216 eqid 2736 . . . . . . . . . 10 (ℤ‘(𝐾 + 1)) = (ℤ‘(𝐾 + 1))
217 eleq1w 2819 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
218 oveq2 7346 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
219217, 218ifbieq1d 4498 . . . . . . . . . . . 12 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
220 ovex 7371 . . . . . . . . . . . . 13 (1 / 𝑘) ∈ V
221 c0ex 11071 . . . . . . . . . . . . 13 0 ∈ V
222220, 221ifex 4524 . . . . . . . . . . . 12 if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V
223219, 186, 222fvmpt 6932 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
224177, 223syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
225181recnd 11105 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℂ)
226223, 225eqeltrd 2837 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
227226adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22872, 26, 227iserex 15468 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ))
229187, 228mpbid 231 . . . . . . . . . 10 (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ )
230216, 60, 224, 182, 229isumrecl 15577 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ)
231 halfre 12289 . . . . . . . . . 10 (1 / 2) ∈ ℝ
232231a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ ℝ)
233 fzssuz 13399 . . . . . . . . . . 11 ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1))
234233a1i 11 . . . . . . . . . 10 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (ℤ‘(𝐾 + 1)))
235 nnrp 12843 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
236235rpreccld 12884 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
237236rpge0d 12878 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (1 / 𝑘))
238 breq2 5097 . . . . . . . . . . . . 13 ((1 / 𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
239 breq2 5097 . . . . . . . . . . . . 13 (0 = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))
240238, 239ifboth 4513 . . . . . . . . . . . 12 ((0 ≤ (1 / 𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
241237, 197, 240sylancl 586 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
242177, 241syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
243216, 60, 176, 234, 224, 182, 242, 229isumless 15657 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0))
244184, 230, 232, 243, 188lelttrd 11235 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2))
2451nngt0d 12124 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
246 ltmul2 11928 . . . . . . . . 9 ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
247184, 232, 2, 245, 246syl112anc 1373 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))))
248244, 247mpbid 231 . . . . . . 7 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))
249 2cn 12150 . . . . . . . . 9 2 ∈ ℂ
250 2ne0 12179 . . . . . . . . 9 2 ≠ 0
251 divrec 11751 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2)))
252249, 250, 251mp3an23 1452 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2)))
25323, 252syl 17 . . . . . . 7 (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2)))
254248, 253breqtrrd 5121 . . . . . 6 (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2))
255175, 185, 3, 215, 254lelttrd 11235 . . . . 5 (𝜑 → (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘)) < (𝑁 / 2))
256175, 3, 12, 255ltadd2dd 11236 . . . 4 (𝜑 → ((♯‘𝑀) + (♯‘ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊𝑘))) < ((♯‘𝑀) + (𝑁 / 2)))
257172, 256eqbrtrd 5115 . . 3 (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2)))
2583, 12, 3ltadd1d 11670 . . 3 (𝜑 → ((𝑁 / 2) < (♯‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2))))
259257, 258mpbird 256 . 2 (𝜑 → (𝑁 / 2) < (♯‘𝑀))
260 oveq1 7345 . . . . . . . 8 (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2))
261260breq1d 5103 . . . . . . 7 (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥))
262261cbvrabv 3413 . . . . . 6 {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥}
263 breq2 5097 . . . . . . 7 (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛))
264263rabbidv 3411 . . . . . 6 (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
265262, 264eqtrid 2788 . . . . 5 (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛})
266265supeq1d 9304 . . . 4 (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
267266cbvmptv 5206 . . 3 (𝑥 ∈ ℕ ↦ sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < )) = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
268186, 14, 1, 5, 267prmreclem3 16717 . 2 (𝜑 → (♯‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁)))
2693, 12, 22, 259, 268ltletrd 11237 1 (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  {crab 3403  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4270  ifcif 4474   ciun 4942   class class class wbr 5093  cmpt 5176  dom cdm 5621  cfv 6480  (class class class)co 7338  Fincfn 8805  supcsup 9298  cc 10971  cr 10972  0cc0 10973  1c1 10974   + caddc 10976   · cmul 10978   < clt 11111  cle 11112   / cdiv 11734  cn 12075  2c2 12130  0cn0 12335  cz 12421  cuz 12684  ...cfz 13341  seqcseq 13823  cexp 13884  chash 14146  csqrt 15044  cli 15293  Σcsu 15497  cdvds 16063  cprime 16474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-inf2 9499  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-pre-sup 11051
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-se 5577  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-isom 6489  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-1st 7900  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-2o 8369  df-oadd 8372  df-er 8570  df-map 8689  df-pm 8690  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-sup 9300  df-inf 9301  df-oi 9368  df-dju 9759  df-card 9797  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-div 11735  df-nn 12076  df-2 12138  df-3 12139  df-n0 12336  df-xnn0 12408  df-z 12422  df-uz 12685  df-q 12791  df-rp 12833  df-fz 13342  df-fzo 13485  df-fl 13614  df-mod 13692  df-seq 13824  df-exp 13885  df-hash 14147  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-rlim 15298  df-sum 15498  df-dvds 16064  df-gcd 16302  df-prm 16475  df-pc 16636
This theorem is referenced by:  prmreclem6  16720
  Copyright terms: Public domain W3C validator