MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsmolem Structured version   Visualization version   GIF version

Theorem cfsmolem 10230
Description: Lemma for cfsmo 10231. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypotheses
Ref Expression
cfsmolem.2 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
cfsmolem.3 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
Assertion
Ref Expression
cfsmolem (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑤,𝑧,𝐴   𝑓,𝐹,𝑡,𝑧   𝑓,𝐺,𝑤,𝑧
Allowed substitution hints:   𝐹(𝑤,𝑔)   𝐺(𝑡,𝑔)

Proof of Theorem cfsmolem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cff1 10218 . 2 (𝐴 ∈ On → ∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)))
2 cfon 10215 . . . . . . . . . . . 12 (cf‘𝐴) ∈ On
32oneli 6451 . . . . . . . . . . 11 (𝑥 ∈ (cf‘𝐴) → 𝑥 ∈ On)
433ad2ant3 1135 . . . . . . . . . 10 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
5 eleq1w 2812 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ∈ (cf‘𝐴) ↔ 𝑦 ∈ (cf‘𝐴)))
653anbi3d 1444 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ↔ (𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴))))
7 fveq2 6861 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
87eleq1d 2814 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝐺𝑥) ∈ 𝐴 ↔ (𝐺𝑦) ∈ 𝐴))
96, 8imbi12d 344 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴) ↔ ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴)))
10 simpl1 1192 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑔:(cf‘𝐴)–1-1𝐴)
11 simpl2 1193 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
12 ontr1 6382 . . . . . . . . . . . . . . . . . 18 ((cf‘𝐴) ∈ On → ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴)))
132, 12ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑦 ∈ (cf‘𝐴))
1413ancoms 458 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
15143ad2antl3 1188 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → 𝑦 ∈ (cf‘𝐴))
16 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1710, 11, 15, 16syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
1817ralimdva 3146 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴))
19 cfsmolem.3 . . . . . . . . . . . . . . . . . . . 20 𝐺 = (recs(𝐹) ↾ (cf‘𝐴))
2019fveq1i 6862 . . . . . . . . . . . . . . . . . . 19 (𝐺𝑥) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥)
21 fvres 6880 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (cf‘𝐴) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑥) = (recs(𝐹)‘𝑥))
2220, 21eqtrid 2777 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
23 recsval 8375 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = (𝐹‘(recs(𝐹) ↾ 𝑥)))
24 recsfnon 8374 . . . . . . . . . . . . . . . . . . . . . . . 24 recs(𝐹) Fn On
25 fnfun 6621 . . . . . . . . . . . . . . . . . . . . . . . 24 (recs(𝐹) Fn On → Fun recs(𝐹))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun recs(𝐹)
27 vex 3454 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 ∈ V
28 resfunexg 7192 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun recs(𝐹) ∧ 𝑥 ∈ V) → (recs(𝐹) ↾ 𝑥) ∈ V)
2926, 27, 28mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (recs(𝐹) ↾ 𝑥) ∈ V
30 dmeq 5870 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → dom 𝑧 = dom (recs(𝐹) ↾ 𝑥))
3130fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑔‘dom 𝑧) = (𝑔‘dom (recs(𝐹) ↾ 𝑥)))
32 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (recs(𝐹) ↾ 𝑥) → (𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡))
33 suceq 6403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧𝑡) = ((recs(𝐹) ↾ 𝑥)‘𝑡) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3432, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = (recs(𝐹) ↾ 𝑥) → suc (𝑧𝑡) = suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3530, 34iuneq12d 4988 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = (recs(𝐹) ↾ 𝑥) → 𝑡 ∈ dom 𝑧 suc (𝑧𝑡) = 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
3631, 35uneq12d 4135 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (recs(𝐹) ↾ 𝑥) → ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
37 cfsmolem.2 . . . . . . . . . . . . . . . . . . . . . . 23 𝐹 = (𝑧 ∈ V ↦ ((𝑔‘dom 𝑧) ∪ 𝑡 ∈ dom 𝑧 suc (𝑧𝑡)))
38 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∈ V
3929dmex 7888 . . . . . . . . . . . . . . . . . . . . . . . . 25 dom (recs(𝐹) ↾ 𝑥) ∈ V
40 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4140sucex 7785 . . . . . . . . . . . . . . . . . . . . . . . . 25 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4239, 41iunex 7950 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) ∈ V
4338, 42unex 7723 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) ∈ V
4436, 37, 43fvmpt 6971 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) ↾ 𝑥) ∈ V → (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
4529, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (𝐹‘(recs(𝐹) ↾ 𝑥)) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
4623, 45eqtrdi 2781 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)))
47 onss 7764 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → 𝑥 ⊆ On)
48 fnssres 6644 . . . . . . . . . . . . . . . . . . . . . 22 ((recs(𝐹) Fn On ∧ 𝑥 ⊆ On) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
4924, 47, 48sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
50 fndm 6624 . . . . . . . . . . . . . . . . . . . . 21 ((recs(𝐹) ↾ 𝑥) Fn 𝑥 → dom (recs(𝐹) ↾ 𝑥) = 𝑥)
51 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → (𝑔‘dom (recs(𝐹) ↾ 𝑥)) = (𝑔𝑥))
52 iuneq1 4975 . . . . . . . . . . . . . . . . . . . . . . 23 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡))
53 fvres 6880 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡))
54 suceq 6403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((recs(𝐹) ↾ 𝑥)‘𝑡) = (recs(𝐹)‘𝑡) → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡𝑥 → suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = suc (recs(𝐹)‘𝑡))
5655iuneq2i 4980 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
57 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝑡 → (recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡))
58 suceq 6403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((recs(𝐹)‘𝑦) = (recs(𝐹)‘𝑡) → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑡 → suc (recs(𝐹)‘𝑦) = suc (recs(𝐹)‘𝑡))
6059cbviunv 5007 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝑡𝑥 suc (recs(𝐹)‘𝑡)
6156, 60eqtr4i 2756 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡𝑥 suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦)
6252, 61eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . 22 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡) = 𝑦𝑥 suc (recs(𝐹)‘𝑦))
6351, 62uneq12d 4135 . . . . . . . . . . . . . . . . . . . . 21 (dom (recs(𝐹) ↾ 𝑥) = 𝑥 → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6449, 50, 633syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → ((𝑔‘dom (recs(𝐹) ↾ 𝑥)) ∪ 𝑡 ∈ dom (recs(𝐹) ↾ 𝑥)suc ((recs(𝐹) ↾ 𝑥)‘𝑡)) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6546, 64eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
663, 65syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
6722, 66eqtrd 2765 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
68673ad2ant2 1134 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
69 eloni 6345 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
7069adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Ord 𝐴)
71703ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → Ord 𝐴)
72 f1f 6759 . . . . . . . . . . . . . . . . . . . 20 (𝑔:(cf‘𝐴)–1-1𝐴𝑔:(cf‘𝐴)⟶𝐴)
7372ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . 19 ((𝑔:(cf‘𝐴)–1-1𝐴𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
7473adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (𝑔𝑥) ∈ 𝐴)
75743adant3 1132 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝑔𝑥) ∈ 𝐴)
7619fveq1i 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺𝑦) = ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦)
7713fvresd 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → ((recs(𝐹) ↾ (cf‘𝐴))‘𝑦) = (recs(𝐹)‘𝑦))
7876, 77eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
7978adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦𝑥 ∧ (𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴))) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8079ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
8180eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ (recs(𝐹)‘𝑦) ∈ 𝐴))
82 ordsucss 7796 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝐴 → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8369, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8483ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8581, 84sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
8685ralimdva 3146 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
87 iunss 5012 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
8886, 87imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴))
89883impia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴)
90 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ 𝐴) → (recs(𝐹)‘𝑦) ∈ On)
9190ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 ∈ On → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9291ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((recs(𝐹)‘𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
9381, 92sylbid 240 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → (recs(𝐹)‘𝑦) ∈ On))
94 onsuc 7790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((recs(𝐹)‘𝑦) ∈ On → suc (recs(𝐹)‘𝑦) ∈ On)
9593, 94syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 → suc (recs(𝐹)‘𝑦) ∈ On))
9695ralimdva 3146 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On))
97963impia 1117 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
98 iunon 8311 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ ∀𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
9927, 97, 98sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On)
100 simp1 1136 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝐴 ∈ On)
101 onsseleq 6376 . . . . . . . . . . . . . . . . . . . . 21 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ On ∧ 𝐴 ∈ On) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
10299, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 ↔ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴)))
103 idd 24 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
104 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ (cf‘𝐴))
105 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝐴 ∈ On)
1063ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑥 ∈ On)
1073, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥) Fn 𝑥)
10978ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = (recs(𝐹)‘𝑦))
110 fvres 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦𝑥 → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
111110adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
112109, 111eqtr4d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → (𝐺𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
113112eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ (cf‘𝐴) ∧ 𝑦𝑥) → ((𝐺𝑦) ∈ 𝐴 ↔ ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
114113ralbidva 3155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (cf‘𝐴) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 ↔ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
115114biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
116 ffnfv 7094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ↔ ((recs(𝐹) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴))
117108, 115, 116sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (recs(𝐹) ↾ 𝑥):𝑥𝐴)
118 eleq2 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 → (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ 𝑡𝐴))
119118biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝑡𝐴) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
120119adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
1211203adant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦))
122 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐴 ∈ On ∧ 𝑡𝐴) → 𝑡 ∈ On)
123110adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) = (recs(𝐹)‘𝑦))
124 ffvelcdm 7056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → ((recs(𝐹) ↾ 𝑥)‘𝑦) ∈ 𝐴)
125123, 124eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥) → (recs(𝐹)‘𝑦) ∈ 𝐴)
126125, 90sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐴 ∈ On ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
127126adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (recs(𝐹)‘𝑦) ∈ On)
128 onsssuc 6427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑡 ∈ On ∧ (recs(𝐹)‘𝑦) ∈ On) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
129122, 127, 128syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ ((recs(𝐹) ↾ 𝑥):𝑥𝐴𝑦𝑥)) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
130129anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) ∧ 𝑦𝑥) → (𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
131130rexbidva 3156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦)))
132 eliun 4962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ∈ suc (recs(𝐹)‘𝑦))
133131, 132bitr4di 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐴 ∈ On ∧ 𝑡𝐴) ∧ (recs(𝐹) ↾ 𝑥):𝑥𝐴) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
134133ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
1351343adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → (∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦) ↔ 𝑡 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
136121, 135mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
1371363expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ (𝐴 ∈ On ∧ 𝑡𝐴)) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
138137anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) ∧ 𝑡𝐴) → ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
139138ralrimiva 3126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((recs(𝐹) ↾ 𝑥):𝑥𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) ∧ 𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
140139expl 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((recs(𝐹) ↾ 𝑥):𝑥𝐴 → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
141117, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
142141imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
143 feq1 6669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓:𝑥𝐴 ↔ (recs(𝐹) ↾ 𝑥):𝑥𝐴))
144 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑓𝑦) = ((recs(𝐹) ↾ 𝑥)‘𝑦))
145144sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 = (recs(𝐹) ↾ 𝑥) → (𝑡 ⊆ (𝑓𝑦) ↔ 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
146145rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦)))
147110sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦𝑥 → (𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ 𝑡 ⊆ (recs(𝐹)‘𝑦)))
148147rexbiia 3075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑦𝑥 𝑡 ⊆ ((recs(𝐹) ↾ 𝑥)‘𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))
149146, 148bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∃𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∃𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
150149ralbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓 = (recs(𝐹) ↾ 𝑥) → (∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦) ↔ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)))
151143, 150anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑓 = (recs(𝐹) ↾ 𝑥) → ((𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) ↔ ((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦))))
15229, 151spcev 3575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((recs(𝐹) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (recs(𝐹)‘𝑦)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
153117, 142, 152syl2an2r 685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)))
154 cfflb 10219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ 𝑥))
155154imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∃𝑓(𝑓:𝑥𝐴 ∧ ∀𝑡𝐴𝑦𝑥 𝑡 ⊆ (𝑓𝑦))) → (cf‘𝐴) ⊆ 𝑥)
156105, 106, 153, 155syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → (cf‘𝐴) ⊆ 𝑥)
157 ontri1 6369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((cf‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
1582, 3, 157sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (cf‘𝐴) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ((cf‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (cf‘𝐴)))
160156, 159mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → ¬ 𝑥 ∈ (cf‘𝐴))
161104, 160pm2.21dd 195 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) ∧ ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On)) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
162161ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴𝐴 ∈ On) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
163162expcomd 416 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐴 ∈ On → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
164163com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)))
1651643impib 1116 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
166103, 165jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) = 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
167102, 166sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ( 𝑦𝑥 suc (recs(𝐹)‘𝑦) ⊆ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴))
16889, 167mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
1691683adant1l 1177 . . . . . . . . . . . . . . . . 17 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴)
170 ordunel 7805 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴 ∧ (𝑔𝑥) ∈ 𝐴 𝑦𝑥 suc (recs(𝐹)‘𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17171, 75, 169, 170syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)) ∈ 𝐴)
17268, 171eqeltrd 2829 . . . . . . . . . . . . . . 15 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴) ∧ ∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴) → (𝐺𝑥) ∈ 𝐴)
1731723expia 1121 . . . . . . . . . . . . . 14 (((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
1741733impa 1109 . . . . . . . . . . . . 13 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (∀𝑦𝑥 (𝐺𝑦) ∈ 𝐴 → (𝐺𝑥) ∈ 𝐴))
17518, 174syldc 48 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
176175a1i 11 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑦 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ 𝐴) → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)))
1779, 176tfis2 7836 . . . . . . . . . 10 (𝑥 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴))
1784, 177mpcom 38 . . . . . . . . 9 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On ∧ 𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) ∈ 𝐴)
1791783expia 1121 . . . . . . . 8 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → (𝑥 ∈ (cf‘𝐴) → (𝐺𝑥) ∈ 𝐴))
180179ralrimiv 3125 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
1812onssi 7816 . . . . . . . . 9 (cf‘𝐴) ⊆ On
182 fnssres 6644 . . . . . . . . . 10 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
18319fneq1i 6618 . . . . . . . . . 10 (𝐺 Fn (cf‘𝐴) ↔ (recs(𝐹) ↾ (cf‘𝐴)) Fn (cf‘𝐴))
184182, 183sylibr 234 . . . . . . . . 9 ((recs(𝐹) Fn On ∧ (cf‘𝐴) ⊆ On) → 𝐺 Fn (cf‘𝐴))
18524, 181, 184mp2an 692 . . . . . . . 8 𝐺 Fn (cf‘𝐴)
186 ffnfv 7094 . . . . . . . 8 (𝐺:(cf‘𝐴)⟶𝐴 ↔ (𝐺 Fn (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴))
187185, 186mpbiran 709 . . . . . . 7 (𝐺:(cf‘𝐴)⟶𝐴 ↔ ∀𝑥 ∈ (cf‘𝐴)(𝐺𝑥) ∈ 𝐴)
188180, 187sylibr 234 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
189188adantlr 715 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → 𝐺:(cf‘𝐴)⟶𝐴)
190 onss 7764 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
191190adantl 481 . . . . . . 7 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → 𝐴 ⊆ On)
1922onordi 6448 . . . . . . . 8 Ord (cf‘𝐴)
193 fvex 6874 . . . . . . . . . . . . . . . . 17 (recs(𝐹)‘𝑦) ∈ V
194193sucid 6419 . . . . . . . . . . . . . . . 16 (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)
195 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑦 → (recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦))
196 suceq 6403 . . . . . . . . . . . . . . . . . . 19 ((recs(𝐹)‘𝑡) = (recs(𝐹)‘𝑦) → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
197195, 196syl 17 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑦 → suc (recs(𝐹)‘𝑡) = suc (recs(𝐹)‘𝑦))
198197eliuni 4964 . . . . . . . . . . . . . . . . 17 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑡𝑥 suc (recs(𝐹)‘𝑡))
199198, 60eleqtrrdi 2840 . . . . . . . . . . . . . . . 16 ((𝑦𝑥 ∧ (recs(𝐹)‘𝑦) ∈ suc (recs(𝐹)‘𝑦)) → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
200194, 199mpan2 691 . . . . . . . . . . . . . . 15 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
201 elun2 4149 . . . . . . . . . . . . . . 15 ((recs(𝐹)‘𝑦) ∈ 𝑦𝑥 suc (recs(𝐹)‘𝑦) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
202200, 201syl 17 . . . . . . . . . . . . . 14 (𝑦𝑥 → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
203202adantr 480 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
2043adantl 481 . . . . . . . . . . . . . 14 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → 𝑥 ∈ On)
205204, 65syl 17 . . . . . . . . . . . . 13 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑥) = ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦)))
206203, 205eleqtrrd 2832 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (recs(𝐹)‘𝑦) ∈ (recs(𝐹)‘𝑥))
20722adantl 481 . . . . . . . . . . . 12 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑥) = (recs(𝐹)‘𝑥))
208206, 78, 2073eltr4d 2844 . . . . . . . . . . 11 ((𝑦𝑥𝑥 ∈ (cf‘𝐴)) → (𝐺𝑦) ∈ (𝐺𝑥))
209208expcom 413 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑦𝑥 → (𝐺𝑦) ∈ (𝐺𝑥)))
210209ralrimiv 3125 . . . . . . . . 9 (𝑥 ∈ (cf‘𝐴) → ∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥))
211210rgen 3047 . . . . . . . 8 𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)
212 issmo2 8321 . . . . . . . . 9 (𝐺:(cf‘𝐴)⟶𝐴 → ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → Smo 𝐺))
213212com12 32 . . . . . . . 8 ((𝐴 ⊆ On ∧ Ord (cf‘𝐴) ∧ ∀𝑥 ∈ (cf‘𝐴)∀𝑦𝑥 (𝐺𝑦) ∈ (𝐺𝑥)) → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
214192, 211, 213mp3an23 1455 . . . . . . 7 (𝐴 ⊆ On → (𝐺:(cf‘𝐴)⟶𝐴 → Smo 𝐺))
215191, 188, 214sylc 65 . . . . . 6 ((𝑔:(cf‘𝐴)–1-1𝐴𝐴 ∈ On) → Smo 𝐺)
216215adantlr 715 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → Smo 𝐺)
217 fveq2 6861 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑔𝑥) = (𝑔𝑤))
218 fveq2 6861 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
219217, 218sseq12d 3983 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑔𝑥) ⊆ (𝐺𝑥) ↔ (𝑔𝑤) ⊆ (𝐺𝑤)))
220 ssun1 4144 . . . . . . . . . . 11 (𝑔𝑥) ⊆ ((𝑔𝑥) ∪ 𝑦𝑥 suc (recs(𝐹)‘𝑦))
221220, 67sseqtrrid 3993 . . . . . . . . . 10 (𝑥 ∈ (cf‘𝐴) → (𝑔𝑥) ⊆ (𝐺𝑥))
222219, 221vtoclga 3546 . . . . . . . . 9 (𝑤 ∈ (cf‘𝐴) → (𝑔𝑤) ⊆ (𝐺𝑤))
223 sstr 3958 . . . . . . . . . 10 ((𝑧 ⊆ (𝑔𝑤) ∧ (𝑔𝑤) ⊆ (𝐺𝑤)) → 𝑧 ⊆ (𝐺𝑤))
224223expcom 413 . . . . . . . . 9 ((𝑔𝑤) ⊆ (𝐺𝑤) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
225222, 224syl 17 . . . . . . . 8 (𝑤 ∈ (cf‘𝐴) → (𝑧 ⊆ (𝑔𝑤) → 𝑧 ⊆ (𝐺𝑤)))
226225reximia 3065 . . . . . . 7 (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
227226ralimi 3067 . . . . . 6 (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
228227ad2antlr 727 . . . . 5 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))
229 fnex 7194 . . . . . . 7 ((𝐺 Fn (cf‘𝐴) ∧ (cf‘𝐴) ∈ On) → 𝐺 ∈ V)
230185, 2, 229mp2an 692 . . . . . 6 𝐺 ∈ V
231 feq1 6669 . . . . . . 7 (𝑓 = 𝐺 → (𝑓:(cf‘𝐴)⟶𝐴𝐺:(cf‘𝐴)⟶𝐴))
232 smoeq 8322 . . . . . . 7 (𝑓 = 𝐺 → (Smo 𝑓 ↔ Smo 𝐺))
233 fveq1 6860 . . . . . . . . . 10 (𝑓 = 𝐺 → (𝑓𝑤) = (𝐺𝑤))
234233sseq2d 3982 . . . . . . . . 9 (𝑓 = 𝐺 → (𝑧 ⊆ (𝑓𝑤) ↔ 𝑧 ⊆ (𝐺𝑤)))
235234rexbidv 3158 . . . . . . . 8 (𝑓 = 𝐺 → (∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
236235ralbidv 3157 . . . . . . 7 (𝑓 = 𝐺 → (∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤) ↔ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)))
237231, 232, 2363anbi123d 1438 . . . . . 6 (𝑓 = 𝐺 → ((𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)) ↔ (𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤))))
238230, 237spcev 3575 . . . . 5 ((𝐺:(cf‘𝐴)⟶𝐴 ∧ Smo 𝐺 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝐺𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
239189, 216, 228, 238syl3anc 1373 . . . 4 (((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) ∧ 𝐴 ∈ On) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
240239expcom 413 . . 3 (𝐴 ∈ On → ((𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
241240exlimdv 1933 . 2 (𝐴 ∈ On → (∃𝑔(𝑔:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑔𝑤)) → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
2421, 241mpd 15 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917   ciun 4958  cmpt 5191  dom cdm 5641  cres 5643  Ord word 6334  Oncon0 6335  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  Smo wsmo 8317  recscrecs 8342  cfccf 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-smo 8318  df-recs 8343  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-card 9899  df-cf 9901  df-acn 9902
This theorem is referenced by:  cfsmo  10231
  Copyright terms: Public domain W3C validator