MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Visualization version   GIF version

Theorem fseqdom 9782
Description: One half of fseqen 9783. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem fseqdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9401 . . 3 ω ∈ V
2 ovex 7308 . . 3 (𝐴m 𝑛) ∈ V
31, 2iunex 7811 . 2 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
4 xp1st 7863 . . . . . 6 (𝑥 ∈ (ω × 𝐴) → (1st𝑥) ∈ ω)
5 peano2 7737 . . . . . 6 ((1st𝑥) ∈ ω → suc (1st𝑥) ∈ ω)
64, 5syl 17 . . . . 5 (𝑥 ∈ (ω × 𝐴) → suc (1st𝑥) ∈ ω)
7 xp2nd 7864 . . . . . . . 8 (𝑥 ∈ (ω × 𝐴) → (2nd𝑥) ∈ 𝐴)
8 fconst6g 6663 . . . . . . . 8 ((2nd𝑥) ∈ 𝐴 → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
97, 8syl 17 . . . . . . 7 (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
109adantl 482 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
11 elmapg 8628 . . . . . . 7 ((𝐴𝑉 ∧ suc (1st𝑥) ∈ ω) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
126, 11sylan2 593 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
1310, 12mpbird 256 . . . . 5 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)))
14 oveq2 7283 . . . . . 6 (𝑛 = suc (1st𝑥) → (𝐴m 𝑛) = (𝐴m suc (1st𝑥)))
1514eliuni 4930 . . . . 5 ((suc (1st𝑥) ∈ ω ∧ (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥))) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
166, 13, 15syl2an2 683 . . . 4 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
1716ex 413 . . 3 (𝐴𝑉 → (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛)))
18 nsuceq0 6346 . . . . . . 7 suc (1st𝑥) ≠ ∅
19 fvex 6787 . . . . . . . 8 (2nd𝑥) ∈ V
2019snnz 4712 . . . . . . 7 {(2nd𝑥)} ≠ ∅
21 xp11 6078 . . . . . . 7 ((suc (1st𝑥) ≠ ∅ ∧ {(2nd𝑥)} ≠ ∅) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)})))
2218, 20, 21mp2an 689 . . . . . 6 ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}))
23 xp1st 7863 . . . . . . . 8 (𝑦 ∈ (ω × 𝐴) → (1st𝑦) ∈ ω)
24 peano4 7739 . . . . . . . 8 (((1st𝑥) ∈ ω ∧ (1st𝑦) ∈ ω) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
254, 23, 24syl2an 596 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
26 sneqbg 4774 . . . . . . . 8 ((2nd𝑥) ∈ V → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2719, 26mp1i 13 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2825, 27anbi12d 631 . . . . . 6 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
2922, 28bitrid 282 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
30 xpopth 7872 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)) ↔ 𝑥 = 𝑦))
3129, 30bitrd 278 . . . 4 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦))
3231a1i 11 . . 3 (𝐴𝑉 → ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦)))
3317, 32dom2d 8781 . 2 (𝐴𝑉 → ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
343, 33mpi 20 1 (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256  {csn 4561   ciun 4924   class class class wbr 5074   × cxp 5587  suc csuc 6268  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  1st c1st 7829  2nd c2nd 7830  m cmap 8615  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-map 8617  df-dom 8735
This theorem is referenced by:  fseqen  9783
  Copyright terms: Public domain W3C validator