MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmolem Structured version   Visualization version   GIF version

Theorem cfsmolem 9914
Description: Lemma for cfsmo 9915. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypotheses
Ref Expression
cfsmolem.2 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
cfsmolem.3 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
Assertion
Ref Expression
cfsmolem (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑤,𝑧,𝐴   𝑓,𝐹,𝑡,𝑧   𝑓,𝐺,𝑤,𝑧
Allowed substitution hints:   𝐹(𝑤,𝑔)   𝐺(𝑡,𝑔)

Proof of Theorem cfsmolem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 9902 . 2 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)))
2 cfon 9899 . . . . . . . . . . . 12 (cf‘𝐴) ∈ On
32oneli 6342 . . . . . . . . . . 11 (𝑥 ∈ (cf‘𝐴) → 𝑥 ∈ On)
433ad2ant3 1137 . . . . . . . . . 10 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
5 eleq1w 2822 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ∈ (cf‘𝐴) ↔ 𝑦 ∈ (cf‘𝐴)))
653anbi3d 1444 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ↔ (𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴))))
7 fveq2 6739 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
87eleq1d 2824 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐺𝑥) ∈ 𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
96, 8imbi12d 348 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴) ↔ ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴)))
10 simpl1 1193 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑔:(cf‘𝐴)–1-1𝐴)
11 simpl2 1194 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
12 ontr1 6280 . . . . . . . . . . . . . . . . . 18 ((cf‘𝐴) ∈ On → ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴)))
132, 12ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴))
1413ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
15143ad2antl3 1189 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
16 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1710, 11, 15, 16syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1817ralimdva 3103 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴))
19 cfsmolem.3 . . . . . . . . . . . . . . . . . . . 20 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
2019fveq1i 6740 . . . . . . . . . . . . . . . . . . 19 (𝐺𝑥) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥)
21 fvres 6758 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (cf‘𝐴) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥) = (recs(𝐹)‘𝑥))
2220, 21eqtrid 2791 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
23 recsval 8164 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = (𝐹‘(recs(𝐹) ↾ 𝑥)))
24 recsfnon 8163 . . . . . . . . . . . . . . . . . . . . . . . 24 recs(𝐹) Fn On
25 fnfun 6500 . . . . . . . . . . . . . . . . . . . . . . . 24 (recs(𝐹) Fn On → Fun recs(𝐹))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun recs(𝐹)
27 vex 3427 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 ∈ V
28 resfunexg 7053 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun recs(𝐹) ∧ 𝑥 ∈ V) → (recs(𝐹) ↾ 𝑥) ∈ V)
2926, 27, 28mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (recs(𝐹) ↾ 𝑥) ∈ V
30 dmeq 5790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → dom 𝑧 = dom (recs(𝐹) ↾ 𝑥))
3130fveq2d 6743 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑔‘dom 𝑧) = (𝑔‘dom (recs(𝐹) ↾ 𝑥)))
32 fveq1 6738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡))
33 suceq 6299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3530, 34iuneq12d 4949 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → 𝑡 ∈ dom 𝑧 suc (𝑧𝑡) = 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3631, 35uneq12d 4095 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (recs(𝐹) ↾ 𝑥) → ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
37 cfsmolem.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
38 fvex 6752 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∈ V
3929dmex 7711 . . . . . . . . . . . . . . . . . . . . . . . . 25 dom (recs(𝐹) ↾ 𝑥) ∈ V
40 fvex 6752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4140sucex 7612 . . . . . . . . . . . . . . . . . . . . . . . . 25 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4239, 41iunex 7763 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4338, 42unex 7553 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) ∈ V
4436, 37, 43fvmpt 6840 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) ↾ 𝑥) ∈ V → (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
4529, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
4623, 45eqtrdi 2796 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
47 onss 7590 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → 𝑥 ⊆ On)
48 fnssres 6522 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) Fn On ∧ 𝑥 ⊆ On) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
4924, 47, 48sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
50 fndm 6503 . . . . . . . . . . . . . . . . . . . . 21 ((recs(𝐹) ↾ 𝑥) Fn 𝑥 → dom (recs(𝐹) ↾ 𝑥) = 𝑥)
51 fveq2 6739 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → (𝑔‘dom (recs(𝐹) ↾ 𝑥)) = (𝑔𝑥))
52 iuneq1 4937 . . . . . . . . . . . . . . . . . . . . . . 23 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
53 fvres 6758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡))
54 suceq 6299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡) → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝑥 → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5655iuneq2i 4942 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
57 fveq2 6739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡))
58 suceq 6299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡) → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
6059cbviunv 4966 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
6156, 60eqtr4i 2770 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦)
6252, 61eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦))
6351, 62uneq12d 4095 . . . . . . . . . . . . . . . . . . . . 21 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6449, 50, 633syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6546, 64eqtrd 2779 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
663, 65syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6722, 66eqtrd 2779 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
68673ad2ant2 1136 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
69 eloni 6244 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
7069adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Ord 𝐴)
71703ad2ant1 1135 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → Ord 𝐴)
72 f1f 6637 . . . . . . . . . . . . . . . . . . . 20 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
7372ffvelrnda 6926 . . . . . . . . . . . . . . . . . . 19 ((𝑔:(cf‘𝐴)–1-1𝐴𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
7473adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
75743adant3 1134 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝑔𝑥) ∈ 𝐴)
7619fveq1i 6740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺𝑦) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦)
7713fvresd 6759 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦) = (recs(𝐹)‘𝑦))
7876, 77eqtrid 2791 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
7978adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝑥 ∧ (𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴))) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8079ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8180eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ (recs(𝐹)‘𝑦) ∈ 𝐴))
82 ordsucss 7619 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝐴 → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8369, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8483ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8581, 84sylbid 243 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8685ralimdva 3103 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
87 iunss 4971 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
8886, 87syl6ibr 255 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
89883impia 1119 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
90 onelon 6259 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ 𝐴) → (recs(𝐹)‘𝑦) ∈ On)
9190ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9291ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9381, 92sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
94 suceloni 7614 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((recs(𝐹)‘𝑦) ∈ On → suc (recs(𝐹)‘𝑦) ∈ On)
9593, 94syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ∈ On))
9695ralimdva 3103 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On))
97963impia 1119 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
98 iunon 8100 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
9927, 97, 98sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
100 simp1 1138 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝐴 ∈ On)
101 onsseleq 6275 . . . . . . . . . . . . . . . . . . . . 21 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On ∧ 𝐴 ∈ On) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
10299, 100, 101syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
103 idd 24 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
104 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ (cf‘𝐴))
105 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝐴 ∈ On)
1063ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ On)
1073, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
108107adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
10978ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
110 fvres 6758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
111110adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
112109, 111eqtr4d 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
113112eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
114113ralbidva 3120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 ↔ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
115114biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
116 ffnfv 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ↔ ((recs(𝐹) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
117108, 115, 116sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥):𝑥𝐴)
118 eleq2 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ 𝑡𝐴))
119118biimpar 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝑡𝐴) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
120119adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
1211203adant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
122 onelon 6259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐴 ∈ On ∧ 𝑡𝐴) → 𝑡 ∈ On)
123110adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
124 ffvelrn 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
125123, 124eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → (recs(𝐹)‘𝑦) ∈ 𝐴)
126125, 90sylan2 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐴 ∈ On ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
127126adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
128 onsssuc 6321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑡 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ On) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
129122, 127, 128syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
130129anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) ∧ 𝑦𝑥) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
131130rexbidva 3225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
132 eliun 4925 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦))
133131, 132bitr4di 292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
134133ancoms 462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
1351343adant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
136121, 135mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
1371363expa 1120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
138137anassrs 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) ∧ 𝑡𝐴) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
139138ralrimiva 3108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
140139expl 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
141117, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
142141imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
143 feq1 6548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓:𝑥𝐴 ↔ (recs(𝐹) ↾ 𝑥):𝑥𝐴))
144 fveq1 6738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
145144sseq2d 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑡 ⊆ (𝑓𝑦) ↔ 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
146145rexbidv 3226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
147110sseq2d 3950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → (𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ 𝑡 ⊆ (recs(𝐹)‘𝑦)))
148147rexbiia 3177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
149146, 148bitrdi 290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
150149ralbidv 3121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
151143, 150anbi12d 634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓 = (recs(𝐹) ↾ 𝑥) → ((𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) ↔ ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))))
15229, 151spcev 3536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
153117, 142, 152syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
154 cfflb 9903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ 𝑥))
155154imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦))) → (cf‘𝐴) ⊆ 𝑥)
156105, 106, 153, 155syl21anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → (cf‘𝐴) ⊆ 𝑥)
157 ontri1 6268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((cf‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
1582, 3, 157sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (cf‘𝐴) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
160156, 159mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ¬ 𝑥 ∈ (cf‘𝐴))
161104, 160pm2.21dd 198 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
162161ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
163162expcomd 420 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐴 ∈ On → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
164163com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
1651643impib 1118 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
166103, 165jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
167102, 166sylbid 243 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
16889, 167mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
1691683adant1l 1178 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
170 ordunel 7628 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴 ∧ (𝑔𝑥) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17171, 75, 169, 170syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17268, 171eqeltrd 2840 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) ∈ 𝐴)
1731723expia 1123 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
1741733impa 1112 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
17518, 174syldc 48 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
176175a1i 11 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)))
1779, 176tfis2 7657 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
1784, 177mpcom 38 . . . . . . . . 9 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)
1791783expia 1123 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) ∈ 𝐴))
180179ralrimiv 3107 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
1812onssi 7638 . . . . . . . . 9 (cf‘𝐴) ⊆ On
182 fnssres 6522 . . . . . . . . . 10 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
18319fneq1i 6497 . . . . . . . . . 10 (𝐺 Fn (cf‘𝐴) ↔ (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
184182, 183sylibr 237 . . . . . . . . 9 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → 𝐺 Fn (cf‘𝐴))
18524, 181, 184mp2an 692 . . . . . . . 8 𝐺 Fn (cf‘𝐴)
186 ffnfv 6957 . . . . . . . 8 (𝐺:(cf‘𝐴)⟶𝐴 ↔ (𝐺 Fn (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴))
187185, 186mpbiran 709 . . . . . . 7 (𝐺:(cf‘𝐴)⟶𝐴 ↔ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
188180, 187sylibr 237 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
189188adantlr 715 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
190 onss 7590 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
191190adantl 485 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐴 ⊆ On)
1922onordi 6339 . . . . . . . 8 Ord (cf‘𝐴)
193 fvex 6752 . . . . . . . . . . . . . . . . 17 (recs(𝐹)‘𝑦) ∈ V
194193sucid 6313 . . . . . . . . . . . . . . . 16 (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)
195 fveq2 6739 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦))
196 suceq 6299 . . . . . . . . . . . . . . . . . . 19 ((recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦) → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
197195, 196syl 17 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑦 → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
198197eliuni 4927 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑡𝑥 suc (recs(𝐹)‘𝑡))
199198, 60eleqtrrdi 2851 . . . . . . . . . . . . . . . 16 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
200194, 199mpan2 691 . . . . . . . . . . . . . . 15 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
201 elun2 4108 . . . . . . . . . . . . . . 15 ((recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
202200, 201syl 17 . . . . . . . . . . . . . 14 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
203202adantr 484 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
2043adantl 485 . . . . . . . . . . . . . 14 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
205204, 65syl 17 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
206203, 205eleqtrrd 2843 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ (recs(𝐹)‘𝑥))
20722adantl 485 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
208206, 78, 2073eltr4d 2855 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ (𝐺𝑥))
209208expcom 417 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑦𝑥 → (𝐺𝑦) ∈ (𝐺𝑥)))
210209ralrimiv 3107 . . . . . . . . 9 (𝑥 ∈ (cf‘𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥))
211210rgen 3074 . . . . . . . 8 𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)
212 issmo2 8110 . . . . . . . . 9 (𝐺:(cf‘𝐴)⟶𝐴 → ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → Smo 𝐺))
213212com12 32 . . . . . . . 8 ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
214192, 211, 213mp3an23 1455 . . . . . . 7 (𝐴 ⊆ On → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
215191, 188, 214sylc 65 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Smo 𝐺)
216215adantlr 715 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → Smo 𝐺)
217 fveq2 6739 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑔𝑥) = (𝑔𝑤))
218 fveq2 6739 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
219217, 218sseq12d 3951 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑔𝑥) ⊆ (𝐺𝑥) ↔ (𝑔𝑤) ⊆ (𝐺𝑤)))
220 ssun1 4103 . . . . . . . . . . 11 (𝑔𝑥) ⊆ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
221220, 67sseqtrrid 3971 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑔𝑥) ⊆ (𝐺𝑥))
222219, 221vtoclga 3504 . . . . . . . . 9 (𝑤 ∈ (cf‘𝐴) → (𝑔𝑤) ⊆ (𝐺𝑤))
223 sstr 3926 . . . . . . . . . 10 ((𝑧 ⊆ (𝑔𝑤) ∧ (𝑔𝑤) ⊆ (𝐺𝑤)) → 𝑧 ⊆ (𝐺𝑤))
224223expcom 417 . . . . . . . . 9 ((𝑔𝑤) ⊆ (𝐺𝑤) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
225222, 224syl 17 . . . . . . . 8 (𝑤 ∈ (cf‘𝐴) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
226225reximia 3173 . . . . . . 7 (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
227226ralimi 3087 . . . . . 6 (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
228227ad2antlr 727 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
229 fnex 7055 . . . . . . 7 ((𝐺 Fn (cf‘𝐴) ∧ (cf‘𝐴) ∈ On) → 𝐺 ∈ V)
230185, 2, 229mp2an 692 . . . . . 6 𝐺 ∈ V
231 feq1 6548 . . . . . . 7 (𝑓 = 𝐺 → (𝑓:(cf‘𝐴)⟶𝐴𝐺:(cf‘𝐴)⟶𝐴))
232 smoeq 8111 . . . . . . 7 (𝑓 = 𝐺 → (Smo 𝑓 ↔ Smo 𝐺))
233 fveq1 6738 . . . . . . . . . 10 (𝑓 = 𝐺 → (𝑓𝑤) = (𝐺𝑤))
234233sseq2d 3950 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑧 ⊆ (𝑓𝑤) ↔ 𝑧 ⊆ (𝐺𝑤)))
235234rexbidv 3226 . . . . . . . 8 (𝑓 = 𝐺 → (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
236235ralbidv 3121 . . . . . . 7 (𝑓 = 𝐺 → (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
237231, 232, 2363anbi123d 1438 . . . . . 6 (𝑓 = 𝐺 → ((𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)) ↔ (𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))))
238230, 237spcev 3536 . . . . 5 ((𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
239189, 216, 228, 238syl3anc 1373 . . . 4 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
240239expcom 417 . . 3 (𝐴 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
241240exlimdv 1941 . 2 (𝐴 ∈ On → (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
2421, 241mpd 15 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wral 3064  wrex 3065  Vcvv 3423  cun 3881  wss 3883   ciun 4921  cmpt 5152  dom cdm 5569  cres 5571  Ord word 6233  Oncon0 6234  suc csuc 6236  Fun wfun 6395   Fn wfn 6396  wf 6397  1-1wf1 6398  cfv 6401  Smo wsmo 8106  recscrecs 8131  cfccf 9583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-se 5528  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-isom 6410  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-1st 7783  df-2nd 7784  df-wrecs 8071  df-smo 8107  df-recs 8132  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-card 9585  df-cf 9587  df-acn 9588
This theorem is referenced by:  cfsmo  9915
  Copyright terms: Public domain W3C validator