MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgs1b Structured version   Visualization version   GIF version

Theorem efgs1b 19598
Description: Every extension sequence ending in an irreducible word is trivial. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
Assertion
Ref Expression
efgs1b (𝐴 ∈ dom 𝑆 β†’ ((π‘†β€˜π΄) ∈ 𝐷 ↔ (β™―β€˜π΄) = 1))
Distinct variable groups:   𝑦,𝑧   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧,π‘š,π‘₯   π‘š,𝑀   π‘₯,𝑛,𝑀,𝑑,𝑣,𝑀   π‘˜,π‘š,𝑑,π‘₯,𝑇   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘š,𝑑,π‘₯,𝑦,𝑧   π‘š,𝐼,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘š,𝑑
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)

Proof of Theorem efgs1b
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 eldifn 4126 . . . 4 ((π‘†β€˜π΄) ∈ (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ Β¬ (π‘†β€˜π΄) ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
2 efgred.d . . . 4 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
31, 2eleq2s 2851 . . 3 ((π‘†β€˜π΄) ∈ 𝐷 β†’ Β¬ (π‘†β€˜π΄) ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
4 efgval.w . . . . . . . . . 10 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
5 efgval.r . . . . . . . . . 10 ∼ = ( ~FG β€˜πΌ)
6 efgval2.m . . . . . . . . . 10 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
7 efgval2.t . . . . . . . . . 10 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
8 efgred.s . . . . . . . . . 10 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
94, 5, 6, 7, 2, 8efgsdm 19592 . . . . . . . . 9 (𝐴 ∈ dom 𝑆 ↔ (𝐴 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (π΄β€˜0) ∈ 𝐷 ∧ βˆ€π‘Ž ∈ (1..^(β™―β€˜π΄))(π΄β€˜π‘Ž) ∈ ran (π‘‡β€˜(π΄β€˜(π‘Ž βˆ’ 1)))))
109simp1bi 1145 . . . . . . . 8 (𝐴 ∈ dom 𝑆 β†’ 𝐴 ∈ (Word π‘Š βˆ– {βˆ…}))
11 eldifsn 4789 . . . . . . . . 9 (𝐴 ∈ (Word π‘Š βˆ– {βˆ…}) ↔ (𝐴 ∈ Word π‘Š ∧ 𝐴 β‰  βˆ…))
12 lennncl 14480 . . . . . . . . 9 ((𝐴 ∈ Word π‘Š ∧ 𝐴 β‰  βˆ…) β†’ (β™―β€˜π΄) ∈ β„•)
1311, 12sylbi 216 . . . . . . . 8 (𝐴 ∈ (Word π‘Š βˆ– {βˆ…}) β†’ (β™―β€˜π΄) ∈ β„•)
1410, 13syl 17 . . . . . . 7 (𝐴 ∈ dom 𝑆 β†’ (β™―β€˜π΄) ∈ β„•)
15 elnn1uz2 12905 . . . . . . 7 ((β™―β€˜π΄) ∈ β„• ↔ ((β™―β€˜π΄) = 1 ∨ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)))
1614, 15sylib 217 . . . . . 6 (𝐴 ∈ dom 𝑆 β†’ ((β™―β€˜π΄) = 1 ∨ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)))
1716ord 862 . . . . 5 (𝐴 ∈ dom 𝑆 β†’ (Β¬ (β™―β€˜π΄) = 1 β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)))
1810eldifad 3959 . . . . . . . . . . 11 (𝐴 ∈ dom 𝑆 β†’ 𝐴 ∈ Word π‘Š)
1918adantr 481 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ 𝐴 ∈ Word π‘Š)
20 wrdf 14465 . . . . . . . . . 10 (𝐴 ∈ Word π‘Š β†’ 𝐴:(0..^(β™―β€˜π΄))βŸΆπ‘Š)
2119, 20syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ 𝐴:(0..^(β™―β€˜π΄))βŸΆπ‘Š)
22 1z 12588 . . . . . . . . . . . . . 14 1 ∈ β„€
23 simpr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2))
24 df-2 12271 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
2524fveq2i 6891 . . . . . . . . . . . . . . 15 (β„€β‰₯β€˜2) = (β„€β‰₯β€˜(1 + 1))
2623, 25eleqtrdi 2843 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜(1 + 1)))
27 eluzp1m1 12844 . . . . . . . . . . . . . 14 ((1 ∈ β„€ ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜(1 + 1))) β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ (β„€β‰₯β€˜1))
2822, 26, 27sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ (β„€β‰₯β€˜1))
29 nnuz 12861 . . . . . . . . . . . . 13 β„• = (β„€β‰₯β€˜1)
3028, 29eleqtrrdi 2844 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
31 lbfzo0 13668 . . . . . . . . . . . 12 (0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)) ↔ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
3230, 31sylibr 233 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ 0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
33 fzoend 13719 . . . . . . . . . . 11 (0 ∈ (0..^((β™―β€˜π΄) βˆ’ 1)) β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΄) βˆ’ 1)))
34 elfzofz 13644 . . . . . . . . . . 11 ((((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^((β™―β€˜π΄) βˆ’ 1)) β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΄) βˆ’ 1)))
3532, 33, 343syl 18 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0...((β™―β€˜π΄) βˆ’ 1)))
36 eluzelz 12828 . . . . . . . . . . . 12 ((β™―β€˜π΄) ∈ (β„€β‰₯β€˜2) β†’ (β™―β€˜π΄) ∈ β„€)
3736adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (β™―β€˜π΄) ∈ β„€)
38 fzoval 13629 . . . . . . . . . . 11 ((β™―β€˜π΄) ∈ β„€ β†’ (0..^(β™―β€˜π΄)) = (0...((β™―β€˜π΄) βˆ’ 1)))
3937, 38syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (0..^(β™―β€˜π΄)) = (0...((β™―β€˜π΄) βˆ’ 1)))
4035, 39eleqtrrd 2836 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (((β™―β€˜π΄) βˆ’ 1) βˆ’ 1) ∈ (0..^(β™―β€˜π΄)))
4121, 40ffvelcdmd 7084 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ π‘Š)
42 uz2m1nn 12903 . . . . . . . . 9 ((β™―β€˜π΄) ∈ (β„€β‰₯β€˜2) β†’ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•)
434, 5, 6, 7, 2, 8efgsdmi 19594 . . . . . . . . 9 ((𝐴 ∈ dom 𝑆 ∧ ((β™―β€˜π΄) βˆ’ 1) ∈ β„•) β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
4442, 43sylan2 593 . . . . . . . 8 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
45 fveq2 6888 . . . . . . . . . 10 (π‘Ž = (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) β†’ (π‘‡β€˜π‘Ž) = (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
4645rneqd 5935 . . . . . . . . 9 (π‘Ž = (π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) β†’ ran (π‘‡β€˜π‘Ž) = ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1))))
4746eliuni 5002 . . . . . . . 8 (((π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)) ∈ π‘Š ∧ (π‘†β€˜π΄) ∈ ran (π‘‡β€˜(π΄β€˜(((β™―β€˜π΄) βˆ’ 1) βˆ’ 1)))) β†’ (π‘†β€˜π΄) ∈ βˆͺ π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž))
4841, 44, 47syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (π‘†β€˜π΄) ∈ βˆͺ π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž))
49 fveq2 6888 . . . . . . . . 9 (π‘Ž = π‘₯ β†’ (π‘‡β€˜π‘Ž) = (π‘‡β€˜π‘₯))
5049rneqd 5935 . . . . . . . 8 (π‘Ž = π‘₯ β†’ ran (π‘‡β€˜π‘Ž) = ran (π‘‡β€˜π‘₯))
5150cbviunv 5042 . . . . . . 7 βˆͺ π‘Ž ∈ π‘Š ran (π‘‡β€˜π‘Ž) = βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)
5248, 51eleqtrdi 2843 . . . . . 6 ((𝐴 ∈ dom 𝑆 ∧ (β™―β€˜π΄) ∈ (β„€β‰₯β€˜2)) β†’ (π‘†β€˜π΄) ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
5352ex 413 . . . . 5 (𝐴 ∈ dom 𝑆 β†’ ((β™―β€˜π΄) ∈ (β„€β‰₯β€˜2) β†’ (π‘†β€˜π΄) ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)))
5417, 53syld 47 . . . 4 (𝐴 ∈ dom 𝑆 β†’ (Β¬ (β™―β€˜π΄) = 1 β†’ (π‘†β€˜π΄) ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)))
5554con1d 145 . . 3 (𝐴 ∈ dom 𝑆 β†’ (Β¬ (π‘†β€˜π΄) ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯) β†’ (β™―β€˜π΄) = 1))
563, 55syl5 34 . 2 (𝐴 ∈ dom 𝑆 β†’ ((π‘†β€˜π΄) ∈ 𝐷 β†’ (β™―β€˜π΄) = 1))
579simp2bi 1146 . . . 4 (𝐴 ∈ dom 𝑆 β†’ (π΄β€˜0) ∈ 𝐷)
58 oveq1 7412 . . . . . . 7 ((β™―β€˜π΄) = 1 β†’ ((β™―β€˜π΄) βˆ’ 1) = (1 βˆ’ 1))
59 1m1e0 12280 . . . . . . 7 (1 βˆ’ 1) = 0
6058, 59eqtrdi 2788 . . . . . 6 ((β™―β€˜π΄) = 1 β†’ ((β™―β€˜π΄) βˆ’ 1) = 0)
6160fveq2d 6892 . . . . 5 ((β™―β€˜π΄) = 1 β†’ (π΄β€˜((β™―β€˜π΄) βˆ’ 1)) = (π΄β€˜0))
6261eleq1d 2818 . . . 4 ((β™―β€˜π΄) = 1 β†’ ((π΄β€˜((β™―β€˜π΄) βˆ’ 1)) ∈ 𝐷 ↔ (π΄β€˜0) ∈ 𝐷))
6357, 62syl5ibrcom 246 . . 3 (𝐴 ∈ dom 𝑆 β†’ ((β™―β€˜π΄) = 1 β†’ (π΄β€˜((β™―β€˜π΄) βˆ’ 1)) ∈ 𝐷))
644, 5, 6, 7, 2, 8efgsval 19593 . . . 4 (𝐴 ∈ dom 𝑆 β†’ (π‘†β€˜π΄) = (π΄β€˜((β™―β€˜π΄) βˆ’ 1)))
6564eleq1d 2818 . . 3 (𝐴 ∈ dom 𝑆 β†’ ((π‘†β€˜π΄) ∈ 𝐷 ↔ (π΄β€˜((β™―β€˜π΄) βˆ’ 1)) ∈ 𝐷))
6663, 65sylibrd 258 . 2 (𝐴 ∈ dom 𝑆 β†’ ((β™―β€˜π΄) = 1 β†’ (π‘†β€˜π΄) ∈ 𝐷))
6756, 66impbid 211 1 (𝐴 ∈ dom 𝑆 β†’ ((π‘†β€˜π΄) ∈ 𝐷 ↔ (β™―β€˜π΄) = 1))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432   βˆ– cdif 3944  βˆ…c0 4321  {csn 4627  βŸ¨cop 4633  βŸ¨cotp 4635  βˆͺ ciun 4996   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  dom cdm 5675  ran crn 5676  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  1oc1o 8455  2oc2o 8456  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460   splice csplice 14695  βŸ¨β€œcs2 14788   ~FG cefg 19568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461
This theorem is referenced by:  efgredlema  19602  efgredeu  19614
  Copyright terms: Public domain W3C validator