Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oacl2g Structured version   Visualization version   GIF version

Theorem oacl2g 42065
Description: Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
oacl2g (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)

Proof of Theorem oacl2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2822 . . . . . 6 (𝐶 = ∅ → (𝐴𝐶𝐴 ∈ ∅))
2 noel 4329 . . . . . . 7 ¬ 𝐴 ∈ ∅
32pm2.21i 119 . . . . . 6 (𝐴 ∈ ∅ → (𝐴 +o 𝐵) ∈ 𝐶)
41, 3syl6bi 252 . . . . 5 (𝐶 = ∅ → (𝐴𝐶 → (𝐴 +o 𝐵) ∈ 𝐶))
54com12 32 . . . 4 (𝐴𝐶 → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶))
65adantr 481 . . 3 ((𝐴𝐶𝐵𝐶) → (𝐶 = ∅ → (𝐴 +o 𝐵) ∈ 𝐶))
7 simpl 483 . . . . . 6 ((𝐴𝐶𝐵𝐶) → 𝐴𝐶)
8 simpl 483 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 = (ω ↑o 𝐷))
9 simpr 485 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐷 ∈ On)
10 omelon 9637 . . . . . . . . . . . 12 ω ∈ On
119, 10jctil 520 . . . . . . . . . . 11 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ∈ On ∧ 𝐷 ∈ On))
12 oecl 8533 . . . . . . . . . . 11 ((ω ∈ On ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
1311, 12syl 17 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ∈ On)
148, 13eqeltrd 2833 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 ∈ On)
1514adantl 482 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐶 ∈ On)
16 onelon 6386 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐴𝐶) → 𝐴 ∈ On)
1716expcom 414 . . . . . . . . . 10 (𝐴𝐶 → (𝐶 ∈ On → 𝐴 ∈ On))
1817adantr 481 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → (𝐶 ∈ On → 𝐴 ∈ On))
1918adantr 481 . . . . . . . 8 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On → 𝐴 ∈ On))
2015, 19jcai 517 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐴 ∈ On))
21 simpr 485 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → 𝐵𝐶)
2221adantr 481 . . . . . . 7 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝐵𝐶)
23 oaordi 8542 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)))
2420, 22, 23sylc 65 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))
25 oveq1 7412 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 +o 𝐶) = (𝐴 +o 𝐶))
2625eliuni 5002 . . . . . 6 ((𝐴𝐶 ∧ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) → (𝐴 +o 𝐵) ∈ 𝑥𝐶 (𝑥 +o 𝐶))
277, 24, 26syl2an2r 683 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝑥𝐶 (𝑥 +o 𝐶))
28 simpr 485 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝑥𝐶)
298adantr 481 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝐶 = (ω ↑o 𝐷))
3028, 29eleqtrd 2835 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝑥 ∈ (ω ↑o 𝐷))
3114adantr 481 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → 𝐶 ∈ On)
328eqcomd 2738 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) = 𝐶)
33 ssid 4003 . . . . . . . . . . . 12 𝐶𝐶
3432, 33eqsstrdi 4035 . . . . . . . . . . 11 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (ω ↑o 𝐷) ⊆ 𝐶)
3534adantr 481 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (ω ↑o 𝐷) ⊆ 𝐶)
36 oaabs2 8644 . . . . . . . . . 10 (((𝑥 ∈ (ω ↑o 𝐷) ∧ 𝐶 ∈ On) ∧ (ω ↑o 𝐷) ⊆ 𝐶) → (𝑥 +o 𝐶) = 𝐶)
3730, 31, 35, 36syl21anc 836 . . . . . . . . 9 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (𝑥 +o 𝐶) = 𝐶)
3837, 33eqsstrdi 4035 . . . . . . . 8 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥𝐶) → (𝑥 +o 𝐶) ⊆ 𝐶)
3938iunssd 5052 . . . . . . 7 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝑥𝐶 (𝑥 +o 𝐶) ⊆ 𝐶)
40 peano1 7875 . . . . . . . . . . 11 ∅ ∈ ω
41 oen0 8582 . . . . . . . . . . 11 (((ω ∈ On ∧ 𝐷 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐷))
4211, 40, 41sylancl 586 . . . . . . . . . 10 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ (ω ↑o 𝐷))
4342, 32eleqtrd 2835 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∅ ∈ 𝐶)
44 simpr 485 . . . . . . . . . . . 12 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → 𝑥 = ∅)
4544oveq1d 7420 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = (∅ +o 𝐶))
46 oa0r 8534 . . . . . . . . . . . . 13 (𝐶 ∈ On → (∅ +o 𝐶) = 𝐶)
4714, 46syl 17 . . . . . . . . . . . 12 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (∅ +o 𝐶) = 𝐶)
4847adantr 481 . . . . . . . . . . 11 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (∅ +o 𝐶) = 𝐶)
4945, 48eqtrd 2772 . . . . . . . . . 10 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝑥 +o 𝐶) = 𝐶)
5049sseq2d 4013 . . . . . . . . 9 (((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) ∧ 𝑥 = ∅) → (𝐶 ⊆ (𝑥 +o 𝐶) ↔ 𝐶𝐶))
51 ssidd 4004 . . . . . . . . 9 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶𝐶)
5243, 50, 51rspcedvd 3614 . . . . . . . 8 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → ∃𝑥𝐶 𝐶 ⊆ (𝑥 +o 𝐶))
53 ssiun 5048 . . . . . . . 8 (∃𝑥𝐶 𝐶 ⊆ (𝑥 +o 𝐶) → 𝐶 𝑥𝐶 (𝑥 +o 𝐶))
5452, 53syl 17 . . . . . . 7 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝐶 𝑥𝐶 (𝑥 +o 𝐶))
5539, 54eqssd 3998 . . . . . 6 ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → 𝑥𝐶 (𝑥 +o 𝐶) = 𝐶)
5655adantl 482 . . . . 5 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → 𝑥𝐶 (𝑥 +o 𝐶) = 𝐶)
5727, 56eleqtrd 2835 . . . 4 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶)
5857ex 413 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On) → (𝐴 +o 𝐵) ∈ 𝐶))
596, 58jaod 857 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On)) → (𝐴 +o 𝐵) ∈ 𝐶))
6059imp 407 1 (((𝐴𝐶𝐵𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  wss 3947  c0 4321   ciun 4996  Oncon0 6361  (class class class)co 7405  ωcom 7851   +o coa 8459  o coe 8461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-oexp 8468
This theorem is referenced by:  onmcl  42066
  Copyright terms: Public domain W3C validator