MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Visualization version   GIF version

Theorem efgs1b 19342
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1b (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4062 . . . 4 ((𝑆𝐴) ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
2 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2857 . . 3 ((𝑆𝐴) ∈ 𝐷 → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
4 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
5 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
94, 5, 6, 7, 2, 8efgsdm 19336 . . . . . . . . 9 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐴))(𝐴𝑎) ∈ ran (𝑇‘(𝐴‘(𝑎 − 1)))))
109simp1bi 1144 . . . . . . . 8 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
11 eldifsn 4720 . . . . . . . . 9 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
12 lennncl 14237 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
1311, 12sylbi 216 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
1410, 13syl 17 . . . . . . 7 (𝐴 ∈ dom 𝑆 → (♯‘𝐴) ∈ ℕ)
15 elnn1uz2 12665 . . . . . . 7 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1614, 15sylib 217 . . . . . 6 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1716ord 861 . . . . 5 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
1810eldifad 3899 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆𝐴 ∈ Word 𝑊)
1918adantr 481 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ Word 𝑊)
20 wrdf 14222 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
2119, 20syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴:(0..^(♯‘𝐴))⟶𝑊)
22 1z 12350 . . . . . . . . . . . . . 14 1 ∈ ℤ
23 simpr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘2))
24 df-2 12036 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
2524fveq2i 6777 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2849 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘(1 + 1)))
27 eluzp1m1 12608 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ‘(1 + 1))) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
2822, 26, 27sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
29 nnuz 12621 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3028, 29eleqtrrdi 2850 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ ℕ)
31 lbfzo0 13427 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
3230, 31sylibr 233 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 0 ∈ (0..^((♯‘𝐴) − 1)))
33 fzoend 13478 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
34 elfzofz 13403 . . . . . . . . . . 11 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
3532, 33, 343syl 18 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 eluzelz 12592 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘2) → (♯‘𝐴) ∈ ℤ)
3736adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ ℤ)
38 fzoval 13388 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
3937, 38syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4035, 39eleqtrrd 2842 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4121, 40ffvelrnd 6962 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
42 uz2m1nn 12663 . . . . . . . . 9 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
434, 5, 6, 7, 2, 8efgsdmi 19338 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4442, 43sylan2 593 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
45 fveq2 6774 . . . . . . . . . 10 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → (𝑇𝑎) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4645rneqd 5847 . . . . . . . . 9 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → ran (𝑇𝑎) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4746eliuni 4930 . . . . . . . 8 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
4841, 44, 47syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
49 fveq2 6774 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑇𝑎) = (𝑇𝑥))
5049rneqd 5847 . . . . . . . 8 (𝑎 = 𝑥 → ran (𝑇𝑎) = ran (𝑇𝑥))
5150cbviunv 4970 . . . . . . 7 𝑎𝑊 ran (𝑇𝑎) = 𝑥𝑊 ran (𝑇𝑥)
5248, 51eleqtrdi 2849 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
5352ex 413 . . . . 5 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) ∈ (ℤ‘2) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5417, 53syld 47 . . . 4 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5554con1d 145 . . 3 (𝐴 ∈ dom 𝑆 → (¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥) → (♯‘𝐴) = 1))
563, 55syl5 34 . 2 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 → (♯‘𝐴) = 1))
579simp2bi 1145 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
58 oveq1 7282 . . . . . . 7 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
59 1m1e0 12045 . . . . . . 7 (1 − 1) = 0
6058, 59eqtrdi 2794 . . . . . 6 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
6160fveq2d 6778 . . . . 5 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
6261eleq1d 2823 . . . 4 ((♯‘𝐴) = 1 → ((𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷 ↔ (𝐴‘0) ∈ 𝐷))
6357, 62syl5ibrcom 246 . . 3 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
644, 5, 6, 7, 2, 8efgsval 19337 . . . 4 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
6564eleq1d 2823 . . 3 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
6663, 65sylibrd 258 . 2 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝐷))
6756, 66impbid 211 1 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cdif 3884  c0 4256  {csn 4561  cop 4567  cotp 4569   ciun 4924  cmpt 5157   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  cn 11973  2c2 12028  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   splice csplice 14462  ⟨“cs2 14554   ~FG cefg 19312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218
This theorem is referenced by:  efgredlema  19346  efgredeu  19358
  Copyright terms: Public domain W3C validator