Step | Hyp | Ref
| Expression |
1 | | eleq2 2825 |
. . . . . 6
⊢ (𝐶 = ∅ → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ ∅)) |
2 | | noel 4270 |
. . . . . . 7
⊢ ¬
𝐴 ∈
∅ |
3 | 2 | pm2.21i 119 |
. . . . . 6
⊢ (𝐴 ∈ ∅ → (𝐴 +o 𝐵) ∈ 𝐶) |
4 | 1, 3 | syl6bi 253 |
. . . . 5
⊢ (𝐶 = ∅ → (𝐴 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ 𝐶)) |
5 | 4 | com12 32 |
. . . 4
⊢ (𝐴 ∈ 𝐶 → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶)) |
6 | 5 | adantr 482 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶)) |
7 | | simpl 484 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) |
8 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → 𝐶 = (ω ↑o 𝐷)) |
9 | | simpr 486 |
. . . . . . . . . . . 12
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → 𝐷 ∈ On) |
10 | | omelon 9452 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
11 | 9, 10 | jctil 521 |
. . . . . . . . . . 11
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → (ω ∈ On ∧
𝐷 ∈
On)) |
12 | | oecl 8398 |
. . . . . . . . . . 11
⊢ ((ω
∈ On ∧ 𝐷 ∈
On) → (ω ↑o 𝐷) ∈ On) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → (ω
↑o 𝐷)
∈ On) |
14 | 8, 13 | eqeltrd 2837 |
. . . . . . . . 9
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → 𝐶 ∈ On) |
15 | 14 | adantl 483 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐶 ∈ On) |
16 | | onelon 6306 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ On) |
17 | 16 | expcom 415 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐶 → (𝐶 ∈ On → 𝐴 ∈ On)) |
18 | 17 | adantr 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐶 ∈ On → 𝐴 ∈ On)) |
19 | 18 | adantr 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On → 𝐴 ∈ On)) |
20 | 15, 19 | jcai 518 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐴 ∈ On)) |
21 | | simpr 486 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
22 | 21 | adantr 482 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐵 ∈ 𝐶) |
23 | | oaordi 8408 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) |
24 | 20, 22, 23 | sylc 65 |
. . . . . 6
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) |
25 | | oveq1 7314 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 +o 𝐶) = (𝐴 +o 𝐶)) |
26 | 25 | eliuni 4937 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐶 ∧ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) → (𝐴 +o 𝐵) ∈ ∪
𝑥 ∈ 𝐶 (𝑥 +o 𝐶)) |
27 | 7, 24, 26 | syl2an2r 683 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ ∪
𝑥 ∈ 𝐶 (𝑥 +o 𝐶)) |
28 | | simpr 486 |
. . . . . . . . . . 11
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐶) |
29 | 8 | adantr 482 |
. . . . . . . . . . 11
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → 𝐶 = (ω ↑o 𝐷)) |
30 | 28, 29 | eleqtrd 2839 |
. . . . . . . . . 10
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (ω ↑o 𝐷)) |
31 | 14 | adantr 482 |
. . . . . . . . . 10
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → 𝐶 ∈ On) |
32 | 8 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → (ω
↑o 𝐷) =
𝐶) |
33 | | ssid 3948 |
. . . . . . . . . . . 12
⊢ 𝐶 ⊆ 𝐶 |
34 | 32, 33 | eqsstrdi 3980 |
. . . . . . . . . . 11
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → (ω
↑o 𝐷)
⊆ 𝐶) |
35 | 34 | adantr 482 |
. . . . . . . . . 10
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → (ω ↑o 𝐷) ⊆ 𝐶) |
36 | | oaabs2 8510 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (ω
↑o 𝐷) ∧
𝐶 ∈ On) ∧ (ω
↑o 𝐷)
⊆ 𝐶) → (𝑥 +o 𝐶) = 𝐶) |
37 | 30, 31, 35, 36 | syl21anc 836 |
. . . . . . . . 9
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → (𝑥 +o 𝐶) = 𝐶) |
38 | 37, 33 | eqsstrdi 3980 |
. . . . . . . 8
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 ∈ 𝐶) → (𝑥 +o 𝐶) ⊆ 𝐶) |
39 | 38 | iunssd 4987 |
. . . . . . 7
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → ∪ 𝑥 ∈ 𝐶 (𝑥 +o 𝐶) ⊆ 𝐶) |
40 | | peano1 7767 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
41 | | oen0 8448 |
. . . . . . . . . . 11
⊢
(((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o 𝐷)) |
42 | 11, 40, 41 | sylancl 587 |
. . . . . . . . . 10
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ (ω
↑o 𝐷)) |
43 | 42, 32 | eleqtrd 2839 |
. . . . . . . . 9
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ 𝐶) |
44 | | simpr 486 |
. . . . . . . . . . . 12
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → 𝑥 = ∅) |
45 | 44 | oveq1d 7322 |
. . . . . . . . . . 11
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = (∅ +o 𝐶)) |
46 | | oa0r 8399 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ On → (∅
+o 𝐶) = 𝐶) |
47 | 14, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → (∅ +o
𝐶) = 𝐶) |
48 | 47 | adantr 482 |
. . . . . . . . . . 11
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (∅ +o
𝐶) = 𝐶) |
49 | 45, 48 | eqtrd 2776 |
. . . . . . . . . 10
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = 𝐶) |
50 | 49 | sseq2d 3958 |
. . . . . . . . 9
⊢ (((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝐶 ⊆ (𝑥 +o 𝐶) ↔ 𝐶 ⊆ 𝐶)) |
51 | | ssidd 3949 |
. . . . . . . . 9
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → 𝐶 ⊆ 𝐶) |
52 | 43, 50, 51 | rspcedvd 3568 |
. . . . . . . 8
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → ∃𝑥 ∈ 𝐶 𝐶 ⊆ (𝑥 +o 𝐶)) |
53 | | ssiun 4983 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐶 𝐶 ⊆ (𝑥 +o 𝐶) → 𝐶 ⊆ ∪
𝑥 ∈ 𝐶 (𝑥 +o 𝐶)) |
54 | 52, 53 | syl 17 |
. . . . . . 7
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → 𝐶 ⊆ ∪
𝑥 ∈ 𝐶 (𝑥 +o 𝐶)) |
55 | 39, 54 | eqssd 3943 |
. . . . . 6
⊢ ((𝐶 = (ω ↑o
𝐷) ∧ 𝐷 ∈ On) → ∪ 𝑥 ∈ 𝐶 (𝑥 +o 𝐶) = 𝐶) |
56 | 55 | adantl 483 |
. . . . 5
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → ∪ 𝑥 ∈ 𝐶 (𝑥 +o 𝐶) = 𝐶) |
57 | 27, 56 | eleqtrd 2839 |
. . . 4
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶) |
58 | 57 | ex 414 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (𝐴 +o 𝐵) ∈ 𝐶)) |
59 | 6, 58 | jaod 857 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶)) |
60 | 59 | imp 408 |
1
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶) |