Step | Hyp | Ref
| Expression |
1 | | prmrec.3 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | nnred 11367 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℝ) |
3 | 2 | rehalfcld 11605 |
. 2
⊢ (𝜑 → (𝑁 / 2) ∈ ℝ) |
4 | | fzfi 13066 |
. . . . . 6
⊢
(1...𝑁) ∈
Fin |
5 | | prmrec.4 |
. . . . . . 7
⊢ 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} |
6 | | ssrab2 3912 |
. . . . . . 7
⊢ {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛} ⊆ (1...𝑁) |
7 | 5, 6 | eqsstri 3860 |
. . . . . 6
⊢ 𝑀 ⊆ (1...𝑁) |
8 | | ssfi 8449 |
. . . . . 6
⊢
(((1...𝑁) ∈ Fin
∧ 𝑀 ⊆ (1...𝑁)) → 𝑀 ∈ Fin) |
9 | 4, 7, 8 | mp2an 683 |
. . . . 5
⊢ 𝑀 ∈ Fin |
10 | | hashcl 13437 |
. . . . 5
⊢ (𝑀 ∈ Fin →
(♯‘𝑀) ∈
ℕ0) |
11 | 9, 10 | ax-mp 5 |
. . . 4
⊢
(♯‘𝑀)
∈ ℕ0 |
12 | 11 | nn0rei 11630 |
. . 3
⊢
(♯‘𝑀)
∈ ℝ |
13 | 12 | a1i 11 |
. 2
⊢ (𝜑 → (♯‘𝑀) ∈
ℝ) |
14 | | 2nn 11424 |
. . . . 5
⊢ 2 ∈
ℕ |
15 | | prmrec.2 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℕ) |
16 | 15 | nnnn0d 11678 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
17 | | nnexpcl 13167 |
. . . . 5
⊢ ((2
∈ ℕ ∧ 𝐾
∈ ℕ0) → (2↑𝐾) ∈ ℕ) |
18 | 14, 16, 17 | sylancr 581 |
. . . 4
⊢ (𝜑 → (2↑𝐾) ∈ ℕ) |
19 | 18 | nnred 11367 |
. . 3
⊢ (𝜑 → (2↑𝐾) ∈ ℝ) |
20 | 1 | nnrpd 12154 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
21 | 20 | rpsqrtcld 14527 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℝ+) |
22 | 21 | rpred 12156 |
. . 3
⊢ (𝜑 → (√‘𝑁) ∈
ℝ) |
23 | 19, 22 | remulcld 10387 |
. 2
⊢ (𝜑 → ((2↑𝐾) · (√‘𝑁)) ∈ ℝ) |
24 | 2 | recnd 10385 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
25 | 24 | 2halvesd 11604 |
. . . . 5
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = 𝑁) |
26 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ⊆ (1...𝑁)) |
27 | 15 | peano2nnd 11369 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 + 1) ∈ ℕ) |
28 | | elfzuz 12631 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) |
29 | | eluznn 12041 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ) |
30 | 27, 28, 29 | syl2an 589 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
31 | | eleq1w 2889 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
32 | | breq1 4876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑛 ↔ 𝑘 ∥ 𝑛)) |
33 | 31, 32 | anbi12d 624 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛))) |
34 | 33 | rabbidv 3402 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑘 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
35 | | prmrec.7 |
. . . . . . . . . . . . . . 15
⊢ 𝑊 = (𝑝 ∈ ℕ ↦ {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)}) |
36 | | ovex 6937 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑁) ∈
V |
37 | 36 | rabex 5037 |
. . . . . . . . . . . . . . 15
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ∈ V |
38 | 34, 35, 37 | fvmpt 6529 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
39 | 38 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
40 | | ssrab2 3912 |
. . . . . . . . . . . . 13
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ⊆ (1...𝑁) |
41 | 39, 40 | syl6eqss 3880 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
42 | 30, 41 | syldan 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊‘𝑘) ⊆ (1...𝑁)) |
43 | 42 | ralrimiva 3175 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
44 | | iunss 4781 |
. . . . . . . . . 10
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁) ↔ ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
45 | 43, 44 | sylibr 226 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) |
46 | 26, 45 | unssd 4016 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ⊆ (1...𝑁)) |
47 | | breq1 4876 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝑛 ↔ 𝑞 ∥ 𝑛)) |
48 | 47 | notbid 310 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑞 → (¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑛)) |
49 | 48 | cbvralv 3383 |
. . . . . . . . . . . . . 14
⊢
(∀𝑝 ∈
(ℙ ∖ (1...𝐾))
¬ 𝑝 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖
(1...𝐾)) ¬ 𝑞 ∥ 𝑛) |
50 | | breq2 4877 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → (𝑞 ∥ 𝑛 ↔ 𝑞 ∥ 𝑥)) |
51 | 50 | notbid 310 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑥 → (¬ 𝑞 ∥ 𝑛 ↔ ¬ 𝑞 ∥ 𝑥)) |
52 | 51 | ralbidv 3195 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑥 → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
53 | 49, 52 | syl5bb 275 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛 ↔ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
54 | 53, 5 | elrab2 3589 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥)) |
55 | | elun1 4007 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑀 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
56 | 54, 55 | sylbir 227 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (1...𝑁) ∧ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
57 | 56 | ex 403 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1...𝑁) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
58 | 57 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
59 | | dfrex2 3204 |
. . . . . . . . . 10
⊢
(∃𝑞 ∈
(ℙ ∖ (1...𝐾))𝑞 ∥ 𝑥 ↔ ¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥) |
60 | | eldifn 3960 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 ∈ (ℙ ∖
(1...𝐾)) → ¬ 𝑞 ∈ (1...𝐾)) |
61 | 60 | ad2antrl 719 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → ¬ 𝑞 ∈ (1...𝐾)) |
62 | | eldifi 3959 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 ∈ (ℙ ∖
(1...𝐾)) → 𝑞 ∈
ℙ) |
63 | 62 | ad2antrl 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℙ) |
64 | | prmnn 15760 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℕ) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℕ) |
66 | | nnuz 12005 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ =
(ℤ≥‘1) |
67 | 65, 66 | syl6eleq 2916 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈
(ℤ≥‘1)) |
68 | 15 | nnzd 11809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐾 ∈ ℤ) |
69 | 68 | ad2antrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 ∈ ℤ) |
70 | | elfz5 12627 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 ∈
(ℤ≥‘1) ∧ 𝐾 ∈ ℤ) → (𝑞 ∈ (1...𝐾) ↔ 𝑞 ≤ 𝐾)) |
71 | 67, 69, 70 | syl2anc 579 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ (1...𝐾) ↔ 𝑞 ≤ 𝐾)) |
72 | 61, 71 | mtbid 316 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → ¬ 𝑞 ≤ 𝐾) |
73 | 15 | nnred 11367 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈ ℝ) |
74 | 73 | ad2antrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 ∈ ℝ) |
75 | 65 | nnred 11367 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℝ) |
76 | 74, 75 | ltnled 10503 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 < 𝑞 ↔ ¬ 𝑞 ≤ 𝐾)) |
77 | 72, 76 | mpbird 249 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝐾 < 𝑞) |
78 | | prmz 15761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
79 | 63, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ℤ) |
80 | | zltp1le 11755 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞)) |
81 | 69, 79, 80 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 < 𝑞 ↔ (𝐾 + 1) ≤ 𝑞)) |
82 | 77, 81 | mpbid 224 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 + 1) ≤ 𝑞) |
83 | | elfznn 12663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) |
84 | 83 | ad2antlr 718 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ℕ) |
85 | 84 | nnred 11367 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ℝ) |
86 | 2 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑁 ∈ ℝ) |
87 | | simprr 789 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∥ 𝑥) |
88 | | dvdsle 15409 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
89 | 79, 84, 88 | syl2anc 579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
90 | 87, 89 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ≤ 𝑥) |
91 | | elfzle2 12638 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ≤ 𝑁) |
92 | 91 | ad2antlr 718 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ≤ 𝑁) |
93 | 75, 85, 86, 90, 92 | letrd 10513 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ≤ 𝑁) |
94 | 68 | peano2zd 11813 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
95 | 94 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝐾 + 1) ∈ ℤ) |
96 | 1 | nnzd 11809 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℤ) |
97 | 96 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑁 ∈ ℤ) |
98 | | elfz 12625 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑞 ∈ ((𝐾 + 1)...𝑁) ↔ ((𝐾 + 1) ≤ 𝑞 ∧ 𝑞 ≤ 𝑁))) |
99 | 79, 95, 97, 98 | syl3anc 1494 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ ((𝐾 + 1)...𝑁) ↔ ((𝐾 + 1) ≤ 𝑞 ∧ 𝑞 ≤ 𝑁))) |
100 | 82, 93, 99 | mpbir2and 704 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑞 ∈ ((𝐾 + 1)...𝑁)) |
101 | | simplr 785 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (1...𝑁)) |
102 | 63, 87 | jca 507 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥)) |
103 | 50 | anbi2d 622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥))) |
104 | 103 | elrab 3585 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥))) |
105 | 101, 102,
104 | sylanbrc 578 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
106 | | eleq1w 2889 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑞 → (𝑝 ∈ ℙ ↔ 𝑞 ∈ ℙ)) |
107 | 106, 47 | anbi12d 624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑞 → ((𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛) ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛))) |
108 | 107 | rabbidv 3402 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑞 → {𝑛 ∈ (1...𝑁) ∣ (𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑛)} = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
109 | 36 | rabex 5037 |
. . . . . . . . . . . . . . . 16
⊢ {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)} ∈ V |
110 | 108, 35, 109 | fvmpt 6529 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℕ → (𝑊‘𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
111 | 65, 110 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → (𝑊‘𝑞) = {𝑛 ∈ (1...𝑁) ∣ (𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑛)}) |
112 | 105, 111 | eleqtrrd 2909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (𝑊‘𝑞)) |
113 | | fveq2 6433 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑞 → (𝑊‘𝑘) = (𝑊‘𝑞)) |
114 | 113 | eliuni 4746 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑥 ∈ (𝑊‘𝑞)) → 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
115 | 100, 112,
114 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
116 | | elun2 4008 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
117 | 115, 116 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (1...𝑁)) ∧ (𝑞 ∈ (ℙ ∖ (1...𝐾)) ∧ 𝑞 ∥ 𝑥)) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
118 | 117 | rexlimdvaa 3241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (∃𝑞 ∈ (ℙ ∖ (1...𝐾))𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
119 | 59, 118 | syl5bir 235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → (¬ ∀𝑞 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑞 ∥ 𝑥 → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
120 | 58, 119 | pm2.61d 172 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑁)) → 𝑥 ∈ (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
121 | 46, 120 | eqelssd 3847 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = (1...𝑁)) |
122 | 121 | fveq2d 6437 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = (♯‘(1...𝑁))) |
123 | 1 | nnnn0d 11678 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
124 | | hashfz1 13426 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
125 | 123, 124 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
126 | 122, 125 | eqtr2d 2862 |
. . . . 5
⊢ (𝜑 → 𝑁 = (♯‘(𝑀 ∪ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
127 | 9 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
128 | | ssfi 8449 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ⊆ (1...𝑁)) → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin) |
129 | 4, 45, 128 | sylancr 581 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin) |
130 | | breq1 4876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑘 → (𝑝 ∥ 𝑥 ↔ 𝑘 ∥ 𝑥)) |
131 | 130 | notbid 310 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑘 → (¬ 𝑝 ∥ 𝑥 ↔ ¬ 𝑘 ∥ 𝑥)) |
132 | | breq2 4877 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑥 → (𝑝 ∥ 𝑛 ↔ 𝑝 ∥ 𝑥)) |
133 | 132 | notbid 310 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑥 → (¬ 𝑝 ∥ 𝑛 ↔ ¬ 𝑝 ∥ 𝑥)) |
134 | 133 | ralbidv 3195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑥 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥)) |
135 | 134, 5 | elrab2 3589 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑀 ↔ (𝑥 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥)) |
136 | 135 | simprbi 492 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝 ∥ 𝑥) |
137 | 136 | ad2antlr 718 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ∀𝑝 ∈ (ℙ ∖
(1...𝐾)) ¬ 𝑝 ∥ 𝑥) |
138 | | simprr 789 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ℙ) |
139 | | noel 4148 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝑘 ∈
∅ |
140 | | simprl 787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ ((𝐾 + 1)...𝑁)) |
141 | 140 | biantrud 527 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)))) |
142 | | elin 4023 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ (𝑘 ∈ (1...𝐾) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁))) |
143 | 141, 142 | syl6bbr 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)))) |
144 | 73 | ltp1d 11284 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐾 < (𝐾 + 1)) |
145 | | fzdisj 12661 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 < (𝐾 + 1) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
146 | 144, 145 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
147 | 146 | ad2antrr 717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅) |
148 | 147 | eleq2d 2892 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ ((1...𝐾) ∩ ((𝐾 + 1)...𝑁)) ↔ 𝑘 ∈ ∅)) |
149 | 143, 148 | bitrd 271 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → (𝑘 ∈ (1...𝐾) ↔ 𝑘 ∈ ∅)) |
150 | 139, 149 | mtbiri 319 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∈ (1...𝐾)) |
151 | 138, 150 | eldifd 3809 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → 𝑘 ∈ (ℙ ∖ (1...𝐾))) |
152 | 131, 137,
151 | rspcdva 3532 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ (𝑘 ∈ ((𝐾 + 1)...𝑁) ∧ 𝑘 ∈ ℙ)) → ¬ 𝑘 ∥ 𝑥) |
153 | 152 | expr 450 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑘 ∈ ℙ → ¬ 𝑘 ∥ 𝑥)) |
154 | | imnan 390 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℙ → ¬
𝑘 ∥ 𝑥) ↔ ¬ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
155 | 153, 154 | sylib 210 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
156 | 30 | adantlr 706 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
157 | 156, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑊‘𝑘) = {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)}) |
158 | 157 | eleq2d 2892 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊‘𝑘) ↔ 𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)})) |
159 | | breq2 4877 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑥 → (𝑘 ∥ 𝑛 ↔ 𝑘 ∥ 𝑥)) |
160 | 159 | anbi2d 622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑥 → ((𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛) ↔ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
161 | 160 | elrab 3585 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} ↔ (𝑥 ∈ (1...𝑁) ∧ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
162 | 161 | simprbi 492 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑛 ∈ (1...𝑁) ∣ (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑛)} → (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥)) |
163 | 158, 162 | syl6bi 245 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑥 ∈ (𝑊‘𝑘) → (𝑘 ∈ ℙ ∧ 𝑘 ∥ 𝑥))) |
164 | 155, 163 | mtod 190 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑀) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ¬ 𝑥 ∈ (𝑊‘𝑘)) |
165 | 164 | nrexdv 3209 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ¬ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊‘𝑘)) |
166 | | eliun 4744 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ↔ ∃𝑘 ∈ ((𝐾 + 1)...𝑁)𝑥 ∈ (𝑊‘𝑘)) |
167 | 165, 166 | sylnibr 321 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑀) → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) |
168 | 167 | ex 403 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
169 | | imnan 390 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑀 → ¬ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ↔ ¬ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
170 | 168, 169 | sylib 210 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
171 | | elin 4023 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ↔ (𝑥 ∈ 𝑀 ∧ 𝑥 ∈ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
172 | 170, 171 | sylnibr 321 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑥 ∈ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) |
173 | 172 | eq0rdv 4204 |
. . . . . 6
⊢ (𝜑 → (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = ∅) |
174 | | hashun 13461 |
. . . . . 6
⊢ ((𝑀 ∈ Fin ∧ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin ∧ (𝑀 ∩ ∪
𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = ∅) → (♯‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
175 | 127, 129,
173, 174 | syl3anc 1494 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑀 ∪ ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) = ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
176 | 25, 126, 175 | 3eqtrd 2865 |
. . . 4
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) = ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)))) |
177 | | hashcl 13437 |
. . . . . . 7
⊢ (∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) ∈ Fin → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈
ℕ0) |
178 | 129, 177 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈
ℕ0) |
179 | 178 | nn0red 11679 |
. . . . 5
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ∈ ℝ) |
180 | | fzfid 13067 |
. . . . . . . 8
⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) |
181 | 27, 29 | sylan 575 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈
ℕ) |
182 | | nnrecre 11393 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
183 | | 0re 10358 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
184 | | ifcl 4350 |
. . . . . . . . . . 11
⊢ (((1 /
𝑘) ∈ ℝ ∧ 0
∈ ℝ) → if(𝑘
∈ ℙ, (1 / 𝑘), 0)
∈ ℝ) |
185 | 182, 183,
184 | sylancl 580 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
186 | 181, 185 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℝ) |
187 | 28, 186 | sylan2 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
188 | 180, 187 | fsumrecl 14842 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
189 | 2, 188 | remulcld 10387 |
. . . . . 6
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ∈ ℝ) |
190 | | prmrec.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0)) |
191 | | prmrec.5 |
. . . . . . . 8
⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝
) |
192 | | prmrec.6 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) |
193 | 190, 15, 1, 5, 191, 192, 35 | prmreclem4 15994 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
194 | | eluz 11982 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈
(ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝐾)) |
195 | 96, 68, 194 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝐾)) |
196 | | nnleltp1 11760 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 ≤ 𝐾 ↔ 𝑁 < (𝐾 + 1))) |
197 | 1, 15, 196 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝐾 ↔ 𝑁 < (𝐾 + 1))) |
198 | | fzn 12650 |
. . . . . . . . . 10
⊢ (((𝐾 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
199 | 94, 96, 198 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 < (𝐾 + 1) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
200 | 195, 197,
199 | 3bitrd 297 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) ↔ ((𝐾 + 1)...𝑁) = ∅)) |
201 | | 0le0 11459 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
202 | 24 | mul01d 10554 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 · 0) = 0) |
203 | 201, 202 | syl5breqr 4911 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑁 · 0)) |
204 | | iuneq1 4754 |
. . . . . . . . . . . . 13
⊢ (((𝐾 + 1)...𝑁) = ∅ → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) = ∪ 𝑘 ∈ ∅ (𝑊‘𝑘)) |
205 | | 0iun 4797 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ ∅ (𝑊‘𝑘) = ∅ |
206 | 204, 205 | syl6eq 2877 |
. . . . . . . . . . . 12
⊢ (((𝐾 + 1)...𝑁) = ∅ → ∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘) = ∅) |
207 | 206 | fveq2d 6437 |
. . . . . . . . . . 11
⊢ (((𝐾 + 1)...𝑁) = ∅ → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) =
(♯‘∅)) |
208 | | hash0 13448 |
. . . . . . . . . . 11
⊢
(♯‘∅) = 0 |
209 | 207, 208 | syl6eq 2877 |
. . . . . . . . . 10
⊢ (((𝐾 + 1)...𝑁) = ∅ → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) = 0) |
210 | | sumeq1 14796 |
. . . . . . . . . . . 12
⊢ (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = Σ𝑘 ∈ ∅ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
211 | | sum0 14829 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
∅ if(𝑘 ∈
ℙ, (1 / 𝑘), 0) =
0 |
212 | 210, 211 | syl6eq 2877 |
. . . . . . . . . . 11
⊢ (((𝐾 + 1)...𝑁) = ∅ → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) = 0) |
213 | 212 | oveq2d 6921 |
. . . . . . . . . 10
⊢ (((𝐾 + 1)...𝑁) = ∅ → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) = (𝑁 · 0)) |
214 | 209, 213 | breq12d 4886 |
. . . . . . . . 9
⊢ (((𝐾 + 1)...𝑁) = ∅ → ((♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) ↔ 0 ≤ (𝑁 · 0))) |
215 | 203, 214 | syl5ibrcom 239 |
. . . . . . . 8
⊢ (𝜑 → (((𝐾 + 1)...𝑁) = ∅ → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
216 | 200, 215 | sylbid 232 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘𝑁) → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)))) |
217 | | uztric 11990 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝐾) ∨ 𝐾 ∈ (ℤ≥‘𝑁))) |
218 | 68, 96, 217 | syl2anc 579 |
. . . . . . 7
⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝐾) ∨ 𝐾 ∈ (ℤ≥‘𝑁))) |
219 | 193, 216,
218 | mpjaod 891 |
. . . . . 6
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) ≤ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
220 | | eqid 2825 |
. . . . . . . . . 10
⊢
(ℤ≥‘(𝐾 + 1)) =
(ℤ≥‘(𝐾 + 1)) |
221 | | eleq1w 2889 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ)) |
222 | | oveq2 6913 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘)) |
223 | 221, 222 | ifbieq1d 4329 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (1 / 𝑛), 0) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
224 | | ovex 6937 |
. . . . . . . . . . . . 13
⊢ (1 /
𝑘) ∈
V |
225 | | c0ex 10350 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
226 | 224, 225 | ifex 4354 |
. . . . . . . . . . . 12
⊢ if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ V |
227 | 223, 190,
226 | fvmpt 6529 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
228 | 181, 227 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → (𝐹‘𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
229 | 185 | recnd 10385 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈
ℂ) |
230 | 227, 229 | eqeltrd 2906 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℂ) |
231 | 230 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
232 | 66, 27, 231 | iserex 14764 |
. . . . . . . . . . 11
⊢ (𝜑 → (seq1( + , 𝐹) ∈ dom ⇝ ↔
seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝
)) |
233 | 191, 232 | mpbid 224 |
. . . . . . . . . 10
⊢ (𝜑 → seq(𝐾 + 1)( + , 𝐹) ∈ dom ⇝ ) |
234 | 220, 94, 228, 186, 233 | isumrecl 14871 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ) |
235 | | halfre 11572 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℝ |
236 | 235 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
237 | | fzssuz 12675 |
. . . . . . . . . . 11
⊢ ((𝐾 + 1)...𝑁) ⊆
(ℤ≥‘(𝐾 + 1)) |
238 | 237 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾 + 1)...𝑁) ⊆
(ℤ≥‘(𝐾 + 1))) |
239 | | nnrp 12125 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
240 | 239 | rpreccld 12166 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
241 | 240 | rpge0d 12160 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 0 ≤ (1
/ 𝑘)) |
242 | | breq2 4877 |
. . . . . . . . . . . . 13
⊢ ((1 /
𝑘) = if(𝑘 ∈ ℙ, (1 / 𝑘), 0) → (0 ≤ (1 / 𝑘) ↔ 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0))) |
243 | | breq2 4877 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑘 ∈ ℙ, (1 /
𝑘), 0) → (0 ≤ 0
↔ 0 ≤ if(𝑘 ∈
ℙ, (1 / 𝑘),
0))) |
244 | 242, 243 | ifboth 4344 |
. . . . . . . . . . . 12
⊢ ((0 ≤
(1 / 𝑘) ∧ 0 ≤ 0)
→ 0 ≤ if(𝑘 ∈
ℙ, (1 / 𝑘),
0)) |
245 | 241, 201,
244 | sylancl 580 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 0 ≤
if(𝑘 ∈ ℙ, (1 /
𝑘), 0)) |
246 | 181, 245 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 0 ≤ if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
247 | 220, 94, 180, 238, 228, 186, 246, 233 | isumless 14951 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ≤ Σ𝑘 ∈ (ℤ≥‘(𝐾 + 1))if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) |
248 | 188, 234,
236, 247, 192 | lelttrd 10514 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2)) |
249 | 1 | nngt0d 11400 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑁) |
250 | | ltmul2 11204 |
. . . . . . . . 9
⊢
((Σ𝑘 ∈
((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) ∈ ℝ ∧ (1 / 2) ∈
ℝ ∧ (𝑁 ∈
ℝ ∧ 0 < 𝑁))
→ (Σ𝑘 ∈
((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))) |
251 | 188, 236,
2, 249, 250 | syl112anc 1497 |
. . . . . . . 8
⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0) < (1 / 2) ↔ (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2)))) |
252 | 248, 251 | mpbid 224 |
. . . . . . 7
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 · (1 / 2))) |
253 | | 2cn 11426 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
254 | | 2ne0 11462 |
. . . . . . . . 9
⊢ 2 ≠
0 |
255 | | divrec 11026 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (𝑁 / 2) = (𝑁 · (1 / 2))) |
256 | 253, 254,
255 | mp3an23 1581 |
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (𝑁 · (1 / 2))) |
257 | 24, 256 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 / 2) = (𝑁 · (1 / 2))) |
258 | 252, 257 | breqtrrd 4901 |
. . . . . 6
⊢ (𝜑 → (𝑁 · Σ𝑘 ∈ ((𝐾 + 1)...𝑁)if(𝑘 ∈ ℙ, (1 / 𝑘), 0)) < (𝑁 / 2)) |
259 | 179, 189,
3, 219, 258 | lelttrd 10514 |
. . . . 5
⊢ (𝜑 → (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘)) < (𝑁 / 2)) |
260 | 179, 3, 13, 259 | ltadd2dd 10515 |
. . . 4
⊢ (𝜑 → ((♯‘𝑀) + (♯‘∪ 𝑘 ∈ ((𝐾 + 1)...𝑁)(𝑊‘𝑘))) < ((♯‘𝑀) + (𝑁 / 2))) |
261 | 176, 260 | eqbrtrd 4895 |
. . 3
⊢ (𝜑 → ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2))) |
262 | 3, 13, 3 | ltadd1d 10945 |
. . 3
⊢ (𝜑 → ((𝑁 / 2) < (♯‘𝑀) ↔ ((𝑁 / 2) + (𝑁 / 2)) < ((♯‘𝑀) + (𝑁 / 2)))) |
263 | 261, 262 | mpbird 249 |
. 2
⊢ (𝜑 → (𝑁 / 2) < (♯‘𝑀)) |
264 | | oveq1 6912 |
. . . . . . . 8
⊢ (𝑘 = 𝑟 → (𝑘↑2) = (𝑟↑2)) |
265 | 264 | breq1d 4883 |
. . . . . . 7
⊢ (𝑘 = 𝑟 → ((𝑘↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑥)) |
266 | 265 | cbvrabv 3412 |
. . . . . 6
⊢ {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} |
267 | | breq2 4877 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((𝑟↑2) ∥ 𝑥 ↔ (𝑟↑2) ∥ 𝑛)) |
268 | 267 | rabbidv 3402 |
. . . . . 6
⊢ (𝑥 = 𝑛 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}) |
269 | 266, 268 | syl5eq 2873 |
. . . . 5
⊢ (𝑥 = 𝑛 → {𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}) |
270 | 269 | supeq1d 8621 |
. . . 4
⊢ (𝑥 = 𝑛 → sup({𝑘 ∈ ℕ ∣ (𝑘↑2) ∥ 𝑥}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < )) |
271 | 270 | cbvmptv 4973 |
. . 3
⊢ (𝑥 ∈ ℕ ↦
sup({𝑘 ∈ ℕ
∣ (𝑘↑2) ∥
𝑥}, ℝ, < )) =
(𝑛 ∈ ℕ ↦
sup({𝑟 ∈ ℕ
∣ (𝑟↑2) ∥
𝑛}, ℝ, <
)) |
272 | 190, 15, 1, 5, 271 | prmreclem3 15993 |
. 2
⊢ (𝜑 → (♯‘𝑀) ≤ ((2↑𝐾) · (√‘𝑁))) |
273 | 3, 13, 23, 263, 272 | ltletrd 10516 |
1
⊢ (𝜑 → (𝑁 / 2) < ((2↑𝐾) · (√‘𝑁))) |