Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oacl2g Structured version   Visualization version   GIF version

Theorem oacl2g 43320
Description: Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
oacl2g (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)

Proof of Theorem oacl2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2828 . . . . . 6 (𝐶 = ∅ → (𝐴𝐶𝐴 ∈ ∅))
2 noel 4344 . . . . . . 7 ¬ 𝐴 ∈ ∅
32pm2.21i 119 . . . . . 6 (𝐴 ∈ ∅ → (𝐴 +o 𝐵) ∈ 𝐶)
41, 3biimtrdi 253 . . . . 5 (𝐶 = ∅ → (𝐴𝐶 → (𝐴 +o 𝐵) ∈ 𝐶))
54com12 32 . . . 4 (𝐴𝐶 → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶))
65adantr 480 . . 3 ((𝐴𝐶𝐵𝐶) → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶))
7 simpl 482 . . . . . 6 ((𝐴𝐶𝐵𝐶) → 𝐴𝐶)
8 simpl 482 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 = (ω ↑o 𝐷))
9 simpr 484 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐷 ∈ On)
10 omelon 9684 . . . . . . . . . . . 12 ω ∈ On
119, 10jctil 519 . . . . . . . . . . 11 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ∈ On ∧ 𝐷 ∈ On))
12 oecl 8574 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
1311, 12syl 17 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
148, 13eqeltrd 2839 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 ∈ On)
1514adantl 481 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐶 ∈ On)
16 onelon 6411 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐴𝐶) → 𝐴 ∈ On)
1716expcom 413 . . . . . . . . . 10 (𝐴𝐶 → (𝐶 ∈ On → 𝐴 ∈ On))
1817adantr 480 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → (𝐶 ∈ On → 𝐴 ∈ On))
1918adantr 480 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On → 𝐴 ∈ On))
2015, 19jcai 516 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
21 simpr 484 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → 𝐵𝐶)
2221adantr 480 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐵𝐶)
23 oaordi 8583 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)))
2420, 22, 23sylc 65 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))
25 oveq1 7438 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 +o 𝐶) = (𝐴 +o 𝐶))
2625eliuni 5002 . . . . . 6 ((𝐴𝐶 ∧ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) → (𝐴 +o 𝐵) ∈ 𝑥𝐶 (𝑥 +o 𝐶))
277, 24, 26syl2an2r 685 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝑥𝐶 (𝑥 +o 𝐶))
28 simpr 484 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝑥𝐶)
298adantr 480 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝐶 = (ω ↑o 𝐷))
3028, 29eleqtrd 2841 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝑥 ∈ (ω ↑o 𝐷))
3114adantr 480 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝐶 ∈ On)
328eqcomd 2741 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) = 𝐶)
33 ssid 4018 . . . . . . . . . . . 12 𝐶𝐶
3432, 33eqsstrdi 4050 . . . . . . . . . . 11 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ⊆ 𝐶)
3534adantr 480 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (ω ↑o 𝐷) ⊆ 𝐶)
36 oaabs2 8686 . . . . . . . . . 10 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐶 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐶) → (𝑥 +o 𝐶) = 𝐶)
3730, 31, 35, 36syl21anc 838 . . . . . . . . 9 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (𝑥 +o 𝐶) = 𝐶)
3837, 33eqsstrdi 4050 . . . . . . . 8 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (𝑥 +o 𝐶) ⊆ 𝐶)
3938iunssd 5055 . . . . . . 7 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝑥𝐶 (𝑥 +o 𝐶) ⊆ 𝐶)
40 peano1 7911 . . . . . . . . . . 11 ∅ ∈ ω
41 oen0 8623 . . . . . . . . . . 11 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
4211, 40, 41sylancl 586 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ (ω ↑o 𝐷))
4342, 32eleqtrd 2841 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ 𝐶)
44 simpr 484 . . . . . . . . . . . 12 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → 𝑥 = ∅)
4544oveq1d 7446 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = (∅ +o 𝐶))
46 oa0r 8575 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ +o 𝐶) = 𝐶)
4714, 46syl 17 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (∅ +o 𝐶) = 𝐶)
4847adantr 480 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (∅ +o 𝐶) = 𝐶)
4945, 48eqtrd 2775 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = 𝐶)
5049sseq2d 4028 . . . . . . . . 9 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝐶 ⊆ (𝑥 +o 𝐶) ↔ 𝐶𝐶))
51 ssidd 4019 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶𝐶)
5243, 50, 51rspcedvd 3624 . . . . . . . 8 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∃𝑥𝐶 𝐶 ⊆ (𝑥 +o 𝐶))
53 ssiun 5051 . . . . . . . 8 (∃𝑥𝐶 𝐶 ⊆ (𝑥 +o 𝐶) → 𝐶 𝑥𝐶 (𝑥 +o 𝐶))
5452, 53syl 17 . . . . . . 7 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 𝑥𝐶 (𝑥 +o 𝐶))
5539, 54eqssd 4013 . . . . . 6 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝑥𝐶 (𝑥 +o 𝐶) = 𝐶)
5655adantl 481 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝑥𝐶 (𝑥 +o 𝐶) = 𝐶)
5727, 56eleqtrd 2841 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶)
5857ex 412 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (𝐴 +o 𝐵) ∈ 𝐶))
596, 58jaod 859 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶))
6059imp 406 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068  wss 3963  c0 4339   ciun 4996  Oncon0 6386  (class class class)co 7431  ωcom 7887   +o coa 8502  o coe 8504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-oexp 8511
This theorem is referenced by:  onmcl  43321
  Copyright terms: Public domain W3C validator