| Step | Hyp | Ref
| Expression |
| 1 | | cff1 10277 |
. 2
⊢ (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤))) |
| 2 | | cfon 10274 |
. . . . . . . . . . . 12
⊢
(cf‘𝐴) ∈
On |
| 3 | 2 | oneli 6473 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (cf‘𝐴) → 𝑥 ∈ On) |
| 4 | 3 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On) |
| 5 | | eleq1w 2818 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (cf‘𝐴) ↔ 𝑦 ∈ (cf‘𝐴))) |
| 6 | 5 | 3anbi3d 1444 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ↔ (𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)))) |
| 7 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 8 | 7 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐺‘𝑥) ∈ 𝐴 ↔ (𝐺‘𝑦) ∈ 𝐴)) |
| 9 | 6, 8 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑥) ∈ 𝐴) ↔ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ 𝐴))) |
| 10 | | simpl1 1192 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → 𝑔:(cf‘𝐴)–1-1→𝐴) |
| 11 | | simpl2 1193 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → 𝐴 ∈ On) |
| 12 | | ontr1 6404 |
. . . . . . . . . . . . . . . . . 18
⊢
((cf‘𝐴) ∈
On → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴))) |
| 13 | 2, 12 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴)) |
| 14 | 13 | ancoms 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ (cf‘𝐴)) |
| 15 | 14 | 3ad2antl3 1188 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ (cf‘𝐴)) |
| 16 | | pm2.27 42 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ 𝐴) → (𝐺‘𝑦) ∈ 𝐴)) |
| 17 | 10, 11, 15, 16 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ 𝐴) → (𝐺‘𝑦) ∈ 𝐴)) |
| 18 | 17 | ralimdva 3153 |
. . . . . . . . . . . . 13
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦 ∈ 𝑥 ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ 𝐴) → ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴)) |
| 19 | | cfsmolem.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐺 = (recs(𝐹) ↾ (cf‘𝐴)) |
| 20 | 19 | fveq1i 6882 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺‘𝑥) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥) |
| 21 | | fvres 6900 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (cf‘𝐴) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥) = (recs(𝐹)‘𝑥)) |
| 22 | 20, 21 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (cf‘𝐴) → (𝐺‘𝑥) = (recs(𝐹)‘𝑥)) |
| 23 | | recsval 8423 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ On → (recs(𝐹)‘𝑥) = (𝐹‘(recs(𝐹) ↾ 𝑥))) |
| 24 | | recsfnon 8422 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
recs(𝐹) Fn
On |
| 25 | | fnfun 6643 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(recs(𝐹) Fn On
→ Fun recs(𝐹)) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fun
recs(𝐹) |
| 27 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑥 ∈ V |
| 28 | | resfunexg 7212 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Fun
recs(𝐹) ∧ 𝑥 ∈ V) → (recs(𝐹) ↾ 𝑥) ∈ V) |
| 29 | 26, 27, 28 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(recs(𝐹) ↾
𝑥) ∈
V |
| 30 | | dmeq 5888 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = (recs(𝐹) ↾ 𝑥) → dom 𝑧 = dom (recs(𝐹) ↾ 𝑥)) |
| 31 | 30 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑔‘dom 𝑧) = (𝑔‘dom (recs(𝐹) ↾ 𝑥))) |
| 32 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑧‘𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡)) |
| 33 | | suceq 6424 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧‘𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡) → suc (𝑧‘𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 = (recs(𝐹) ↾ 𝑥) → suc (𝑧‘𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) |
| 35 | 30, 34 | iuneq12d 5002 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 = (recs(𝐹) ↾ 𝑥) → ∪
𝑡 ∈ dom 𝑧 suc (𝑧‘𝑡) = ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) |
| 36 | 31, 35 | uneq12d 4149 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (recs(𝐹) ↾ 𝑥) → ((𝑔‘dom 𝑧) ∪ ∪
𝑡 ∈ dom 𝑧 suc (𝑧‘𝑡)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))) |
| 37 | | cfsmolem.2 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ ∪
𝑡 ∈ dom 𝑧 suc (𝑧‘𝑡))) |
| 38 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∈ V |
| 39 | 29 | dmex 7910 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ dom
(recs(𝐹) ↾ 𝑥) ∈ V |
| 40 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((recs(𝐹) ↾
𝑥)‘𝑡) ∈ V |
| 41 | 40 | sucex 7805 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ suc
((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V |
| 42 | 39, 41 | iunex 7972 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V |
| 43 | 38, 42 | unex 7743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) ∈ V |
| 44 | 36, 37, 43 | fvmpt 6991 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((recs(𝐹) ↾
𝑥) ∈ V → (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))) |
| 45 | 29, 44 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) |
| 46 | 23, 45 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))) |
| 47 | | onss 7784 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
| 48 | | fnssres 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((recs(𝐹) Fn On
∧ 𝑥 ⊆ On) →
(recs(𝐹) ↾ 𝑥) Fn 𝑥) |
| 49 | 24, 47, 48 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ On → (recs(𝐹) ↾ 𝑥) Fn 𝑥) |
| 50 | | fndm 6646 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((recs(𝐹) ↾
𝑥) Fn 𝑥 → dom (recs(𝐹) ↾ 𝑥) = 𝑥) |
| 51 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (dom
(recs(𝐹) ↾ 𝑥) = 𝑥 → (𝑔‘dom (recs(𝐹) ↾ 𝑥)) = (𝑔‘𝑥)) |
| 52 | | iuneq1 4989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (dom
(recs(𝐹) ↾ 𝑥) = 𝑥 → ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = ∪ 𝑡 ∈ 𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) |
| 53 | | fvres 6900 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ 𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡)) |
| 54 | | suceq 6424 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((recs(𝐹) ↾
𝑥)‘𝑡) = (recs(𝐹)‘𝑡) → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡)) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 ∈ 𝑥 → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡)) |
| 56 | 55 | iuneq2i 4994 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑡 ∈ 𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = ∪ 𝑡 ∈ 𝑥 suc (recs(𝐹)‘𝑡) |
| 57 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑡 → (recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡)) |
| 58 | | suceq 6424 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡) → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡)) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑡 → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡)) |
| 60 | 59 | cbviunv 5021 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = ∪ 𝑡 ∈ 𝑥 suc (recs(𝐹)‘𝑡) |
| 61 | 56, 60 | eqtr4i 2762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑡 ∈ 𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) |
| 62 | 52, 61 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (dom
(recs(𝐹) ↾ 𝑥) = 𝑥 → ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 63 | 51, 62 | uneq12d 4149 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
(recs(𝐹) ↾ 𝑥) = 𝑥 → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 64 | 49, 50, 63 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ ∪
𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 65 | 46, 64 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 66 | 3, 65 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (cf‘𝐴) → (recs(𝐹)‘𝑥) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 67 | 22, 66 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (cf‘𝐴) → (𝐺‘𝑥) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 68 | 67 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (𝐺‘𝑥) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 69 | | eloni 6367 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) → Ord 𝐴) |
| 71 | 70 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → Ord 𝐴) |
| 72 | | f1f 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔:(cf‘𝐴)–1-1→𝐴 → 𝑔:(cf‘𝐴)⟶𝐴) |
| 73 | 72 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝑥 ∈ (cf‘𝐴)) → (𝑔‘𝑥) ∈ 𝐴) |
| 74 | 73 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (𝑔‘𝑥) ∈ 𝐴) |
| 75 | 74 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (𝑔‘𝑥) ∈ 𝐴) |
| 76 | 19 | fveq1i 6882 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐺‘𝑦) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦) |
| 77 | 13 | fvresd 6901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦) = (recs(𝐹)‘𝑦)) |
| 78 | 76, 77 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑦) = (recs(𝐹)‘𝑦)) |
| 79 | 78 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ 𝑥 ∧ (𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴))) → (𝐺‘𝑦) = (recs(𝐹)‘𝑦)) |
| 80 | 79 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → (𝐺‘𝑦) = (recs(𝐹)‘𝑦)) |
| 81 | 80 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → ((𝐺‘𝑦) ∈ 𝐴 ↔ (recs(𝐹)‘𝑦) ∈ 𝐴)) |
| 82 | | ordsucss 7817 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Ord
𝐴 → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴)) |
| 83 | 69, 82 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴)) |
| 84 | 83 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴)) |
| 85 | 81, 84 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → ((𝐺‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴)) |
| 86 | 85 | ralimdva 3153 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴 → ∀𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)) |
| 87 | | iunss 5026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴) |
| 88 | 86, 87 | imbitrrdi 252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴 → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)) |
| 89 | 88 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴) |
| 90 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ 𝐴) → (recs(𝐹)‘𝑦) ∈ On) |
| 91 | 90 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On)) |
| 92 | 91 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On)) |
| 93 | 81, 92 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → ((𝐺‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On)) |
| 94 | | onsuc 7810 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((recs(𝐹)‘𝑦) ∈ On → suc (recs(𝐹)‘𝑦) ∈ On) |
| 95 | 93, 94 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦 ∈ 𝑥) → ((𝐺‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ∈ On)) |
| 96 | 95 | ralimdva 3153 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴 → ∀𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ On)) |
| 97 | 96 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ∀𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ On) |
| 98 | | iunon 8358 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ On) |
| 99 | 27, 97, 98 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ On) |
| 100 | | simp1 1136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → 𝐴 ∈ On) |
| 101 | | onsseleq 6398 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ On ∧ 𝐴 ∈ On) → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 ∨ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴))) |
| 102 | 99, 100, 101 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 ∨ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴))) |
| 103 | | idd 24 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)) |
| 104 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → 𝑥 ∈ (cf‘𝐴)) |
| 105 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → 𝐴 ∈ On) |
| 106 | 3 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → 𝑥 ∈ On) |
| 107 | 3, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ (cf‘𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥) |
| 109 | 78 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦 ∈ 𝑥) → (𝐺‘𝑦) = (recs(𝐹)‘𝑦)) |
| 110 | | fvres 6900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 ∈ 𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦)) |
| 111 | 110 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦 ∈ 𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦)) |
| 112 | 109, 111 | eqtr4d 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦 ∈ 𝑥) → (𝐺‘𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦)) |
| 113 | 112 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦 ∈ 𝑥) → ((𝐺‘𝑦) ∈ 𝐴 ↔ ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)) |
| 114 | 113 | ralbidva 3162 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ (cf‘𝐴) → (∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴 ↔ ∀𝑦 ∈ 𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)) |
| 115 | 114 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ∀𝑦 ∈ 𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴) |
| 116 | | ffnfv 7114 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ↔ ((recs(𝐹) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)) |
| 117 | 108, 115,
116 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥):𝑥⟶𝐴) |
| 118 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → (𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ 𝐴)) |
| 119 | 118 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝑡 ∈ 𝐴) → 𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 120 | 119 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡 ∈ 𝐴)) → 𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 121 | 120 | 3adant1 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡 ∈ 𝐴)) → 𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 122 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝐴 ∈ On ∧ 𝑡 ∈ 𝐴) → 𝑡 ∈ On) |
| 123 | 110 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ 𝑦 ∈ 𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦)) |
| 124 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ 𝑦 ∈ 𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴) |
| 125 | 123, 124 | eqeltrrd 2836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ 𝑦 ∈ 𝑥) → (recs(𝐹)‘𝑦) ∈ 𝐴) |
| 126 | 125, 90 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝐴 ∈ On ∧ ((recs(𝐹) ↾ 𝑥):𝑥⟶𝐴 ∧ 𝑦 ∈ 𝑥)) → (recs(𝐹)‘𝑦) ∈ On) |
| 127 | 126 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝐴 ∈ On ∧ 𝑡 ∈ 𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥⟶𝐴 ∧ 𝑦 ∈ 𝑥)) → (recs(𝐹)‘𝑦) ∈ On) |
| 128 | | onsssuc 6449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((𝑡 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ On) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦))) |
| 129 | 122, 127,
128 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (((𝐴 ∈ On ∧ 𝑡 ∈ 𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥⟶𝐴 ∧ 𝑦 ∈ 𝑥)) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦))) |
| 130 | 129 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((((𝐴 ∈ On ∧ 𝑡 ∈ 𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥⟶𝐴) ∧ 𝑦 ∈ 𝑥) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦))) |
| 131 | 130 | rexbidva 3163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝐴 ∈ On ∧ 𝑡 ∈ 𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥⟶𝐴) → (∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ ∃𝑦 ∈ 𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦))) |
| 132 | | eliun 4976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑡 ∈ ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ↔ ∃𝑦 ∈ 𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦)) |
| 133 | 131, 132 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝐴 ∈ On ∧ 𝑡 ∈ 𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥⟶𝐴) → (∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 134 | 133 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ (𝐴 ∈ On ∧ 𝑡 ∈ 𝐴)) → (∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 135 | 134 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡 ∈ 𝐴)) → (∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 136 | 121, 135 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡 ∈ 𝐴)) → ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) |
| 137 | 136 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ (𝐴 ∈ On ∧ 𝑡 ∈ 𝐴)) → ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) |
| 138 | 137 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) ∧ 𝑡 ∈ 𝐴) → ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) |
| 139 | 138 | ralrimiva 3133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) → ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) |
| 140 | 139 | expl 457 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 → ((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On) → ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))) |
| 141 | 117, 140 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On) → ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))) |
| 142 | 141 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) |
| 143 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓:𝑥⟶𝐴 ↔ (recs(𝐹) ↾ 𝑥):𝑥⟶𝐴)) |
| 144 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓‘𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦)) |
| 145 | 144 | sseq2d 3996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑡 ⊆ (𝑓‘𝑦) ↔ 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦))) |
| 146 | 145 | rexbidv 3165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦) ↔ ∃𝑦 ∈ 𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦))) |
| 147 | 110 | sseq2d 3996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 ∈ 𝑥 → (𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ 𝑡 ⊆ (recs(𝐹)‘𝑦))) |
| 148 | 147 | rexbiia 3082 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑦 ∈
𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) |
| 149 | 146, 148 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦) ↔ ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))) |
| 150 | 149 | ralbidv 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → (∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦) ↔ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))) |
| 151 | 143, 150 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑓 = (recs(𝐹) ↾ 𝑥) → ((𝑓:𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦)) ↔ ((recs(𝐹) ↾ 𝑥):𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))) |
| 152 | 29, 151 | spcev 3590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((recs(𝐹) ↾
𝑥):𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) → ∃𝑓(𝑓:𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦))) |
| 153 | 117, 142,
152 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → ∃𝑓(𝑓:𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦))) |
| 154 | | cfflb 10278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑓(𝑓:𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ 𝑥)) |
| 155 | 154 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∃𝑓(𝑓:𝑥⟶𝐴 ∧ ∀𝑡 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑡 ⊆ (𝑓‘𝑦))) → (cf‘𝐴) ⊆ 𝑥) |
| 156 | 105, 106,
153, 155 | syl21anc 837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → (cf‘𝐴) ⊆ 𝑥) |
| 157 | | ontri1 6391 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((cf‘𝐴)
∈ On ∧ 𝑥 ∈
On) → ((cf‘𝐴)
⊆ 𝑥 ↔ ¬
𝑥 ∈ (cf‘𝐴))) |
| 158 | 2, 3, 157 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∈ (cf‘𝐴) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴))) |
| 159 | 158 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴))) |
| 160 | 156, 159 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → ¬ 𝑥 ∈ (cf‘𝐴)) |
| 161 | 104, 160 | pm2.21dd 195 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) ∧ (∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On)) → ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) |
| 162 | 161 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ 𝐴 ∈ On) → ∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)) |
| 163 | 162 | expcomd 416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (𝐴 ∈ On → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))) |
| 164 | 163 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ On → ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))) |
| 165 | 164 | 3impib 1116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)) |
| 166 | 103, 165 | jaod 859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ((∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 ∨ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)) |
| 167 | 102, 166 | sylbid 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (∪ 𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)) |
| 168 | 89, 167 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) |
| 169 | 168 | 3adant1l 1177 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) |
| 170 | | ordunel 7826 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝐴 ∧ (𝑔‘𝑥) ∈ 𝐴 ∧ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) → ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴) |
| 171 | 71, 75, 169, 170 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴) |
| 172 | 68, 171 | eqeltrd 2835 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐴) |
| 173 | 172 | 3expia 1121 |
. . . . . . . . . . . . . 14
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴 → (𝐺‘𝑥) ∈ 𝐴)) |
| 174 | 173 | 3impa 1109 |
. . . . . . . . . . . . 13
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ 𝐴 → (𝐺‘𝑥) ∈ 𝐴)) |
| 175 | 18, 174 | syldc 48 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝑥 ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑥) ∈ 𝐴)) |
| 176 | 175 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑥) ∈ 𝐴))) |
| 177 | 9, 176 | tfis2 7857 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑥) ∈ 𝐴)) |
| 178 | 4, 177 | mpcom 38 |
. . . . . . . . 9
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑥) ∈ 𝐴) |
| 179 | 178 | 3expia 1121 |
. . . . . . . 8
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) → (𝑥 ∈ (cf‘𝐴) → (𝐺‘𝑥) ∈ 𝐴)) |
| 180 | 179 | ralrimiv 3132 |
. . . . . . 7
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) → ∀𝑥 ∈ (cf‘𝐴)(𝐺‘𝑥) ∈ 𝐴) |
| 181 | 2 | onssi 7837 |
. . . . . . . . 9
⊢
(cf‘𝐴) ⊆
On |
| 182 | | fnssres 6666 |
. . . . . . . . . 10
⊢
((recs(𝐹) Fn On
∧ (cf‘𝐴) ⊆
On) → (recs(𝐹) ↾
(cf‘𝐴)) Fn
(cf‘𝐴)) |
| 183 | 19 | fneq1i 6640 |
. . . . . . . . . 10
⊢ (𝐺 Fn (cf‘𝐴) ↔ (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴)) |
| 184 | 182, 183 | sylibr 234 |
. . . . . . . . 9
⊢
((recs(𝐹) Fn On
∧ (cf‘𝐴) ⊆
On) → 𝐺 Fn
(cf‘𝐴)) |
| 185 | 24, 181, 184 | mp2an 692 |
. . . . . . . 8
⊢ 𝐺 Fn (cf‘𝐴) |
| 186 | | ffnfv 7114 |
. . . . . . . 8
⊢ (𝐺:(cf‘𝐴)⟶𝐴 ↔ (𝐺 Fn (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)(𝐺‘𝑥) ∈ 𝐴)) |
| 187 | 185, 186 | mpbiran 709 |
. . . . . . 7
⊢ (𝐺:(cf‘𝐴)⟶𝐴 ↔ ∀𝑥 ∈ (cf‘𝐴)(𝐺‘𝑥) ∈ 𝐴) |
| 188 | 180, 187 | sylibr 234 |
. . . . . 6
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴) |
| 189 | 188 | adantlr 715 |
. . . . 5
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤)) ∧ 𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴) |
| 190 | | onss 7784 |
. . . . . . . 8
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 191 | 190 | adantl 481 |
. . . . . . 7
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) → 𝐴 ⊆ On) |
| 192 | 2 | onordi 6470 |
. . . . . . . 8
⊢ Ord
(cf‘𝐴) |
| 193 | | fvex 6894 |
. . . . . . . . . . . . . . . . 17
⊢
(recs(𝐹)‘𝑦) ∈ V |
| 194 | 193 | sucid 6441 |
. . . . . . . . . . . . . . . 16
⊢
(recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦) |
| 195 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑦 → (recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦)) |
| 196 | | suceq 6424 |
. . . . . . . . . . . . . . . . . . 19
⊢
((recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦) → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦)) |
| 197 | 195, 196 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑦 → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦)) |
| 198 | 197 | eliuni 4978 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ ∪
𝑡 ∈ 𝑥 suc (recs(𝐹)‘𝑡)) |
| 199 | 198, 60 | eleqtrrdi 2846 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 200 | 194, 199 | mpan2 691 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑥 → (recs(𝐹)‘𝑦) ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 201 | | elun2 4163 |
. . . . . . . . . . . . . . 15
⊢
((recs(𝐹)‘𝑦) ∈ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦) → (recs(𝐹)‘𝑦) ∈ ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 202 | 200, 201 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝑥 → (recs(𝐹)‘𝑦) ∈ ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 203 | 202 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 204 | 3 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On) |
| 205 | 204, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑥) = ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦))) |
| 206 | 203, 205 | eleqtrrd 2838 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ (recs(𝐹)‘𝑥)) |
| 207 | 22 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑥) = (recs(𝐹)‘𝑥)) |
| 208 | 206, 78, 207 | 3eltr4d 2850 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺‘𝑦) ∈ (𝐺‘𝑥)) |
| 209 | 208 | expcom 413 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (cf‘𝐴) → (𝑦 ∈ 𝑥 → (𝐺‘𝑦) ∈ (𝐺‘𝑥))) |
| 210 | 209 | ralrimiv 3132 |
. . . . . . . . 9
⊢ (𝑥 ∈ (cf‘𝐴) → ∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ (𝐺‘𝑥)) |
| 211 | 210 | rgen 3054 |
. . . . . . . 8
⊢
∀𝑥 ∈
(cf‘𝐴)∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ (𝐺‘𝑥) |
| 212 | | issmo2 8368 |
. . . . . . . . 9
⊢ (𝐺:(cf‘𝐴)⟶𝐴 → ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ (𝐺‘𝑥)) → Smo 𝐺)) |
| 213 | 212 | com12 32 |
. . . . . . . 8
⊢ ((𝐴 ⊆ On ∧ Ord
(cf‘𝐴) ∧
∀𝑥 ∈
(cf‘𝐴)∀𝑦 ∈ 𝑥 (𝐺‘𝑦) ∈ (𝐺‘𝑥)) → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺)) |
| 214 | 192, 211,
213 | mp3an23 1455 |
. . . . . . 7
⊢ (𝐴 ⊆ On → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺)) |
| 215 | 191, 188,
214 | sylc 65 |
. . . . . 6
⊢ ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ 𝐴 ∈ On) → Smo 𝐺) |
| 216 | 215 | adantlr 715 |
. . . . 5
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤)) ∧ 𝐴 ∈ On) → Smo 𝐺) |
| 217 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑔‘𝑥) = (𝑔‘𝑤)) |
| 218 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) |
| 219 | 217, 218 | sseq12d 3997 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑔‘𝑥) ⊆ (𝐺‘𝑥) ↔ (𝑔‘𝑤) ⊆ (𝐺‘𝑤))) |
| 220 | | ssun1 4158 |
. . . . . . . . . . 11
⊢ (𝑔‘𝑥) ⊆ ((𝑔‘𝑥) ∪ ∪
𝑦 ∈ 𝑥 suc (recs(𝐹)‘𝑦)) |
| 221 | 220, 67 | sseqtrrid 4007 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (cf‘𝐴) → (𝑔‘𝑥) ⊆ (𝐺‘𝑥)) |
| 222 | 219, 221 | vtoclga 3561 |
. . . . . . . . 9
⊢ (𝑤 ∈ (cf‘𝐴) → (𝑔‘𝑤) ⊆ (𝐺‘𝑤)) |
| 223 | | sstr 3972 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ (𝑔‘𝑤) ∧ (𝑔‘𝑤) ⊆ (𝐺‘𝑤)) → 𝑧 ⊆ (𝐺‘𝑤)) |
| 224 | 223 | expcom 413 |
. . . . . . . . 9
⊢ ((𝑔‘𝑤) ⊆ (𝐺‘𝑤) → (𝑧 ⊆ (𝑔‘𝑤) → 𝑧 ⊆ (𝐺‘𝑤))) |
| 225 | 222, 224 | syl 17 |
. . . . . . . 8
⊢ (𝑤 ∈ (cf‘𝐴) → (𝑧 ⊆ (𝑔‘𝑤) → 𝑧 ⊆ (𝐺‘𝑤))) |
| 226 | 225 | reximia 3072 |
. . . . . . 7
⊢
(∃𝑤 ∈
(cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤)) |
| 227 | 226 | ralimi 3074 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤)) |
| 228 | 227 | ad2antlr 727 |
. . . . 5
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤)) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤)) |
| 229 | | fnex 7214 |
. . . . . . 7
⊢ ((𝐺 Fn (cf‘𝐴) ∧ (cf‘𝐴) ∈ On) → 𝐺 ∈ V) |
| 230 | 185, 2, 229 | mp2an 692 |
. . . . . 6
⊢ 𝐺 ∈ V |
| 231 | | feq1 6691 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (𝑓:(cf‘𝐴)⟶𝐴 ↔ 𝐺:(cf‘𝐴)⟶𝐴)) |
| 232 | | smoeq 8369 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (Smo 𝑓 ↔ Smo 𝐺)) |
| 233 | | fveq1 6880 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐺 → (𝑓‘𝑤) = (𝐺‘𝑤)) |
| 234 | 233 | sseq2d 3996 |
. . . . . . . . 9
⊢ (𝑓 = 𝐺 → (𝑧 ⊆ (𝑓‘𝑤) ↔ 𝑧 ⊆ (𝐺‘𝑤))) |
| 235 | 234 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑓 = 𝐺 → (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤) ↔ ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤))) |
| 236 | 235 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤) ↔ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤))) |
| 237 | 231, 232,
236 | 3anbi123d 1438 |
. . . . . 6
⊢ (𝑓 = 𝐺 → ((𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)) ↔ (𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤)))) |
| 238 | 230, 237 | spcev 3590 |
. . . . 5
⊢ ((𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺‘𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 239 | 189, 216,
228, 238 | syl3anc 1373 |
. . . 4
⊢ (((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤)) ∧ 𝐴 ∈ On) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |
| 240 | 239 | expcom 413 |
. . 3
⊢ (𝐴 ∈ On → ((𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 241 | 240 | exlimdv 1933 |
. 2
⊢ (𝐴 ∈ On → (∃𝑔(𝑔:(cf‘𝐴)–1-1→𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔‘𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤)))) |
| 242 | 1, 241 | mpd 15 |
1
⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓‘𝑤))) |