Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Visualization version   GIF version

Theorem efgs1b 18862
 Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgs1b (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgs1b
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4090 . . . 4 ((𝑆𝐴) ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
2 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
31, 2eleq2s 2934 . . 3 ((𝑆𝐴) ∈ 𝐷 → ¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
4 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
5 efgval.r . . . . . . . . . 10 = ( ~FG𝐼)
6 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
7 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
8 efgred.s . . . . . . . . . 10 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
94, 5, 6, 7, 2, 8efgsdm 18856 . . . . . . . . 9 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐴‘0) ∈ 𝐷 ∧ ∀𝑎 ∈ (1..^(♯‘𝐴))(𝐴𝑎) ∈ ran (𝑇‘(𝐴‘(𝑎 − 1)))))
109simp1bi 1142 . . . . . . . 8 (𝐴 ∈ dom 𝑆𝐴 ∈ (Word 𝑊 ∖ {∅}))
11 eldifsn 4704 . . . . . . . . 9 (𝐴 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝐴 ∈ Word 𝑊𝐴 ≠ ∅))
12 lennncl 13886 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊𝐴 ≠ ∅) → (♯‘𝐴) ∈ ℕ)
1311, 12sylbi 220 . . . . . . . 8 (𝐴 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝐴) ∈ ℕ)
1410, 13syl 17 . . . . . . 7 (𝐴 ∈ dom 𝑆 → (♯‘𝐴) ∈ ℕ)
15 elnn1uz2 12322 . . . . . . 7 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1614, 15sylib 221 . . . . . 6 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 ∨ (♯‘𝐴) ∈ (ℤ‘2)))
1716ord 861 . . . . 5 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (♯‘𝐴) ∈ (ℤ‘2)))
1810eldifad 3931 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆𝐴 ∈ Word 𝑊)
1918adantr 484 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴 ∈ Word 𝑊)
20 wrdf 13871 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊𝐴:(0..^(♯‘𝐴))⟶𝑊)
2119, 20syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 𝐴:(0..^(♯‘𝐴))⟶𝑊)
22 1z 12009 . . . . . . . . . . . . . 14 1 ∈ ℤ
23 simpr 488 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘2))
24 df-2 11697 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
2524fveq2i 6664 . . . . . . . . . . . . . . 15 (ℤ‘2) = (ℤ‘(1 + 1))
2623, 25eleqtrdi 2926 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ (ℤ‘(1 + 1)))
27 eluzp1m1 12265 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ (ℤ‘(1 + 1))) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
2822, 26, 27sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ (ℤ‘1))
29 nnuz 12278 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
3028, 29eleqtrrdi 2927 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → ((♯‘𝐴) − 1) ∈ ℕ)
31 lbfzo0 13081 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘𝐴) − 1)) ↔ ((♯‘𝐴) − 1) ∈ ℕ)
3230, 31sylibr 237 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → 0 ∈ (0..^((♯‘𝐴) − 1)))
33 fzoend 13132 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)))
34 elfzofz 13057 . . . . . . . . . . 11 ((((♯‘𝐴) − 1) − 1) ∈ (0..^((♯‘𝐴) − 1)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
3532, 33, 343syl 18 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0...((♯‘𝐴) − 1)))
36 eluzelz 12250 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ (ℤ‘2) → (♯‘𝐴) ∈ ℤ)
3736adantl 485 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (♯‘𝐴) ∈ ℤ)
38 fzoval 13043 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
3937, 38syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (0..^(♯‘𝐴)) = (0...((♯‘𝐴) − 1)))
4035, 39eleqtrrd 2919 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (((♯‘𝐴) − 1) − 1) ∈ (0..^(♯‘𝐴)))
4121, 40ffvelrnd 6843 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊)
42 uz2m1nn 12320 . . . . . . . . 9 ((♯‘𝐴) ∈ (ℤ‘2) → ((♯‘𝐴) − 1) ∈ ℕ)
434, 5, 6, 7, 2, 8efgsdmi 18858 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((♯‘𝐴) − 1) ∈ ℕ) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4442, 43sylan2 595 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
45 fveq2 6661 . . . . . . . . . 10 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → (𝑇𝑎) = (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4645rneqd 5795 . . . . . . . . 9 (𝑎 = (𝐴‘(((♯‘𝐴) − 1) − 1)) → ran (𝑇𝑎) = ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1))))
4746eliuni 4911 . . . . . . . 8 (((𝐴‘(((♯‘𝐴) − 1) − 1)) ∈ 𝑊 ∧ (𝑆𝐴) ∈ ran (𝑇‘(𝐴‘(((♯‘𝐴) − 1) − 1)))) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
4841, 44, 47syl2anc 587 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑎𝑊 ran (𝑇𝑎))
49 fveq2 6661 . . . . . . . . 9 (𝑎 = 𝑥 → (𝑇𝑎) = (𝑇𝑥))
5049rneqd 5795 . . . . . . . 8 (𝑎 = 𝑥 → ran (𝑇𝑎) = ran (𝑇𝑥))
5150cbviunv 4951 . . . . . . 7 𝑎𝑊 ran (𝑇𝑎) = 𝑥𝑊 ran (𝑇𝑥)
5248, 51eleqtrdi 2926 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ (♯‘𝐴) ∈ (ℤ‘2)) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥))
5352ex 416 . . . . 5 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) ∈ (ℤ‘2) → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5417, 53syld 47 . . . 4 (𝐴 ∈ dom 𝑆 → (¬ (♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥)))
5554con1d 147 . . 3 (𝐴 ∈ dom 𝑆 → (¬ (𝑆𝐴) ∈ 𝑥𝑊 ran (𝑇𝑥) → (♯‘𝐴) = 1))
563, 55syl5 34 . 2 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 → (♯‘𝐴) = 1))
579simp2bi 1143 . . . 4 (𝐴 ∈ dom 𝑆 → (𝐴‘0) ∈ 𝐷)
58 oveq1 7156 . . . . . . 7 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = (1 − 1))
59 1m1e0 11706 . . . . . . 7 (1 − 1) = 0
6058, 59syl6eq 2875 . . . . . 6 ((♯‘𝐴) = 1 → ((♯‘𝐴) − 1) = 0)
6160fveq2d 6665 . . . . 5 ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) = (𝐴‘0))
6261eleq1d 2900 . . . 4 ((♯‘𝐴) = 1 → ((𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷 ↔ (𝐴‘0) ∈ 𝐷))
6357, 62syl5ibrcom 250 . . 3 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
644, 5, 6, 7, 2, 8efgsval 18857 . . . 4 (𝐴 ∈ dom 𝑆 → (𝑆𝐴) = (𝐴‘((♯‘𝐴) − 1)))
6564eleq1d 2900 . . 3 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (𝐴‘((♯‘𝐴) − 1)) ∈ 𝐷))
6663, 65sylibrd 262 . 2 (𝐴 ∈ dom 𝑆 → ((♯‘𝐴) = 1 → (𝑆𝐴) ∈ 𝐷))
6756, 66impbid 215 1 (𝐴 ∈ dom 𝑆 → ((𝑆𝐴) ∈ 𝐷 ↔ (♯‘𝐴) = 1))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  {crab 3137   ∖ cdif 3916  ∅c0 4276  {csn 4550  ⟨cop 4556  ⟨cotp 4558  ∪ ciun 4905   ↦ cmpt 5132   I cid 5446   × cxp 5540  dom cdm 5542  ran crn 5543  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  1oc1o 8091  2oc2o 8092  0cc0 10535  1c1 10536   + caddc 10538   − cmin 10868  ℕcn 11634  2c2 11689  ℤcz 11978  ℤ≥cuz 12240  ...cfz 12894  ..^cfzo 13037  ♯chash 13695  Word cword 13866   splice csplice 14111  ⟨“cs2 14203   ~FG cefg 18832 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867 This theorem is referenced by:  efgredlema  18866  efgredeu  18878
 Copyright terms: Public domain W3C validator