MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Visualization version   GIF version

Theorem fseqdom 9452
Description: One half of fseqen 9453. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem fseqdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9106 . . 3 ω ∈ V
2 ovex 7189 . . 3 (𝐴m 𝑛) ∈ V
31, 2iunex 7669 . 2 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
4 xp1st 7721 . . . . . 6 (𝑥 ∈ (ω × 𝐴) → (1st𝑥) ∈ ω)
5 peano2 7602 . . . . . 6 ((1st𝑥) ∈ ω → suc (1st𝑥) ∈ ω)
64, 5syl 17 . . . . 5 (𝑥 ∈ (ω × 𝐴) → suc (1st𝑥) ∈ ω)
7 xp2nd 7722 . . . . . . . 8 (𝑥 ∈ (ω × 𝐴) → (2nd𝑥) ∈ 𝐴)
8 fconst6g 6568 . . . . . . . 8 ((2nd𝑥) ∈ 𝐴 → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
97, 8syl 17 . . . . . . 7 (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
109adantl 484 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
11 elmapg 8419 . . . . . . 7 ((𝐴𝑉 ∧ suc (1st𝑥) ∈ ω) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
126, 11sylan2 594 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
1310, 12mpbird 259 . . . . 5 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)))
14 oveq2 7164 . . . . . 6 (𝑛 = suc (1st𝑥) → (𝐴m 𝑛) = (𝐴m suc (1st𝑥)))
1514eliuni 4925 . . . . 5 ((suc (1st𝑥) ∈ ω ∧ (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥))) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
166, 13, 15syl2an2 684 . . . 4 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
1716ex 415 . . 3 (𝐴𝑉 → (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛)))
18 nsuceq0 6271 . . . . . . 7 suc (1st𝑥) ≠ ∅
19 fvex 6683 . . . . . . . 8 (2nd𝑥) ∈ V
2019snnz 4711 . . . . . . 7 {(2nd𝑥)} ≠ ∅
21 xp11 6032 . . . . . . 7 ((suc (1st𝑥) ≠ ∅ ∧ {(2nd𝑥)} ≠ ∅) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)})))
2218, 20, 21mp2an 690 . . . . . 6 ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}))
23 xp1st 7721 . . . . . . . 8 (𝑦 ∈ (ω × 𝐴) → (1st𝑦) ∈ ω)
24 peano4 7604 . . . . . . . 8 (((1st𝑥) ∈ ω ∧ (1st𝑦) ∈ ω) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
254, 23, 24syl2an 597 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
26 sneqbg 4774 . . . . . . . 8 ((2nd𝑥) ∈ V → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2719, 26mp1i 13 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2825, 27anbi12d 632 . . . . . 6 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
2922, 28syl5bb 285 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
30 xpopth 7730 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)) ↔ 𝑥 = 𝑦))
3129, 30bitrd 281 . . . 4 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦))
3231a1i 11 . . 3 (𝐴𝑉 → ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦)))
3317, 32dom2d 8550 . 2 (𝐴𝑉 → ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
343, 33mpi 20 1 (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  c0 4291  {csn 4567   ciun 4919   class class class wbr 5066   × cxp 5553  suc csuc 6193  wf 6351  cfv 6355  (class class class)co 7156  ωcom 7580  1st c1st 7687  2nd c2nd 7688  m cmap 8406  cdom 8507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-map 8408  df-dom 8511
This theorem is referenced by:  fseqen  9453
  Copyright terms: Public domain W3C validator