MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmolem Structured version   Visualization version   GIF version

Theorem cfsmolem 10206
Description: Lemma for cfsmo 10207. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypotheses
Ref Expression
cfsmolem.2 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
cfsmolem.3 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
Assertion
Ref Expression
cfsmolem (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑤,𝑧,𝐴   𝑓,𝐹,𝑡,𝑧   𝑓,𝐺,𝑤,𝑧
Allowed substitution hints:   𝐹(𝑤,𝑔)   𝐺(𝑡,𝑔)

Proof of Theorem cfsmolem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 10194 . 2 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)))
2 cfon 10191 . . . . . . . . . . . 12 (cf‘𝐴) ∈ On
32oneli 6431 . . . . . . . . . . 11 (𝑥 ∈ (cf‘𝐴) → 𝑥 ∈ On)
433ad2ant3 1135 . . . . . . . . . 10 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
5 eleq1w 2820 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ∈ (cf‘𝐴) ↔ 𝑦 ∈ (cf‘𝐴)))
653anbi3d 1442 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ↔ (𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴))))
7 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
87eleq1d 2822 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐺𝑥) ∈ 𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
96, 8imbi12d 344 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴) ↔ ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴)))
10 simpl1 1191 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑔:(cf‘𝐴)–1-1𝐴)
11 simpl2 1192 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
12 ontr1 6363 . . . . . . . . . . . . . . . . . 18 ((cf‘𝐴) ∈ On → ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴)))
132, 12ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴))
1413ancoms 459 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
15143ad2antl3 1187 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
16 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1710, 11, 15, 16syl3anc 1371 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1817ralimdva 3164 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴))
19 cfsmolem.3 . . . . . . . . . . . . . . . . . . . 20 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
2019fveq1i 6843 . . . . . . . . . . . . . . . . . . 19 (𝐺𝑥) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥)
21 fvres 6861 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (cf‘𝐴) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥) = (recs(𝐹)‘𝑥))
2220, 21eqtrid 2788 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
23 recsval 8350 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = (𝐹‘(recs(𝐹) ↾ 𝑥)))
24 recsfnon 8349 . . . . . . . . . . . . . . . . . . . . . . . 24 recs(𝐹) Fn On
25 fnfun 6602 . . . . . . . . . . . . . . . . . . . . . . . 24 (recs(𝐹) Fn On → Fun recs(𝐹))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun recs(𝐹)
27 vex 3449 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 ∈ V
28 resfunexg 7165 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun recs(𝐹) ∧ 𝑥 ∈ V) → (recs(𝐹) ↾ 𝑥) ∈ V)
2926, 27, 28mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 (recs(𝐹) ↾ 𝑥) ∈ V
30 dmeq 5859 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → dom 𝑧 = dom (recs(𝐹) ↾ 𝑥))
3130fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑔‘dom 𝑧) = (𝑔‘dom (recs(𝐹) ↾ 𝑥)))
32 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡))
33 suceq 6383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3530, 34iuneq12d 4982 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → 𝑡 ∈ dom 𝑧 suc (𝑧𝑡) = 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3631, 35uneq12d 4124 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (recs(𝐹) ↾ 𝑥) → ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
37 cfsmolem.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
38 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∈ V
3929dmex 7848 . . . . . . . . . . . . . . . . . . . . . . . . 25 dom (recs(𝐹) ↾ 𝑥) ∈ V
40 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4140sucex 7741 . . . . . . . . . . . . . . . . . . . . . . . . 25 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4239, 41iunex 7901 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4338, 42unex 7680 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) ∈ V
4436, 37, 43fvmpt 6948 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) ↾ 𝑥) ∈ V → (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
4529, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
4623, 45eqtrdi 2792 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
47 onss 7719 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → 𝑥 ⊆ On)
48 fnssres 6624 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) Fn On ∧ 𝑥 ⊆ On) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
4924, 47, 48sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
50 fndm 6605 . . . . . . . . . . . . . . . . . . . . 21 ((recs(𝐹) ↾ 𝑥) Fn 𝑥 → dom (recs(𝐹) ↾ 𝑥) = 𝑥)
51 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → (𝑔‘dom (recs(𝐹) ↾ 𝑥)) = (𝑔𝑥))
52 iuneq1 4970 . . . . . . . . . . . . . . . . . . . . . . 23 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
53 fvres 6861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡))
54 suceq 6383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡) → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝑥 → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5655iuneq2i 4975 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
57 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡))
58 suceq 6383 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡) → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
6059cbviunv 5000 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
6156, 60eqtr4i 2767 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦)
6252, 61eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦))
6351, 62uneq12d 4124 . . . . . . . . . . . . . . . . . . . . 21 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6449, 50, 633syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6546, 64eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
663, 65syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6722, 66eqtrd 2776 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
68673ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
69 eloni 6327 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
7069adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Ord 𝐴)
71703ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → Ord 𝐴)
72 f1f 6738 . . . . . . . . . . . . . . . . . . . 20 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
7372ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . 19 ((𝑔:(cf‘𝐴)–1-1𝐴𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
7473adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
75743adant3 1132 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝑔𝑥) ∈ 𝐴)
7619fveq1i 6843 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺𝑦) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦)
7713fvresd 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦) = (recs(𝐹)‘𝑦))
7876, 77eqtrid 2788 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
7978adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝑥 ∧ (𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴))) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8079ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8180eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ (recs(𝐹)‘𝑦) ∈ 𝐴))
82 ordsucss 7753 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝐴 → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8369, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8483ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8581, 84sylbid 239 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8685ralimdva 3164 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
87 iunss 5005 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
8886, 87syl6ibr 251 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
89883impia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
90 onelon 6342 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ 𝐴) → (recs(𝐹)‘𝑦) ∈ On)
9190ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9291ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9381, 92sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
94 onsuc 7746 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((recs(𝐹)‘𝑦) ∈ On → suc (recs(𝐹)‘𝑦) ∈ On)
9593, 94syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ∈ On))
9695ralimdva 3164 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On))
97963impia 1117 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
98 iunon 8285 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
9927, 97, 98sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
100 simp1 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝐴 ∈ On)
101 onsseleq 6358 . . . . . . . . . . . . . . . . . . . . 21 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On ∧ 𝐴 ∈ On) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
10299, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
103 idd 24 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
104 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ (cf‘𝐴))
105 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝐴 ∈ On)
1063ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ On)
1073, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
108107adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
10978ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
110 fvres 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
111110adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
112109, 111eqtr4d 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
113112eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
114113ralbidva 3172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 ↔ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
115114biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
116 ffnfv 7066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ↔ ((recs(𝐹) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
117108, 115, 116sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥):𝑥𝐴)
118 eleq2 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ 𝑡𝐴))
119118biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝑡𝐴) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
120119adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
1211203adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
122 onelon 6342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐴 ∈ On ∧ 𝑡𝐴) → 𝑡 ∈ On)
123110adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
124 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
125123, 124eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → (recs(𝐹)‘𝑦) ∈ 𝐴)
126125, 90sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐴 ∈ On ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
127126adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
128 onsssuc 6407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑡 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ On) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
129122, 127, 128syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
130129anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) ∧ 𝑦𝑥) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
131130rexbidva 3173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
132 eliun 4958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦))
133131, 132bitr4di 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
134133ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
1351343adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
136121, 135mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
1371363expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
138137anassrs 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) ∧ 𝑡𝐴) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
139138ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
140139expl 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
141117, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
142141imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
143 feq1 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓:𝑥𝐴 ↔ (recs(𝐹) ↾ 𝑥):𝑥𝐴))
144 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
145144sseq2d 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑡 ⊆ (𝑓𝑦) ↔ 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
146145rexbidv 3175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
147110sseq2d 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → (𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ 𝑡 ⊆ (recs(𝐹)‘𝑦)))
148147rexbiia 3095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
149146, 148bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
150149ralbidv 3174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
151143, 150anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓 = (recs(𝐹) ↾ 𝑥) → ((𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) ↔ ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))))
15229, 151spcev 3565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
153117, 142, 152syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
154 cfflb 10195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ 𝑥))
155154imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦))) → (cf‘𝐴) ⊆ 𝑥)
156105, 106, 153, 155syl21anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → (cf‘𝐴) ⊆ 𝑥)
157 ontri1 6351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((cf‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
1582, 3, 157sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (cf‘𝐴) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
159158ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
160156, 159mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ¬ 𝑥 ∈ (cf‘𝐴))
161104, 160pm2.21dd 194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
162161ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
163162expcomd 417 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐴 ∈ On → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
164163com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
1651643impib 1116 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
166103, 165jaod 857 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
167102, 166sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
16889, 167mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
1691683adant1l 1176 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
170 ordunel 7762 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴 ∧ (𝑔𝑥) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17171, 75, 169, 170syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17268, 171eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) ∈ 𝐴)
1731723expia 1121 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
1741733impa 1110 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
17518, 174syldc 48 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
176175a1i 11 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)))
1779, 176tfis2 7793 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
1784, 177mpcom 38 . . . . . . . . 9 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)
1791783expia 1121 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) ∈ 𝐴))
180179ralrimiv 3142 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
1812onssi 7773 . . . . . . . . 9 (cf‘𝐴) ⊆ On
182 fnssres 6624 . . . . . . . . . 10 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
18319fneq1i 6599 . . . . . . . . . 10 (𝐺 Fn (cf‘𝐴) ↔ (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
184182, 183sylibr 233 . . . . . . . . 9 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → 𝐺 Fn (cf‘𝐴))
18524, 181, 184mp2an 690 . . . . . . . 8 𝐺 Fn (cf‘𝐴)
186 ffnfv 7066 . . . . . . . 8 (𝐺:(cf‘𝐴)⟶𝐴 ↔ (𝐺 Fn (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴))
187185, 186mpbiran 707 . . . . . . 7 (𝐺:(cf‘𝐴)⟶𝐴 ↔ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
188180, 187sylibr 233 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
189188adantlr 713 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
190 onss 7719 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
191190adantl 482 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐴 ⊆ On)
1922onordi 6428 . . . . . . . 8 Ord (cf‘𝐴)
193 fvex 6855 . . . . . . . . . . . . . . . . 17 (recs(𝐹)‘𝑦) ∈ V
194193sucid 6399 . . . . . . . . . . . . . . . 16 (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)
195 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦))
196 suceq 6383 . . . . . . . . . . . . . . . . . . 19 ((recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦) → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
197195, 196syl 17 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑦 → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
198197eliuni 4960 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑡𝑥 suc (recs(𝐹)‘𝑡))
199198, 60eleqtrrdi 2849 . . . . . . . . . . . . . . . 16 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
200194, 199mpan2 689 . . . . . . . . . . . . . . 15 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
201 elun2 4137 . . . . . . . . . . . . . . 15 ((recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
202200, 201syl 17 . . . . . . . . . . . . . 14 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
203202adantr 481 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
2043adantl 482 . . . . . . . . . . . . . 14 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
205204, 65syl 17 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
206203, 205eleqtrrd 2841 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ (recs(𝐹)‘𝑥))
20722adantl 482 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
208206, 78, 2073eltr4d 2853 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ (𝐺𝑥))
209208expcom 414 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑦𝑥 → (𝐺𝑦) ∈ (𝐺𝑥)))
210209ralrimiv 3142 . . . . . . . . 9 (𝑥 ∈ (cf‘𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥))
211210rgen 3066 . . . . . . . 8 𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)
212 issmo2 8295 . . . . . . . . 9 (𝐺:(cf‘𝐴)⟶𝐴 → ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → Smo 𝐺))
213212com12 32 . . . . . . . 8 ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
214192, 211, 213mp3an23 1453 . . . . . . 7 (𝐴 ⊆ On → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
215191, 188, 214sylc 65 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Smo 𝐺)
216215adantlr 713 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → Smo 𝐺)
217 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑔𝑥) = (𝑔𝑤))
218 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
219217, 218sseq12d 3977 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑔𝑥) ⊆ (𝐺𝑥) ↔ (𝑔𝑤) ⊆ (𝐺𝑤)))
220 ssun1 4132 . . . . . . . . . . 11 (𝑔𝑥) ⊆ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
221220, 67sseqtrrid 3997 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑔𝑥) ⊆ (𝐺𝑥))
222219, 221vtoclga 3534 . . . . . . . . 9 (𝑤 ∈ (cf‘𝐴) → (𝑔𝑤) ⊆ (𝐺𝑤))
223 sstr 3952 . . . . . . . . . 10 ((𝑧 ⊆ (𝑔𝑤) ∧ (𝑔𝑤) ⊆ (𝐺𝑤)) → 𝑧 ⊆ (𝐺𝑤))
224223expcom 414 . . . . . . . . 9 ((𝑔𝑤) ⊆ (𝐺𝑤) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
225222, 224syl 17 . . . . . . . 8 (𝑤 ∈ (cf‘𝐴) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
226225reximia 3084 . . . . . . 7 (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
227226ralimi 3086 . . . . . 6 (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
228227ad2antlr 725 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
229 fnex 7167 . . . . . . 7 ((𝐺 Fn (cf‘𝐴) ∧ (cf‘𝐴) ∈ On) → 𝐺 ∈ V)
230185, 2, 229mp2an 690 . . . . . 6 𝐺 ∈ V
231 feq1 6649 . . . . . . 7 (𝑓 = 𝐺 → (𝑓:(cf‘𝐴)⟶𝐴𝐺:(cf‘𝐴)⟶𝐴))
232 smoeq 8296 . . . . . . 7 (𝑓 = 𝐺 → (Smo 𝑓 ↔ Smo 𝐺))
233 fveq1 6841 . . . . . . . . . 10 (𝑓 = 𝐺 → (𝑓𝑤) = (𝐺𝑤))
234233sseq2d 3976 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑧 ⊆ (𝑓𝑤) ↔ 𝑧 ⊆ (𝐺𝑤)))
235234rexbidv 3175 . . . . . . . 8 (𝑓 = 𝐺 → (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
236235ralbidv 3174 . . . . . . 7 (𝑓 = 𝐺 → (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
237231, 232, 2363anbi123d 1436 . . . . . 6 (𝑓 = 𝐺 → ((𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)) ↔ (𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))))
238230, 237spcev 3565 . . . . 5 ((𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
239189, 216, 228, 238syl3anc 1371 . . . 4 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
240239expcom 414 . . 3 (𝐴 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
241240exlimdv 1936 . 2 (𝐴 ∈ On → (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
2421, 241mpd 15 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cun 3908  wss 3910   ciun 4954  cmpt 5188  dom cdm 5633  cres 5635  Ord word 6316  Oncon0 6317  suc csuc 6319  Fun wfun 6490   Fn wfn 6491  wf 6492  1-1wf1 6493  cfv 6496  Smo wsmo 8291  recscrecs 8316  cfccf 9873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-smo 8292  df-recs 8317  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-card 9875  df-cf 9877  df-acn 9878
This theorem is referenced by:  cfsmo  10207
  Copyright terms: Public domain W3C validator