Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oacl2g Structured version   Visualization version   GIF version

Theorem oacl2g 41244
Description: Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
oacl2g (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)

Proof of Theorem oacl2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2825 . . . . . 6 (𝐶 = ∅ → (𝐴𝐶𝐴 ∈ ∅))
2 noel 4270 . . . . . . 7 ¬ 𝐴 ∈ ∅
32pm2.21i 119 . . . . . 6 (𝐴 ∈ ∅ → (𝐴 +o 𝐵) ∈ 𝐶)
41, 3syl6bi 253 . . . . 5 (𝐶 = ∅ → (𝐴𝐶 → (𝐴 +o 𝐵) ∈ 𝐶))
54com12 32 . . . 4 (𝐴𝐶 → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶))
65adantr 482 . . 3 ((𝐴𝐶𝐵𝐶) → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶))
7 simpl 484 . . . . . 6 ((𝐴𝐶𝐵𝐶) → 𝐴𝐶)
8 simpl 484 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 = (ω ↑o 𝐷))
9 simpr 486 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐷 ∈ On)
10 omelon 9452 . . . . . . . . . . . 12 ω ∈ On
119, 10jctil 521 . . . . . . . . . . 11 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ∈ On ∧ 𝐷 ∈ On))
12 oecl 8398 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
1311, 12syl 17 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
148, 13eqeltrd 2837 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 ∈ On)
1514adantl 483 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐶 ∈ On)
16 onelon 6306 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐴𝐶) → 𝐴 ∈ On)
1716expcom 415 . . . . . . . . . 10 (𝐴𝐶 → (𝐶 ∈ On → 𝐴 ∈ On))
1817adantr 482 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → (𝐶 ∈ On → 𝐴 ∈ On))
1918adantr 482 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On → 𝐴 ∈ On))
2015, 19jcai 518 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
21 simpr 486 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → 𝐵𝐶)
2221adantr 482 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐵𝐶)
23 oaordi 8408 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)))
2420, 22, 23sylc 65 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))
25 oveq1 7314 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 +o 𝐶) = (𝐴 +o 𝐶))
2625eliuni 4937 . . . . . 6 ((𝐴𝐶 ∧ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) → (𝐴 +o 𝐵) ∈ 𝑥𝐶 (𝑥 +o 𝐶))
277, 24, 26syl2an2r 683 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝑥𝐶 (𝑥 +o 𝐶))
28 simpr 486 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝑥𝐶)
298adantr 482 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝐶 = (ω ↑o 𝐷))
3028, 29eleqtrd 2839 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝑥 ∈ (ω ↑o 𝐷))
3114adantr 482 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝐶 ∈ On)
328eqcomd 2742 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) = 𝐶)
33 ssid 3948 . . . . . . . . . . . 12 𝐶𝐶
3432, 33eqsstrdi 3980 . . . . . . . . . . 11 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ⊆ 𝐶)
3534adantr 482 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (ω ↑o 𝐷) ⊆ 𝐶)
36 oaabs2 8510 . . . . . . . . . 10 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐶 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐶) → (𝑥 +o 𝐶) = 𝐶)
3730, 31, 35, 36syl21anc 836 . . . . . . . . 9 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (𝑥 +o 𝐶) = 𝐶)
3837, 33eqsstrdi 3980 . . . . . . . 8 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (𝑥 +o 𝐶) ⊆ 𝐶)
3938iunssd 4987 . . . . . . 7 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝑥𝐶 (𝑥 +o 𝐶) ⊆ 𝐶)
40 peano1 7767 . . . . . . . . . . 11 ∅ ∈ ω
41 oen0 8448 . . . . . . . . . . 11 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
4211, 40, 41sylancl 587 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ (ω ↑o 𝐷))
4342, 32eleqtrd 2839 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ 𝐶)
44 simpr 486 . . . . . . . . . . . 12 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → 𝑥 = ∅)
4544oveq1d 7322 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = (∅ +o 𝐶))
46 oa0r 8399 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ +o 𝐶) = 𝐶)
4714, 46syl 17 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (∅ +o 𝐶) = 𝐶)
4847adantr 482 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (∅ +o 𝐶) = 𝐶)
4945, 48eqtrd 2776 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = 𝐶)
5049sseq2d 3958 . . . . . . . . 9 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝐶 ⊆ (𝑥 +o 𝐶) ↔ 𝐶𝐶))
51 ssidd 3949 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶𝐶)
5243, 50, 51rspcedvd 3568 . . . . . . . 8 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∃𝑥𝐶 𝐶 ⊆ (𝑥 +o 𝐶))
53 ssiun 4983 . . . . . . . 8 (∃𝑥𝐶 𝐶 ⊆ (𝑥 +o 𝐶) → 𝐶 𝑥𝐶 (𝑥 +o 𝐶))
5452, 53syl 17 . . . . . . 7 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 𝑥𝐶 (𝑥 +o 𝐶))
5539, 54eqssd 3943 . . . . . 6 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝑥𝐶 (𝑥 +o 𝐶) = 𝐶)
5655adantl 483 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝑥𝐶 (𝑥 +o 𝐶) = 𝐶)
5727, 56eleqtrd 2839 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶)
5857ex 414 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (𝐴 +o 𝐵) ∈ 𝐶))
596, 58jaod 857 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶))
6059imp 408 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1539  wcel 2104  wrex 3070  wss 3892  c0 4262   ciun 4931  Oncon0 6281  (class class class)co 7307  ωcom 7744   +o coa 8325  o coe 8327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-oadd 8332  df-omul 8333  df-oexp 8334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator