MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Visualization version   GIF version

Theorem fseqdom 10040
Description: One half of fseqen 10041. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem fseqdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9657 . . 3 ω ∈ V
2 ovex 7438 . . 3 (𝐴m 𝑛) ∈ V
31, 2iunex 7967 . 2 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
4 xp1st 8020 . . . . . 6 (𝑥 ∈ (ω × 𝐴) → (1st𝑥) ∈ ω)
5 peano2 7886 . . . . . 6 ((1st𝑥) ∈ ω → suc (1st𝑥) ∈ ω)
64, 5syl 17 . . . . 5 (𝑥 ∈ (ω × 𝐴) → suc (1st𝑥) ∈ ω)
7 xp2nd 8021 . . . . . . . 8 (𝑥 ∈ (ω × 𝐴) → (2nd𝑥) ∈ 𝐴)
8 fconst6g 6767 . . . . . . . 8 ((2nd𝑥) ∈ 𝐴 → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
97, 8syl 17 . . . . . . 7 (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
109adantl 481 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
11 elmapg 8853 . . . . . . 7 ((𝐴𝑉 ∧ suc (1st𝑥) ∈ ω) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
126, 11sylan2 593 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
1310, 12mpbird 257 . . . . 5 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)))
14 oveq2 7413 . . . . . 6 (𝑛 = suc (1st𝑥) → (𝐴m 𝑛) = (𝐴m suc (1st𝑥)))
1514eliuni 4973 . . . . 5 ((suc (1st𝑥) ∈ ω ∧ (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥))) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
166, 13, 15syl2an2 686 . . . 4 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
1716ex 412 . . 3 (𝐴𝑉 → (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛)))
18 nsuceq0 6437 . . . . . . 7 suc (1st𝑥) ≠ ∅
19 fvex 6889 . . . . . . . 8 (2nd𝑥) ∈ V
2019snnz 4752 . . . . . . 7 {(2nd𝑥)} ≠ ∅
21 xp11 6164 . . . . . . 7 ((suc (1st𝑥) ≠ ∅ ∧ {(2nd𝑥)} ≠ ∅) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)})))
2218, 20, 21mp2an 692 . . . . . 6 ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}))
23 xp1st 8020 . . . . . . . 8 (𝑦 ∈ (ω × 𝐴) → (1st𝑦) ∈ ω)
24 peano4 7888 . . . . . . . 8 (((1st𝑥) ∈ ω ∧ (1st𝑦) ∈ ω) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
254, 23, 24syl2an 596 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
26 sneqbg 4819 . . . . . . . 8 ((2nd𝑥) ∈ V → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2719, 26mp1i 13 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2825, 27anbi12d 632 . . . . . 6 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
2922, 28bitrid 283 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
30 xpopth 8029 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)) ↔ 𝑥 = 𝑦))
3129, 30bitrd 279 . . . 4 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦))
3231a1i 11 . . 3 (𝐴𝑉 → ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦)))
3317, 32dom2d 9007 . 2 (𝐴𝑉 → ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
343, 33mpi 20 1 (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  {csn 4601   ciun 4967   class class class wbr 5119   × cxp 5652  suc csuc 6354  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  1st c1st 7986  2nd c2nd 7987  m cmap 8840  cdom 8957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-map 8842  df-dom 8961
This theorem is referenced by:  fseqen  10041
  Copyright terms: Public domain W3C validator