MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Visualization version   GIF version

Theorem efgs1b 19717
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1b (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4107 . . . 4 ((𝑆𝐴) ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
2 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2852 . . 3 ((𝑆𝐴) ∈ 𝐷 → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
4 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
5 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
94, 5, 6, 7, 2, 8efgsdm 19711 . . . . . . . . 9 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐴))(𝐴𝑎) ∈ ran (𝑇‘(𝐴‘(𝑎 − 1)))))
109simp1bi 1145 . . . . . . . 8 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
11 eldifsn 4762 . . . . . . . . 9 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
12 lennncl 14552 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
1311, 12sylbi 217 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
1410, 13syl 17 . . . . . . 7 (𝐴 ∈ dom 𝑆 → (♯‘𝐴) ∈ ℕ)
15 elnn1uz2 12941 . . . . . . 7 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1614, 15sylib 218 . . . . . 6 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1716ord 864 . . . . 5 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
1810eldifad 3938 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆𝐴 ∈ Word 𝑊)
1918adantr 480 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ Word 𝑊)
20 wrdf 14536 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
2119, 20syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴:(0..^(♯‘𝐴))⟶𝑊)
22 1z 12622 . . . . . . . . . . . . . 14 1 ∈ ℤ
23 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘2))
24 df-2 12303 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
2524fveq2i 6879 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2844 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘(1 + 1)))
27 eluzp1m1 12878 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ‘(1 + 1))) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
2822, 26, 27sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
29 nnuz 12895 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3028, 29eleqtrrdi 2845 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ ℕ)
31 lbfzo0 13716 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
3230, 31sylibr 234 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 0 ∈ (0..^((♯‘𝐴) − 1)))
33 fzoend 13773 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
34 elfzofz 13692 . . . . . . . . . . 11 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
3532, 33, 343syl 18 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 eluzelz 12862 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘2) → (♯‘𝐴) ∈ ℤ)
3736adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ ℤ)
38 fzoval 13677 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
3937, 38syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4035, 39eleqtrrd 2837 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4121, 40ffvelcdmd 7075 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
42 uz2m1nn 12939 . . . . . . . . 9 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
434, 5, 6, 7, 2, 8efgsdmi 19713 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4442, 43sylan2 593 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
45 fveq2 6876 . . . . . . . . . 10 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → (𝑇𝑎) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4645rneqd 5918 . . . . . . . . 9 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → ran (𝑇𝑎) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4746eliuni 4973 . . . . . . . 8 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
4841, 44, 47syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
49 fveq2 6876 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑇𝑎) = (𝑇𝑥))
5049rneqd 5918 . . . . . . . 8 (𝑎 = 𝑥 → ran (𝑇𝑎) = ran (𝑇𝑥))
5150cbviunv 5016 . . . . . . 7 𝑎𝑊 ran (𝑇𝑎) = 𝑥𝑊 ran (𝑇𝑥)
5248, 51eleqtrdi 2844 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
5352ex 412 . . . . 5 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) ∈ (ℤ‘2) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5417, 53syld 47 . . . 4 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5554con1d 145 . . 3 (𝐴 ∈ dom 𝑆 → (¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥) → (♯‘𝐴) = 1))
563, 55syl5 34 . 2 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 → (♯‘𝐴) = 1))
579simp2bi 1146 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
58 oveq1 7412 . . . . . . 7 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
59 1m1e0 12312 . . . . . . 7 (1 − 1) = 0
6058, 59eqtrdi 2786 . . . . . 6 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
6160fveq2d 6880 . . . . 5 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
6261eleq1d 2819 . . . 4 ((♯‘𝐴) = 1 → ((𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷 ↔ (𝐴‘0) ∈ 𝐷))
6357, 62syl5ibrcom 247 . . 3 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
644, 5, 6, 7, 2, 8efgsval 19712 . . . 4 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
6564eleq1d 2819 . . 3 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
6663, 65sylibrd 259 . 2 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝐷))
6756, 66impbid 212 1 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  cdif 3923  c0 4308  {csn 4601  cop 4607  cotp 4609   ciun 4967  cmpt 5201   I cid 5547   × cxp 5652  dom cdm 5654  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  1oc1o 8473  2oc2o 8474  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  cn 12240  2c2 12295  cz 12588  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   splice csplice 14767  ⟨“cs2 14860   ~FG cefg 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532
This theorem is referenced by:  efgredlema  19721  efgredeu  19733
  Copyright terms: Public domain W3C validator