MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmolem Structured version   Visualization version   GIF version

Theorem cfsmolem 9691
Description: Lemma for cfsmo 9692. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypotheses
Ref Expression
cfsmolem.2 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
cfsmolem.3 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
Assertion
Ref Expression
cfsmolem (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑤,𝑧,𝐴   𝑓,𝐹,𝑡,𝑧   𝑓,𝐺,𝑤,𝑧
Allowed substitution hints:   𝐹(𝑤,𝑔)   𝐺(𝑡,𝑔)

Proof of Theorem cfsmolem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 9679 . 2 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)))
2 cfon 9676 . . . . . . . . . . . 12 (cf‘𝐴) ∈ On
32oneli 6297 . . . . . . . . . . 11 (𝑥 ∈ (cf‘𝐴) → 𝑥 ∈ On)
433ad2ant3 1131 . . . . . . . . . 10 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
5 eleq1w 2895 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ∈ (cf‘𝐴) ↔ 𝑦 ∈ (cf‘𝐴)))
653anbi3d 1438 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ↔ (𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴))))
7 fveq2 6669 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
87eleq1d 2897 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐺𝑥) ∈ 𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
96, 8imbi12d 347 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴) ↔ ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴)))
10 simpl1 1187 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑔:(cf‘𝐴)–1-1𝐴)
11 simpl2 1188 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
12 ontr1 6236 . . . . . . . . . . . . . . . . . 18 ((cf‘𝐴) ∈ On → ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴)))
132, 12ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴))
1413ancoms 461 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
15143ad2antl3 1183 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
16 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1710, 11, 15, 16syl3anc 1367 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1817ralimdva 3177 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴))
19 cfsmolem.3 . . . . . . . . . . . . . . . . . . . 20 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
2019fveq1i 6670 . . . . . . . . . . . . . . . . . . 19 (𝐺𝑥) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥)
21 fvres 6688 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (cf‘𝐴) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥) = (recs(𝐹)‘𝑥))
2220, 21syl5eq 2868 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
23 recsval 8039 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = (𝐹‘(recs(𝐹) ↾ 𝑥)))
24 recsfnon 8038 . . . . . . . . . . . . . . . . . . . . . . . 24 recs(𝐹) Fn On
25 fnfun 6452 . . . . . . . . . . . . . . . . . . . . . . . 24 (recs(𝐹) Fn On → Fun recs(𝐹))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun recs(𝐹)
27 vex 3497 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 ∈ V
28 resfunexg 6977 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun recs(𝐹) ∧ 𝑥 ∈ V) → (recs(𝐹) ↾ 𝑥) ∈ V)
2926, 27, 28mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 (recs(𝐹) ↾ 𝑥) ∈ V
30 dmeq 5771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → dom 𝑧 = dom (recs(𝐹) ↾ 𝑥))
3130fveq2d 6673 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑔‘dom 𝑧) = (𝑔‘dom (recs(𝐹) ↾ 𝑥)))
32 fveq1 6668 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡))
33 suceq 6255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3530, 34iuneq12d 4946 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → 𝑡 ∈ dom 𝑧 suc (𝑧𝑡) = 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3631, 35uneq12d 4139 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (recs(𝐹) ↾ 𝑥) → ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
37 cfsmolem.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
38 fvex 6682 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∈ V
3929dmex 7615 . . . . . . . . . . . . . . . . . . . . . . . . 25 dom (recs(𝐹) ↾ 𝑥) ∈ V
40 fvex 6682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4140sucex 7525 . . . . . . . . . . . . . . . . . . . . . . . . 25 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4239, 41iunex 7668 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4338, 42unex 7468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) ∈ V
4436, 37, 43fvmpt 6767 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) ↾ 𝑥) ∈ V → (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
4529, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
4623, 45syl6eq 2872 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
47 onss 7504 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → 𝑥 ⊆ On)
48 fnssres 6469 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) Fn On ∧ 𝑥 ⊆ On) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
4924, 47, 48sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
50 fndm 6454 . . . . . . . . . . . . . . . . . . . . 21 ((recs(𝐹) ↾ 𝑥) Fn 𝑥 → dom (recs(𝐹) ↾ 𝑥) = 𝑥)
51 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → (𝑔‘dom (recs(𝐹) ↾ 𝑥)) = (𝑔𝑥))
52 iuneq1 4934 . . . . . . . . . . . . . . . . . . . . . . 23 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
53 fvres 6688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡))
54 suceq 6255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡) → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝑥 → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5655iuneq2i 4939 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
57 fveq2 6669 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡))
58 suceq 6255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡) → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
6059cbviunv 4964 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
6156, 60eqtr4i 2847 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦)
6252, 61syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦))
6351, 62uneq12d 4139 . . . . . . . . . . . . . . . . . . . . 21 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6449, 50, 633syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6546, 64eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
663, 65syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6722, 66eqtrd 2856 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
68673ad2ant2 1130 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
69 eloni 6200 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
7069adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Ord 𝐴)
71703ad2ant1 1129 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → Ord 𝐴)
72 f1f 6574 . . . . . . . . . . . . . . . . . . . 20 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
7372ffvelrnda 6850 . . . . . . . . . . . . . . . . . . 19 ((𝑔:(cf‘𝐴)–1-1𝐴𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
7473adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
75743adant3 1128 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝑔𝑥) ∈ 𝐴)
7619fveq1i 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺𝑦) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦)
7713fvresd 6689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦) = (recs(𝐹)‘𝑦))
7876, 77syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
7978adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝑥 ∧ (𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴))) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8079ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8180eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ (recs(𝐹)‘𝑦) ∈ 𝐴))
82 ordsucss 7532 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝐴 → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8369, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8483ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8581, 84sylbid 242 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8685ralimdva 3177 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
87 iunss 4968 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
8886, 87syl6ibr 254 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
89883impia 1113 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
90 onelon 6215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ 𝐴) → (recs(𝐹)‘𝑦) ∈ On)
9190ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9291ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9381, 92sylbid 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
94 suceloni 7527 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((recs(𝐹)‘𝑦) ∈ On → suc (recs(𝐹)‘𝑦) ∈ On)
9593, 94syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ∈ On))
9695ralimdva 3177 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On))
97963impia 1113 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
98 iunon 7975 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
9927, 97, 98sylancr 589 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
100 simp1 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝐴 ∈ On)
101 onsseleq 6231 . . . . . . . . . . . . . . . . . . . . 21 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On ∧ 𝐴 ∈ On) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
10299, 100, 101syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
103 idd 24 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
104 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ (cf‘𝐴))
105 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝐴 ∈ On)
1063ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ On)
1073, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
108107adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
10978ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
110 fvres 6688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
111110adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
112109, 111eqtr4d 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
113112eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
114113ralbidva 3196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 ↔ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
115114biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
116 ffnfv 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ↔ ((recs(𝐹) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
117108, 115, 116sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥):𝑥𝐴)
118 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ 𝑡𝐴))
119118biimpar 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝑡𝐴) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
120119adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
1211203adant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
122 onelon 6215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐴 ∈ On ∧ 𝑡𝐴) → 𝑡 ∈ On)
123110adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
124 ffvelrn 6848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
125123, 124eqeltrrd 2914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → (recs(𝐹)‘𝑦) ∈ 𝐴)
126125, 90sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐴 ∈ On ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
127126adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
128 onsssuc 6277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑡 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ On) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
129122, 127, 128syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
130129anassrs 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) ∧ 𝑦𝑥) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
131130rexbidva 3296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
132 eliun 4922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦))
133131, 132syl6bbr 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
134133ancoms 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
1351343adant2 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
136121, 135mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
1371363expa 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
138137anassrs 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) ∧ 𝑡𝐴) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
139138ralrimiva 3182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
140139expl 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
141117, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
142141imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
143 feq1 6494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓:𝑥𝐴 ↔ (recs(𝐹) ↾ 𝑥):𝑥𝐴))
144 fveq1 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
145144sseq2d 3998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑡 ⊆ (𝑓𝑦) ↔ 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
146145rexbidv 3297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
147110sseq2d 3998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → (𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ 𝑡 ⊆ (recs(𝐹)‘𝑦)))
148147rexbiia 3246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
149146, 148syl6bb 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
150149ralbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
151143, 150anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓 = (recs(𝐹) ↾ 𝑥) → ((𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) ↔ ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))))
15229, 151spcev 3606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
153117, 142, 152syl2an2r 683 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
154 cfflb 9680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ 𝑥))
155154imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦))) → (cf‘𝐴) ⊆ 𝑥)
156105, 106, 153, 155syl21anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → (cf‘𝐴) ⊆ 𝑥)
157 ontri1 6224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((cf‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
1582, 3, 157sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (cf‘𝐴) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
159158ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
160156, 159mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ¬ 𝑥 ∈ (cf‘𝐴))
161104, 160pm2.21dd 197 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
162161ex 415 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
163162expcomd 419 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐴 ∈ On → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
164163com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
1651643impib 1112 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
166103, 165jaod 855 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
167102, 166sylbid 242 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
16889, 167mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
1691683adant1l 1172 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
170 ordunel 7541 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴 ∧ (𝑔𝑥) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17171, 75, 169, 170syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17268, 171eqeltrd 2913 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) ∈ 𝐴)
1731723expia 1117 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
1741733impa 1106 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
17518, 174syldc 48 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
176175a1i 11 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)))
1779, 176tfis2 7570 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
1784, 177mpcom 38 . . . . . . . . 9 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)
1791783expia 1117 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) ∈ 𝐴))
180179ralrimiv 3181 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
1812onssi 7551 . . . . . . . . 9 (cf‘𝐴) ⊆ On
182 fnssres 6469 . . . . . . . . . 10 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
18319fneq1i 6449 . . . . . . . . . 10 (𝐺 Fn (cf‘𝐴) ↔ (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
184182, 183sylibr 236 . . . . . . . . 9 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → 𝐺 Fn (cf‘𝐴))
18524, 181, 184mp2an 690 . . . . . . . 8 𝐺 Fn (cf‘𝐴)
186 ffnfv 6881 . . . . . . . 8 (𝐺:(cf‘𝐴)⟶𝐴 ↔ (𝐺 Fn (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴))
187185, 186mpbiran 707 . . . . . . 7 (𝐺:(cf‘𝐴)⟶𝐴 ↔ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
188180, 187sylibr 236 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
189188adantlr 713 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
190 onss 7504 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
191190adantl 484 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐴 ⊆ On)
1922onordi 6294 . . . . . . . 8 Ord (cf‘𝐴)
193 fvex 6682 . . . . . . . . . . . . . . . . 17 (recs(𝐹)‘𝑦) ∈ V
194193sucid 6269 . . . . . . . . . . . . . . . 16 (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)
195 fveq2 6669 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦))
196 suceq 6255 . . . . . . . . . . . . . . . . . . 19 ((recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦) → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
197195, 196syl 17 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑦 → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
198197eliuni 4924 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑡𝑥 suc (recs(𝐹)‘𝑡))
199198, 60eleqtrrdi 2924 . . . . . . . . . . . . . . . 16 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
200194, 199mpan2 689 . . . . . . . . . . . . . . 15 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
201 elun2 4152 . . . . . . . . . . . . . . 15 ((recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
202200, 201syl 17 . . . . . . . . . . . . . 14 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
203202adantr 483 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
2043adantl 484 . . . . . . . . . . . . . 14 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
205204, 65syl 17 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
206203, 205eleqtrrd 2916 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ (recs(𝐹)‘𝑥))
20722adantl 484 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
208206, 78, 2073eltr4d 2928 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ (𝐺𝑥))
209208expcom 416 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑦𝑥 → (𝐺𝑦) ∈ (𝐺𝑥)))
210209ralrimiv 3181 . . . . . . . . 9 (𝑥 ∈ (cf‘𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥))
211210rgen 3148 . . . . . . . 8 𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)
212 issmo2 7985 . . . . . . . . 9 (𝐺:(cf‘𝐴)⟶𝐴 → ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → Smo 𝐺))
213212com12 32 . . . . . . . 8 ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
214192, 211, 213mp3an23 1449 . . . . . . 7 (𝐴 ⊆ On → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
215191, 188, 214sylc 65 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Smo 𝐺)
216215adantlr 713 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → Smo 𝐺)
217 fveq2 6669 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑔𝑥) = (𝑔𝑤))
218 fveq2 6669 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
219217, 218sseq12d 3999 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑔𝑥) ⊆ (𝐺𝑥) ↔ (𝑔𝑤) ⊆ (𝐺𝑤)))
220 ssun1 4147 . . . . . . . . . . 11 (𝑔𝑥) ⊆ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
221220, 67sseqtrrid 4019 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑔𝑥) ⊆ (𝐺𝑥))
222219, 221vtoclga 3573 . . . . . . . . 9 (𝑤 ∈ (cf‘𝐴) → (𝑔𝑤) ⊆ (𝐺𝑤))
223 sstr 3974 . . . . . . . . . 10 ((𝑧 ⊆ (𝑔𝑤) ∧ (𝑔𝑤) ⊆ (𝐺𝑤)) → 𝑧 ⊆ (𝐺𝑤))
224223expcom 416 . . . . . . . . 9 ((𝑔𝑤) ⊆ (𝐺𝑤) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
225222, 224syl 17 . . . . . . . 8 (𝑤 ∈ (cf‘𝐴) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
226225reximia 3242 . . . . . . 7 (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
227226ralimi 3160 . . . . . 6 (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
228227ad2antlr 725 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
229 fnex 6979 . . . . . . 7 ((𝐺 Fn (cf‘𝐴) ∧ (cf‘𝐴) ∈ On) → 𝐺 ∈ V)
230185, 2, 229mp2an 690 . . . . . 6 𝐺 ∈ V
231 feq1 6494 . . . . . . 7 (𝑓 = 𝐺 → (𝑓:(cf‘𝐴)⟶𝐴𝐺:(cf‘𝐴)⟶𝐴))
232 smoeq 7986 . . . . . . 7 (𝑓 = 𝐺 → (Smo 𝑓 ↔ Smo 𝐺))
233 fveq1 6668 . . . . . . . . . 10 (𝑓 = 𝐺 → (𝑓𝑤) = (𝐺𝑤))
234233sseq2d 3998 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑧 ⊆ (𝑓𝑤) ↔ 𝑧 ⊆ (𝐺𝑤)))
235234rexbidv 3297 . . . . . . . 8 (𝑓 = 𝐺 → (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
236235ralbidv 3197 . . . . . . 7 (𝑓 = 𝐺 → (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
237231, 232, 2363anbi123d 1432 . . . . . 6 (𝑓 = 𝐺 → ((𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)) ↔ (𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))))
238230, 237spcev 3606 . . . . 5 ((𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
239189, 216, 228, 238syl3anc 1367 . . . 4 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
240239expcom 416 . . 3 (𝐴 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
241240exlimdv 1930 . 2 (𝐴 ∈ On → (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
2421, 241mpd 15 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  cun 3933  wss 3935   ciun 4918  cmpt 5145  dom cdm 5554  cres 5556  Ord word 6189  Oncon0 6190  suc csuc 6192  Fun wfun 6348   Fn wfn 6349  wf 6350  1-1wf1 6351  cfv 6354  Smo wsmo 7981  recscrecs 8006  cfccf 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-smo 7982  df-recs 8007  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-card 9367  df-cf 9369  df-acn 9370
This theorem is referenced by:  cfsmo  9692
  Copyright terms: Public domain W3C validator