Step | Hyp | Ref
| Expression |
1 | | eldifn 4126 |
. . . 4
β’ ((πβπ΄) β (π β βͺ
π₯ β π ran (πβπ₯)) β Β¬ (πβπ΄) β βͺ
π₯ β π ran (πβπ₯)) |
2 | | efgred.d |
. . . 4
β’ π· = (π β βͺ
π₯ β π ran (πβπ₯)) |
3 | 1, 2 | eleq2s 2851 |
. . 3
β’ ((πβπ΄) β π· β Β¬ (πβπ΄) β βͺ
π₯ β π ran (πβπ₯)) |
4 | | efgval.w |
. . . . . . . . . 10
β’ π = ( I βWord (πΌ Γ
2o)) |
5 | | efgval.r |
. . . . . . . . . 10
β’ βΌ = (
~FG βπΌ) |
6 | | efgval2.m |
. . . . . . . . . 10
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
7 | | efgval2.t |
. . . . . . . . . 10
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
8 | | efgred.s |
. . . . . . . . . 10
β’ π = (π β {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
9 | 4, 5, 6, 7, 2, 8 | efgsdm 19592 |
. . . . . . . . 9
β’ (π΄ β dom π β (π΄ β (Word π β {β
}) β§ (π΄β0) β π· β§ βπ β (1..^(β―βπ΄))(π΄βπ) β ran (πβ(π΄β(π β 1))))) |
10 | 9 | simp1bi 1145 |
. . . . . . . 8
β’ (π΄ β dom π β π΄ β (Word π β {β
})) |
11 | | eldifsn 4789 |
. . . . . . . . 9
β’ (π΄ β (Word π β {β
}) β (π΄ β Word π β§ π΄ β β
)) |
12 | | lennncl 14480 |
. . . . . . . . 9
β’ ((π΄ β Word π β§ π΄ β β
) β (β―βπ΄) β
β) |
13 | 11, 12 | sylbi 216 |
. . . . . . . 8
β’ (π΄ β (Word π β {β
}) β
(β―βπ΄) β
β) |
14 | 10, 13 | syl 17 |
. . . . . . 7
β’ (π΄ β dom π β (β―βπ΄) β β) |
15 | | elnn1uz2 12905 |
. . . . . . 7
β’
((β―βπ΄)
β β β ((β―βπ΄) = 1 β¨ (β―βπ΄) β
(β€β₯β2))) |
16 | 14, 15 | sylib 217 |
. . . . . 6
β’ (π΄ β dom π β ((β―βπ΄) = 1 β¨ (β―βπ΄) β
(β€β₯β2))) |
17 | 16 | ord 862 |
. . . . 5
β’ (π΄ β dom π β (Β¬ (β―βπ΄) = 1 β
(β―βπ΄) β
(β€β₯β2))) |
18 | 10 | eldifad 3959 |
. . . . . . . . . . 11
β’ (π΄ β dom π β π΄ β Word π) |
19 | 18 | adantr 481 |
. . . . . . . . . 10
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β π΄ β Word π) |
20 | | wrdf 14465 |
. . . . . . . . . 10
β’ (π΄ β Word π β π΄:(0..^(β―βπ΄))βΆπ) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β π΄:(0..^(β―βπ΄))βΆπ) |
22 | | 1z 12588 |
. . . . . . . . . . . . . 14
β’ 1 β
β€ |
23 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (β―βπ΄)
β (β€β₯β2)) |
24 | | df-2 12271 |
. . . . . . . . . . . . . . . 16
β’ 2 = (1 +
1) |
25 | 24 | fveq2i 6891 |
. . . . . . . . . . . . . . 15
β’
(β€β₯β2) = (β€β₯β(1 +
1)) |
26 | 23, 25 | eleqtrdi 2843 |
. . . . . . . . . . . . . 14
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (β―βπ΄)
β (β€β₯β(1 + 1))) |
27 | | eluzp1m1 12844 |
. . . . . . . . . . . . . 14
β’ ((1
β β€ β§ (β―βπ΄) β (β€β₯β(1 +
1))) β ((β―βπ΄) β 1) β
(β€β₯β1)) |
28 | 22, 26, 27 | sylancr 587 |
. . . . . . . . . . . . 13
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β ((β―βπ΄)
β 1) β (β€β₯β1)) |
29 | | nnuz 12861 |
. . . . . . . . . . . . 13
β’ β =
(β€β₯β1) |
30 | 28, 29 | eleqtrrdi 2844 |
. . . . . . . . . . . 12
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β ((β―βπ΄)
β 1) β β) |
31 | | lbfzo0 13668 |
. . . . . . . . . . . 12
β’ (0 β
(0..^((β―βπ΄)
β 1)) β ((β―βπ΄) β 1) β
β) |
32 | 30, 31 | sylibr 233 |
. . . . . . . . . . 11
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β 0 β (0..^((β―βπ΄) β 1))) |
33 | | fzoend 13719 |
. . . . . . . . . . 11
β’ (0 β
(0..^((β―βπ΄)
β 1)) β (((β―βπ΄) β 1) β 1) β
(0..^((β―βπ΄)
β 1))) |
34 | | elfzofz 13644 |
. . . . . . . . . . 11
β’
((((β―βπ΄)
β 1) β 1) β (0..^((β―βπ΄) β 1)) β (((β―βπ΄) β 1) β 1) β
(0...((β―βπ΄)
β 1))) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . 10
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (((β―βπ΄)
β 1) β 1) β (0...((β―βπ΄) β 1))) |
36 | | eluzelz 12828 |
. . . . . . . . . . . 12
β’
((β―βπ΄)
β (β€β₯β2) β (β―βπ΄) β β€) |
37 | 36 | adantl 482 |
. . . . . . . . . . 11
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (β―βπ΄)
β β€) |
38 | | fzoval 13629 |
. . . . . . . . . . 11
β’
((β―βπ΄)
β β€ β (0..^(β―βπ΄)) = (0...((β―βπ΄) β 1))) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (0..^(β―βπ΄)) = (0...((β―βπ΄) β 1))) |
40 | 35, 39 | eleqtrrd 2836 |
. . . . . . . . 9
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (((β―βπ΄)
β 1) β 1) β (0..^(β―βπ΄))) |
41 | 21, 40 | ffvelcdmd 7084 |
. . . . . . . 8
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (π΄β(((β―βπ΄) β 1) β 1)) β π) |
42 | | uz2m1nn 12903 |
. . . . . . . . 9
β’
((β―βπ΄)
β (β€β₯β2) β ((β―βπ΄) β 1) β
β) |
43 | 4, 5, 6, 7, 2, 8 | efgsdmi 19594 |
. . . . . . . . 9
β’ ((π΄ β dom π β§ ((β―βπ΄) β 1) β β) β (πβπ΄) β ran (πβ(π΄β(((β―βπ΄) β 1) β 1)))) |
44 | 42, 43 | sylan2 593 |
. . . . . . . 8
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (πβπ΄) β ran (πβ(π΄β(((β―βπ΄) β 1) β 1)))) |
45 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = (π΄β(((β―βπ΄) β 1) β 1)) β (πβπ) = (πβ(π΄β(((β―βπ΄) β 1) β 1)))) |
46 | 45 | rneqd 5935 |
. . . . . . . . 9
β’ (π = (π΄β(((β―βπ΄) β 1) β 1)) β ran (πβπ) = ran (πβ(π΄β(((β―βπ΄) β 1) β 1)))) |
47 | 46 | eliuni 5002 |
. . . . . . . 8
β’ (((π΄β(((β―βπ΄) β 1) β 1)) β
π β§ (πβπ΄) β ran (πβ(π΄β(((β―βπ΄) β 1) β 1)))) β (πβπ΄) β βͺ
π β π ran (πβπ)) |
48 | 41, 44, 47 | syl2anc 584 |
. . . . . . 7
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (πβπ΄) β βͺ π β π ran (πβπ)) |
49 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = π₯ β (πβπ) = (πβπ₯)) |
50 | 49 | rneqd 5935 |
. . . . . . . 8
β’ (π = π₯ β ran (πβπ) = ran (πβπ₯)) |
51 | 50 | cbviunv 5042 |
. . . . . . 7
β’ βͺ π β π ran (πβπ) = βͺ π₯ β π ran (πβπ₯) |
52 | 48, 51 | eleqtrdi 2843 |
. . . . . 6
β’ ((π΄ β dom π β§ (β―βπ΄) β (β€β₯β2))
β (πβπ΄) β βͺ π₯ β π ran (πβπ₯)) |
53 | 52 | ex 413 |
. . . . 5
β’ (π΄ β dom π β ((β―βπ΄) β (β€β₯β2)
β (πβπ΄) β βͺ π₯ β π ran (πβπ₯))) |
54 | 17, 53 | syld 47 |
. . . 4
β’ (π΄ β dom π β (Β¬ (β―βπ΄) = 1 β (πβπ΄) β βͺ
π₯ β π ran (πβπ₯))) |
55 | 54 | con1d 145 |
. . 3
β’ (π΄ β dom π β (Β¬ (πβπ΄) β βͺ
π₯ β π ran (πβπ₯) β (β―βπ΄) = 1)) |
56 | 3, 55 | syl5 34 |
. 2
β’ (π΄ β dom π β ((πβπ΄) β π· β (β―βπ΄) = 1)) |
57 | 9 | simp2bi 1146 |
. . . 4
β’ (π΄ β dom π β (π΄β0) β π·) |
58 | | oveq1 7412 |
. . . . . . 7
β’
((β―βπ΄) =
1 β ((β―βπ΄)
β 1) = (1 β 1)) |
59 | | 1m1e0 12280 |
. . . . . . 7
β’ (1
β 1) = 0 |
60 | 58, 59 | eqtrdi 2788 |
. . . . . 6
β’
((β―βπ΄) =
1 β ((β―βπ΄)
β 1) = 0) |
61 | 60 | fveq2d 6892 |
. . . . 5
β’
((β―βπ΄) =
1 β (π΄β((β―βπ΄) β 1)) = (π΄β0)) |
62 | 61 | eleq1d 2818 |
. . . 4
β’
((β―βπ΄) =
1 β ((π΄β((β―βπ΄) β 1)) β π· β (π΄β0) β π·)) |
63 | 57, 62 | syl5ibrcom 246 |
. . 3
β’ (π΄ β dom π β ((β―βπ΄) = 1 β (π΄β((β―βπ΄) β 1)) β π·)) |
64 | 4, 5, 6, 7, 2, 8 | efgsval 19593 |
. . . 4
β’ (π΄ β dom π β (πβπ΄) = (π΄β((β―βπ΄) β 1))) |
65 | 64 | eleq1d 2818 |
. . 3
β’ (π΄ β dom π β ((πβπ΄) β π· β (π΄β((β―βπ΄) β 1)) β π·)) |
66 | 63, 65 | sylibrd 258 |
. 2
β’ (π΄ β dom π β ((β―βπ΄) = 1 β (πβπ΄) β π·)) |
67 | 56, 66 | impbid 211 |
1
β’ (π΄ β dom π β ((πβπ΄) β π· β (β―βπ΄) = 1)) |