MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Visualization version   GIF version

Theorem efgs1b 19518
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1b (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4087 . . . 4 ((𝑆𝐴) ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
2 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2856 . . 3 ((𝑆𝐴) ∈ 𝐷 → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
4 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
5 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
94, 5, 6, 7, 2, 8efgsdm 19512 . . . . . . . . 9 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐴))(𝐴𝑎) ∈ ran (𝑇‘(𝐴‘(𝑎 − 1)))))
109simp1bi 1145 . . . . . . . 8 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
11 eldifsn 4747 . . . . . . . . 9 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
12 lennncl 14422 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
1311, 12sylbi 216 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
1410, 13syl 17 . . . . . . 7 (𝐴 ∈ dom 𝑆 → (♯‘𝐴) ∈ ℕ)
15 elnn1uz2 12850 . . . . . . 7 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1614, 15sylib 217 . . . . . 6 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1716ord 862 . . . . 5 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
1810eldifad 3922 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆𝐴 ∈ Word 𝑊)
1918adantr 481 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ Word 𝑊)
20 wrdf 14407 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
2119, 20syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴:(0..^(♯‘𝐴))⟶𝑊)
22 1z 12533 . . . . . . . . . . . . . 14 1 ∈ ℤ
23 simpr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘2))
24 df-2 12216 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
2524fveq2i 6845 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2848 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘(1 + 1)))
27 eluzp1m1 12789 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ‘(1 + 1))) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
2822, 26, 27sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
29 nnuz 12806 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3028, 29eleqtrrdi 2849 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ ℕ)
31 lbfzo0 13612 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
3230, 31sylibr 233 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 0 ∈ (0..^((♯‘𝐴) − 1)))
33 fzoend 13663 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
34 elfzofz 13588 . . . . . . . . . . 11 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
3532, 33, 343syl 18 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 eluzelz 12773 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘2) → (♯‘𝐴) ∈ ℤ)
3736adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ ℤ)
38 fzoval 13573 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
3937, 38syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4035, 39eleqtrrd 2841 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4121, 40ffvelcdmd 7036 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
42 uz2m1nn 12848 . . . . . . . . 9 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
434, 5, 6, 7, 2, 8efgsdmi 19514 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4442, 43sylan2 593 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
45 fveq2 6842 . . . . . . . . . 10 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → (𝑇𝑎) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4645rneqd 5893 . . . . . . . . 9 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → ran (𝑇𝑎) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4746eliuni 4960 . . . . . . . 8 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
4841, 44, 47syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
49 fveq2 6842 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑇𝑎) = (𝑇𝑥))
5049rneqd 5893 . . . . . . . 8 (𝑎 = 𝑥 → ran (𝑇𝑎) = ran (𝑇𝑥))
5150cbviunv 5000 . . . . . . 7 𝑎𝑊 ran (𝑇𝑎) = 𝑥𝑊 ran (𝑇𝑥)
5248, 51eleqtrdi 2848 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
5352ex 413 . . . . 5 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) ∈ (ℤ‘2) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5417, 53syld 47 . . . 4 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5554con1d 145 . . 3 (𝐴 ∈ dom 𝑆 → (¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥) → (♯‘𝐴) = 1))
563, 55syl5 34 . 2 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 → (♯‘𝐴) = 1))
579simp2bi 1146 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
58 oveq1 7364 . . . . . . 7 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
59 1m1e0 12225 . . . . . . 7 (1 − 1) = 0
6058, 59eqtrdi 2792 . . . . . 6 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
6160fveq2d 6846 . . . . 5 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
6261eleq1d 2822 . . . 4 ((♯‘𝐴) = 1 → ((𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷 ↔ (𝐴‘0) ∈ 𝐷))
6357, 62syl5ibrcom 246 . . 3 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
644, 5, 6, 7, 2, 8efgsval 19513 . . . 4 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
6564eleq1d 2822 . . 3 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
6663, 65sylibrd 258 . 2 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝐷))
6756, 66impbid 211 1 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  cdif 3907  c0 4282  {csn 4586  cop 4592  cotp 4594   ciun 4954  cmpt 5188   I cid 5530   × cxp 5631  dom cdm 5633  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  1oc1o 8405  2oc2o 8406  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  cn 12153  2c2 12208  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402   splice csplice 14637  ⟨“cs2 14730   ~FG cefg 19488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403
This theorem is referenced by:  efgredlema  19522  efgredeu  19534
  Copyright terms: Public domain W3C validator