MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Visualization version   GIF version

Theorem efgs1b 19323
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1b (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4066 . . . 4 ((𝑆𝐴) ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
2 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2858 . . 3 ((𝑆𝐴) ∈ 𝐷 → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
4 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
5 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
94, 5, 6, 7, 2, 8efgsdm 19317 . . . . . . . . 9 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐴))(𝐴𝑎) ∈ ran (𝑇‘(𝐴‘(𝑎 − 1)))))
109simp1bi 1143 . . . . . . . 8 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
11 eldifsn 4725 . . . . . . . . 9 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
12 lennncl 14218 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
1311, 12sylbi 216 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
1410, 13syl 17 . . . . . . 7 (𝐴 ∈ dom 𝑆 → (♯‘𝐴) ∈ ℕ)
15 elnn1uz2 12647 . . . . . . 7 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1614, 15sylib 217 . . . . . 6 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1716ord 860 . . . . 5 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
1810eldifad 3903 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆𝐴 ∈ Word 𝑊)
1918adantr 480 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ Word 𝑊)
20 wrdf 14203 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
2119, 20syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴:(0..^(♯‘𝐴))⟶𝑊)
22 1z 12333 . . . . . . . . . . . . . 14 1 ∈ ℤ
23 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘2))
24 df-2 12019 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
2524fveq2i 6771 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2850 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘(1 + 1)))
27 eluzp1m1 12590 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ‘(1 + 1))) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
2822, 26, 27sylancr 586 . . . . . . . . . . . . 13 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
29 nnuz 12603 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3028, 29eleqtrrdi 2851 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ ℕ)
31 lbfzo0 13408 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
3230, 31sylibr 233 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 0 ∈ (0..^((♯‘𝐴) − 1)))
33 fzoend 13459 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
34 elfzofz 13384 . . . . . . . . . . 11 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
3532, 33, 343syl 18 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 eluzelz 12574 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘2) → (♯‘𝐴) ∈ ℤ)
3736adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ ℤ)
38 fzoval 13370 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
3937, 38syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4035, 39eleqtrrd 2843 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4121, 40ffvelrnd 6956 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
42 uz2m1nn 12645 . . . . . . . . 9 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
434, 5, 6, 7, 2, 8efgsdmi 19319 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4442, 43sylan2 592 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
45 fveq2 6768 . . . . . . . . . 10 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → (𝑇𝑎) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4645rneqd 5844 . . . . . . . . 9 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → ran (𝑇𝑎) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4746eliuni 4935 . . . . . . . 8 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
4841, 44, 47syl2anc 583 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
49 fveq2 6768 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑇𝑎) = (𝑇𝑥))
5049rneqd 5844 . . . . . . . 8 (𝑎 = 𝑥 → ran (𝑇𝑎) = ran (𝑇𝑥))
5150cbviunv 4974 . . . . . . 7 𝑎𝑊 ran (𝑇𝑎) = 𝑥𝑊 ran (𝑇𝑥)
5248, 51eleqtrdi 2850 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
5352ex 412 . . . . 5 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) ∈ (ℤ‘2) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5417, 53syld 47 . . . 4 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5554con1d 145 . . 3 (𝐴 ∈ dom 𝑆 → (¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥) → (♯‘𝐴) = 1))
563, 55syl5 34 . 2 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 → (♯‘𝐴) = 1))
579simp2bi 1144 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
58 oveq1 7275 . . . . . . 7 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
59 1m1e0 12028 . . . . . . 7 (1 − 1) = 0
6058, 59eqtrdi 2795 . . . . . 6 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
6160fveq2d 6772 . . . . 5 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
6261eleq1d 2824 . . . 4 ((♯‘𝐴) = 1 → ((𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷 ↔ (𝐴‘0) ∈ 𝐷))
6357, 62syl5ibrcom 246 . . 3 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
644, 5, 6, 7, 2, 8efgsval 19318 . . . 4 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
6564eleq1d 2824 . . 3 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
6663, 65sylibrd 258 . 2 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝐷))
6756, 66impbid 211 1 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wcel 2109  wne 2944  wral 3065  {crab 3069  cdif 3888  c0 4261  {csn 4566  cop 4572  cotp 4574   ciun 4929  cmpt 5161   I cid 5487   × cxp 5586  dom cdm 5588  ran crn 5589  wf 6426  cfv 6430  (class class class)co 7268  cmpo 7270  1oc1o 8274  2oc2o 8275  0cc0 10855  1c1 10856   + caddc 10858  cmin 11188  cn 11956  2c2 12011  cz 12302  cuz 12564  ...cfz 13221  ..^cfzo 13364  chash 14025  Word cword 14198   splice csplice 14443  ⟨“cs2 14535   ~FG cefg 19293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199
This theorem is referenced by:  efgredlema  19327  efgredeu  19339
  Copyright terms: Public domain W3C validator