Step | Hyp | Ref
| Expression |
1 | | eldifn 4062 |
. . . 4
⊢ ((𝑆‘𝐴) ∈ (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → ¬ (𝑆‘𝐴) ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
2 | | efgred.d |
. . . 4
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
3 | 1, 2 | eleq2s 2857 |
. . 3
⊢ ((𝑆‘𝐴) ∈ 𝐷 → ¬ (𝑆‘𝐴) ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
4 | | efgval.w |
. . . . . . . . . 10
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
5 | | efgval.r |
. . . . . . . . . 10
⊢ ∼ = (
~FG ‘𝐼) |
6 | | efgval2.m |
. . . . . . . . . 10
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
7 | | efgval2.t |
. . . . . . . . . 10
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
8 | | efgred.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
9 | 4, 5, 6, 7, 2, 8 | efgsdm 19336 |
. . . . . . . . 9
⊢ (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐴))(𝐴‘𝑎) ∈ ran (𝑇‘(𝐴‘(𝑎 − 1))))) |
10 | 9 | simp1bi 1144 |
. . . . . . . 8
⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ (Word 𝑊 ∖ {∅})) |
11 | | eldifsn 4720 |
. . . . . . . . 9
⊢ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊 ∧ 𝐴 ≠ ∅)) |
12 | | lennncl 14237 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Word 𝑊 ∧ 𝐴 ≠ ∅) → (♯‘𝐴) ∈
ℕ) |
13 | 11, 12 | sylbi 216 |
. . . . . . . 8
⊢ (𝐴 ∈ (Word 𝑊 ∖ {∅}) →
(♯‘𝐴) ∈
ℕ) |
14 | 10, 13 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ dom 𝑆 → (♯‘𝐴) ∈ ℕ) |
15 | | elnn1uz2 12665 |
. . . . . . 7
⊢
((♯‘𝐴)
∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈
(ℤ≥‘2))) |
16 | 14, 15 | sylib 217 |
. . . . . 6
⊢ (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈
(ℤ≥‘2))) |
17 | 16 | ord 861 |
. . . . 5
⊢ (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 →
(♯‘𝐴) ∈
(ℤ≥‘2))) |
18 | 10 | eldifad 3899 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom 𝑆 → 𝐴 ∈ Word 𝑊) |
19 | 18 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ 𝐴 ∈ Word 𝑊) |
20 | | wrdf 14222 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Word 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ 𝐴:(0..^(♯‘𝐴))⟶𝑊) |
22 | | 1z 12350 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
23 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (♯‘𝐴)
∈ (ℤ≥‘2)) |
24 | | df-2 12036 |
. . . . . . . . . . . . . . . 16
⊢ 2 = (1 +
1) |
25 | 24 | fveq2i 6777 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
26 | 23, 25 | eleqtrdi 2849 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (♯‘𝐴)
∈ (ℤ≥‘(1 + 1))) |
27 | | eluzp1m1 12608 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ≥‘(1 +
1))) → ((♯‘𝐴) − 1) ∈
(ℤ≥‘1)) |
28 | 22, 26, 27 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ ((♯‘𝐴)
− 1) ∈ (ℤ≥‘1)) |
29 | | nnuz 12621 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
30 | 28, 29 | eleqtrrdi 2850 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ ((♯‘𝐴)
− 1) ∈ ℕ) |
31 | | lbfzo0 13427 |
. . . . . . . . . . . 12
⊢ (0 ∈
(0..^((♯‘𝐴)
− 1)) ↔ ((♯‘𝐴) − 1) ∈
ℕ) |
32 | 30, 31 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ 0 ∈ (0..^((♯‘𝐴) − 1))) |
33 | | fzoend 13478 |
. . . . . . . . . . 11
⊢ (0 ∈
(0..^((♯‘𝐴)
− 1)) → (((♯‘𝐴) − 1) − 1) ∈
(0..^((♯‘𝐴)
− 1))) |
34 | | elfzofz 13403 |
. . . . . . . . . . 11
⊢
((((♯‘𝐴)
− 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈
(0...((♯‘𝐴)
− 1))) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (((♯‘𝐴)
− 1) − 1) ∈ (0...((♯‘𝐴) − 1))) |
36 | | eluzelz 12592 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ (ℤ≥‘2) → (♯‘𝐴) ∈ ℤ) |
37 | 36 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (♯‘𝐴)
∈ ℤ) |
38 | | fzoval 13388 |
. . . . . . . . . . 11
⊢
((♯‘𝐴)
∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1))) |
40 | 35, 39 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (((♯‘𝐴)
− 1) − 1) ∈ (0..^(♯‘𝐴))) |
41 | 21, 40 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊) |
42 | | uz2m1nn 12663 |
. . . . . . . . 9
⊢
((♯‘𝐴)
∈ (ℤ≥‘2) → ((♯‘𝐴) − 1) ∈
ℕ) |
43 | 4, 5, 6, 7, 2, 8 | efgsdmi 19338 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
44 | 42, 43 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
45 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → (𝑇‘𝑎) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
46 | 45 | rneqd 5847 |
. . . . . . . . 9
⊢ (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → ran (𝑇‘𝑎) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) |
47 | 46 | eliuni 4930 |
. . . . . . . 8
⊢ (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈
𝑊 ∧ (𝑆‘𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (𝑆‘𝐴) ∈ ∪
𝑎 ∈ 𝑊 ran (𝑇‘𝑎)) |
48 | 41, 44, 47 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (𝑆‘𝐴) ∈ ∪ 𝑎 ∈ 𝑊 ran (𝑇‘𝑎)) |
49 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (𝑇‘𝑎) = (𝑇‘𝑥)) |
50 | 49 | rneqd 5847 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → ran (𝑇‘𝑎) = ran (𝑇‘𝑥)) |
51 | 50 | cbviunv 4970 |
. . . . . . 7
⊢ ∪ 𝑎 ∈ 𝑊 ran (𝑇‘𝑎) = ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥) |
52 | 48, 51 | eleqtrdi 2849 |
. . . . . 6
⊢ ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ≥‘2))
→ (𝑆‘𝐴) ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
53 | 52 | ex 413 |
. . . . 5
⊢ (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) ∈ (ℤ≥‘2)
→ (𝑆‘𝐴) ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥))) |
54 | 17, 53 | syld 47 |
. . . 4
⊢ (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (𝑆‘𝐴) ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥))) |
55 | 54 | con1d 145 |
. . 3
⊢ (𝐴 ∈ dom 𝑆 → (¬ (𝑆‘𝐴) ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥) → (♯‘𝐴) = 1)) |
56 | 3, 55 | syl5 34 |
. 2
⊢ (𝐴 ∈ dom 𝑆 → ((𝑆‘𝐴) ∈ 𝐷 → (♯‘𝐴) = 1)) |
57 | 9 | simp2bi 1145 |
. . . 4
⊢ (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷) |
58 | | oveq1 7282 |
. . . . . . 7
⊢
((♯‘𝐴) =
1 → ((♯‘𝐴)
− 1) = (1 − 1)) |
59 | | 1m1e0 12045 |
. . . . . . 7
⊢ (1
− 1) = 0 |
60 | 58, 59 | eqtrdi 2794 |
. . . . . 6
⊢
((♯‘𝐴) =
1 → ((♯‘𝐴)
− 1) = 0) |
61 | 60 | fveq2d 6778 |
. . . . 5
⊢
((♯‘𝐴) =
1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0)) |
62 | 61 | eleq1d 2823 |
. . . 4
⊢
((♯‘𝐴) =
1 → ((𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷 ↔ (𝐴‘0) ∈ 𝐷)) |
63 | 57, 62 | syl5ibrcom 246 |
. . 3
⊢ (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷)) |
64 | 4, 5, 6, 7, 2, 8 | efgsval 19337 |
. . . 4
⊢ (𝐴 ∈ dom 𝑆 → (𝑆‘𝐴) = (𝐴‘((♯‘𝐴) − 1))) |
65 | 64 | eleq1d 2823 |
. . 3
⊢ (𝐴 ∈ dom 𝑆 → ((𝑆‘𝐴) ∈ 𝐷 ↔ (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷)) |
66 | 63, 65 | sylibrd 258 |
. 2
⊢ (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝑆‘𝐴) ∈ 𝐷)) |
67 | 56, 66 | impbid 211 |
1
⊢ (𝐴 ∈ dom 𝑆 → ((𝑆‘𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1)) |