MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Visualization version   GIF version

Theorem fseqdom 10021
Description: One half of fseqen 10022. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝑉(𝑛)

Proof of Theorem fseqdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9638 . . 3 ω ∈ V
2 ovex 7442 . . 3 (𝐴m 𝑛) ∈ V
31, 2iunex 7955 . 2 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
4 xp1st 8007 . . . . . 6 (𝑥 ∈ (ω × 𝐴) → (1st𝑥) ∈ ω)
5 peano2 7881 . . . . . 6 ((1st𝑥) ∈ ω → suc (1st𝑥) ∈ ω)
64, 5syl 17 . . . . 5 (𝑥 ∈ (ω × 𝐴) → suc (1st𝑥) ∈ ω)
7 xp2nd 8008 . . . . . . . 8 (𝑥 ∈ (ω × 𝐴) → (2nd𝑥) ∈ 𝐴)
8 fconst6g 6781 . . . . . . . 8 ((2nd𝑥) ∈ 𝐴 → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
97, 8syl 17 . . . . . . 7 (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
109adantl 483 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴)
11 elmapg 8833 . . . . . . 7 ((𝐴𝑉 ∧ suc (1st𝑥) ∈ ω) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
126, 11sylan2 594 . . . . . 6 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)) ↔ (suc (1st𝑥) × {(2nd𝑥)}):suc (1st𝑥)⟶𝐴))
1310, 12mpbird 257 . . . . 5 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥)))
14 oveq2 7417 . . . . . 6 (𝑛 = suc (1st𝑥) → (𝐴m 𝑛) = (𝐴m suc (1st𝑥)))
1514eliuni 5004 . . . . 5 ((suc (1st𝑥) ∈ ω ∧ (suc (1st𝑥) × {(2nd𝑥)}) ∈ (𝐴m suc (1st𝑥))) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
166, 13, 15syl2an2 685 . . . 4 ((𝐴𝑉𝑥 ∈ (ω × 𝐴)) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛))
1716ex 414 . . 3 (𝐴𝑉 → (𝑥 ∈ (ω × 𝐴) → (suc (1st𝑥) × {(2nd𝑥)}) ∈ 𝑛 ∈ ω (𝐴m 𝑛)))
18 nsuceq0 6448 . . . . . . 7 suc (1st𝑥) ≠ ∅
19 fvex 6905 . . . . . . . 8 (2nd𝑥) ∈ V
2019snnz 4781 . . . . . . 7 {(2nd𝑥)} ≠ ∅
21 xp11 6175 . . . . . . 7 ((suc (1st𝑥) ≠ ∅ ∧ {(2nd𝑥)} ≠ ∅) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)})))
2218, 20, 21mp2an 691 . . . . . 6 ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ (suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}))
23 xp1st 8007 . . . . . . . 8 (𝑦 ∈ (ω × 𝐴) → (1st𝑦) ∈ ω)
24 peano4 7883 . . . . . . . 8 (((1st𝑥) ∈ ω ∧ (1st𝑦) ∈ ω) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
254, 23, 24syl2an 597 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (suc (1st𝑥) = suc (1st𝑦) ↔ (1st𝑥) = (1st𝑦)))
26 sneqbg 4845 . . . . . . . 8 ((2nd𝑥) ∈ V → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2719, 26mp1i 13 . . . . . . 7 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ({(2nd𝑥)} = {(2nd𝑦)} ↔ (2nd𝑥) = (2nd𝑦)))
2825, 27anbi12d 632 . . . . . 6 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) = suc (1st𝑦) ∧ {(2nd𝑥)} = {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
2922, 28bitrid 283 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
30 xpopth 8016 . . . . 5 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)) ↔ 𝑥 = 𝑦))
3129, 30bitrd 279 . . . 4 ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦))
3231a1i 11 . . 3 (𝐴𝑉 → ((𝑥 ∈ (ω × 𝐴) ∧ 𝑦 ∈ (ω × 𝐴)) → ((suc (1st𝑥) × {(2nd𝑥)}) = (suc (1st𝑦) × {(2nd𝑦)}) ↔ 𝑥 = 𝑦)))
3317, 32dom2d 8989 . 2 (𝐴𝑉 → ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ V → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
343, 33mpi 20 1 (𝐴𝑉 → (ω × 𝐴) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  c0 4323  {csn 4629   ciun 4998   class class class wbr 5149   × cxp 5675  suc csuc 6367  wf 6540  cfv 6544  (class class class)co 7409  ωcom 7855  1st c1st 7973  2nd c2nd 7974  m cmap 8820  cdom 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-map 8822  df-dom 8941
This theorem is referenced by:  fseqen  10022
  Copyright terms: Public domain W3C validator