Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoafg Structured version   Visualization version   GIF version

Theorem ofoafg 43350
Description: Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoafg (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷m 𝐴) × (𝐸m 𝐵))):((𝐷m 𝐴) × (𝐸m 𝐵))⟶(𝐹m 𝐶))
Distinct variable groups:   𝐶,𝑑   𝐷,𝑑   𝐸,𝑑
Allowed substitution hints:   𝐴(𝑑)   𝐵(𝑑)   𝐹(𝑑)   𝑉(𝑑)   𝑊(𝑑)

Proof of Theorem ofoafg
Dummy variables 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸)) → 𝐷 ∈ On)
2 simp1 1136 . . . . 5 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → 𝐴𝑉)
3 elmapg 8815 . . . . 5 ((𝐷 ∈ On ∧ 𝐴𝑉) → (𝑓 ∈ (𝐷m 𝐴) ↔ 𝑓:𝐴𝐷))
41, 2, 3syl2anr 597 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → (𝑓 ∈ (𝐷m 𝐴) ↔ 𝑓:𝐴𝐷))
5 simp2 1137 . . . . . . . . 9 ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸)) → 𝐸 ∈ On)
6 simp2 1137 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → 𝐵𝑊)
7 elmapg 8815 . . . . . . . . 9 ((𝐸 ∈ On ∧ 𝐵𝑊) → (𝑔 ∈ (𝐸m 𝐵) ↔ 𝑔:𝐵𝐸))
85, 6, 7syl2anr 597 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → (𝑔 ∈ (𝐸m 𝐵) ↔ 𝑔:𝐵𝐸))
98adantr 480 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴𝐷) → (𝑔 ∈ (𝐸m 𝐵) ↔ 𝑔:𝐵𝐸))
10 simpl 482 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐷𝑔:𝐵𝐸) → 𝑓:𝐴𝐷)
1110ffnd 6692 . . . . . . . . . . . . 13 ((𝑓:𝐴𝐷𝑔:𝐵𝐸) → 𝑓 Fn 𝐴)
1211adantl 481 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝑓 Fn 𝐴)
13 simpr 484 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐷𝑔:𝐵𝐸) → 𝑔:𝐵𝐸)
1413ffnd 6692 . . . . . . . . . . . . 13 ((𝑓:𝐴𝐷𝑔:𝐵𝐸) → 𝑔 Fn 𝐵)
1514adantl 481 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝑔 Fn 𝐵)
162ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝐴𝑉)
176ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝐵𝑊)
18 eqid 2730 . . . . . . . . . . . 12 (𝐴𝐵) = (𝐴𝐵)
1912, 15, 16, 17, 18offn 7669 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓f +o 𝑔) Fn (𝐴𝐵))
20 simp3 1138 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → 𝐶 = (𝐴𝐵))
2120fneq2d 6615 . . . . . . . . . . . 12 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → ((𝑓f +o 𝑔) Fn 𝐶 ↔ (𝑓f +o 𝑔) Fn (𝐴𝐵)))
2221ad2antrr 726 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓f +o 𝑔) Fn 𝐶 ↔ (𝑓f +o 𝑔) Fn (𝐴𝐵)))
2319, 22mpbird 257 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓f +o 𝑔) Fn 𝐶)
24 fresin 6732 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴𝐷 → (𝑓𝐶):(𝐴𝐶)⟶𝐷)
2524adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑓:𝐴𝐷𝑔:𝐵𝐸) → (𝑓𝐶):(𝐴𝐶)⟶𝐷)
2625adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓𝐶):(𝐴𝐶)⟶𝐷)
27 inss1 4203 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵) ⊆ 𝐴
2820, 27eqsstrdi 3994 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → 𝐶𝐴)
29 sseqin2 4189 . . . . . . . . . . . . . . . . . . . 20 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
3028, 29sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → (𝐴𝐶) = 𝐶)
3130ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝐴𝐶) = 𝐶)
3231feq2d 6675 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓𝐶):(𝐴𝐶)⟶𝐷 ↔ (𝑓𝐶):𝐶𝐷))
3326, 32mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓𝐶):𝐶𝐷)
3433ffvelcdmda 7059 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → ((𝑓𝐶)‘𝑐) ∈ 𝐷)
355ad3antlr 731 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → 𝐸 ∈ On)
361ad3antlr 731 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → 𝐷 ∈ On)
37 onelon 6360 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ On ∧ ((𝑓𝐶)‘𝑐) ∈ 𝐷) → ((𝑓𝐶)‘𝑐) ∈ On)
3836, 34, 37syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → ((𝑓𝐶)‘𝑐) ∈ On)
39 fresin 6732 . . . . . . . . . . . . . . . . . . . 20 (𝑔:𝐵𝐸 → (𝑔𝐶):(𝐵𝐶)⟶𝐸)
4039adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴𝐷𝑔:𝐵𝐸) → (𝑔𝐶):(𝐵𝐶)⟶𝐸)
4140adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑔𝐶):(𝐵𝐶)⟶𝐸)
42 inss2 4204 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝐵) ⊆ 𝐵
4320, 42eqsstrdi 3994 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → 𝐶𝐵)
44 sseqin2 4189 . . . . . . . . . . . . . . . . . . . . 21 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐶)
4543, 44sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → (𝐵𝐶) = 𝐶)
4645ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝐵𝐶) = 𝐶)
4746feq2d 6675 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑔𝐶):(𝐵𝐶)⟶𝐸 ↔ (𝑔𝐶):𝐶𝐸))
4841, 47mpbid 232 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑔𝐶):𝐶𝐸)
4948ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → ((𝑔𝐶)‘𝑐) ∈ 𝐸)
50 oaordi 8513 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ On ∧ ((𝑓𝐶)‘𝑐) ∈ On) → (((𝑔𝐶)‘𝑐) ∈ 𝐸 → (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)) ∈ (((𝑓𝐶)‘𝑐) +o 𝐸)))
5150imp 406 . . . . . . . . . . . . . . . 16 (((𝐸 ∈ On ∧ ((𝑓𝐶)‘𝑐) ∈ On) ∧ ((𝑔𝐶)‘𝑐) ∈ 𝐸) → (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)) ∈ (((𝑓𝐶)‘𝑐) +o 𝐸))
5235, 38, 49, 51syl21anc 837 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)) ∈ (((𝑓𝐶)‘𝑐) +o 𝐸))
53 oveq1 7397 . . . . . . . . . . . . . . . 16 (𝑑 = ((𝑓𝐶)‘𝑐) → (𝑑 +o 𝐸) = (((𝑓𝐶)‘𝑐) +o 𝐸))
5453eliuni 4964 . . . . . . . . . . . . . . 15 ((((𝑓𝐶)‘𝑐) ∈ 𝐷 ∧ (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)) ∈ (((𝑓𝐶)‘𝑐) +o 𝐸)) → (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)) ∈ 𝑑𝐷 (𝑑 +o 𝐸))
5534, 52, 54syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)) ∈ 𝑑𝐷 (𝑑 +o 𝐸))
5612, 15, 16, 17, 18ofres 7675 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓f +o 𝑔) = ((𝑓 ↾ (𝐴𝐵)) ∘f +o (𝑔 ↾ (𝐴𝐵))))
5720reseq2d 5953 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → (𝑓𝐶) = (𝑓 ↾ (𝐴𝐵)))
5820reseq2d 5953 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → (𝑔𝐶) = (𝑔 ↾ (𝐴𝐵)))
5957, 58oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → ((𝑓𝐶) ∘f +o (𝑔𝐶)) = ((𝑓 ↾ (𝐴𝐵)) ∘f +o (𝑔 ↾ (𝐴𝐵))))
6059ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓𝐶) ∘f +o (𝑔𝐶)) = ((𝑓 ↾ (𝐴𝐵)) ∘f +o (𝑔 ↾ (𝐴𝐵))))
6156, 60eqtr4d 2768 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓f +o 𝑔) = ((𝑓𝐶) ∘f +o (𝑔𝐶)))
6261fveq1d 6863 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓f +o 𝑔)‘𝑐) = (((𝑓𝐶) ∘f +o (𝑔𝐶))‘𝑐))
6362adantr 480 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → ((𝑓f +o 𝑔)‘𝑐) = (((𝑓𝐶) ∘f +o (𝑔𝐶))‘𝑐))
6428ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝐶𝐴)
6512, 64fnssresd 6645 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓𝐶) Fn 𝐶)
6643ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝐶𝐵)
6715, 66fnssresd 6645 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑔𝐶) Fn 𝐶)
6865, 67jca 511 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓𝐶) Fn 𝐶 ∧ (𝑔𝐶) Fn 𝐶))
69 inex1g 5277 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝑉 → (𝐴𝐵) ∈ V)
702, 69syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → (𝐴𝐵) ∈ V)
7120, 70eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) → 𝐶 ∈ V)
7271ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝐶 ∈ V)
7372anim1i 615 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → (𝐶 ∈ V ∧ 𝑐𝐶))
74 fnfvof 7673 . . . . . . . . . . . . . . . 16 ((((𝑓𝐶) Fn 𝐶 ∧ (𝑔𝐶) Fn 𝐶) ∧ (𝐶 ∈ V ∧ 𝑐𝐶)) → (((𝑓𝐶) ∘f +o (𝑔𝐶))‘𝑐) = (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)))
7568, 73, 74syl2an2r 685 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → (((𝑓𝐶) ∘f +o (𝑔𝐶))‘𝑐) = (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)))
7663, 75eqtrd 2765 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → ((𝑓f +o 𝑔)‘𝑐) = (((𝑓𝐶)‘𝑐) +o ((𝑔𝐶)‘𝑐)))
77 simp3 1138 . . . . . . . . . . . . . . 15 ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸)) → 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))
7877ad3antlr 731 . . . . . . . . . . . . . 14 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))
7955, 76, 783eltr4d 2844 . . . . . . . . . . . . 13 (((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) ∧ 𝑐𝐶) → ((𝑓f +o 𝑔)‘𝑐) ∈ 𝐹)
8079ralrimiva 3126 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ∀𝑐𝐶 ((𝑓f +o 𝑔)‘𝑐) ∈ 𝐹)
81 fnfvrnss 7096 . . . . . . . . . . . 12 (((𝑓f +o 𝑔) Fn 𝐶 ∧ ∀𝑐𝐶 ((𝑓f +o 𝑔)‘𝑐) ∈ 𝐹) → ran (𝑓f +o 𝑔) ⊆ 𝐹)
8280, 81sylan2 593 . . . . . . . . . . 11 (((𝑓f +o 𝑔) Fn 𝐶 ∧ (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸))) → ran (𝑓f +o 𝑔) ⊆ 𝐹)
8382expcom 413 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓f +o 𝑔) Fn 𝐶 → ran (𝑓f +o 𝑔) ⊆ 𝐹))
8423, 83jcai 516 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓f +o 𝑔) Fn 𝐶 ∧ ran (𝑓f +o 𝑔) ⊆ 𝐹))
85 onelon 6360 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ On ∧ 𝑑𝐷) → 𝑑 ∈ On)
8685adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ On ∧ 𝐸 ∈ On) ∧ 𝑑𝐷) → 𝑑 ∈ On)
87 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ On ∧ 𝐸 ∈ On) → 𝐸 ∈ On)
8887adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐷 ∈ On ∧ 𝐸 ∈ On) ∧ 𝑑𝐷) → 𝐸 ∈ On)
89 oacl 8502 . . . . . . . . . . . . . . . . . 18 ((𝑑 ∈ On ∧ 𝐸 ∈ On) → (𝑑 +o 𝐸) ∈ On)
9086, 88, 89syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ On ∧ 𝐸 ∈ On) ∧ 𝑑𝐷) → (𝑑 +o 𝐸) ∈ On)
9190ralrimiva 3126 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ On ∧ 𝐸 ∈ On) → ∀𝑑𝐷 (𝑑 +o 𝐸) ∈ On)
92 iunon 8311 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ On ∧ ∀𝑑𝐷 (𝑑 +o 𝐸) ∈ On) → 𝑑𝐷 (𝑑 +o 𝐸) ∈ On)
9391, 92syldan 591 . . . . . . . . . . . . . . 15 ((𝐷 ∈ On ∧ 𝐸 ∈ On) → 𝑑𝐷 (𝑑 +o 𝐸) ∈ On)
94933adant3 1132 . . . . . . . . . . . . . 14 ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸)) → 𝑑𝐷 (𝑑 +o 𝐸) ∈ On)
9577, 94eqeltrd 2829 . . . . . . . . . . . . 13 ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸)) → 𝐹 ∈ On)
9695adantl 481 . . . . . . . . . . . 12 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → 𝐹 ∈ On)
9796adantr 480 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → 𝐹 ∈ On)
9897, 72elmapd 8816 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓f +o 𝑔) ∈ (𝐹m 𝐶) ↔ (𝑓f +o 𝑔):𝐶𝐹))
99 df-f 6518 . . . . . . . . . 10 ((𝑓f +o 𝑔):𝐶𝐹 ↔ ((𝑓f +o 𝑔) Fn 𝐶 ∧ ran (𝑓f +o 𝑔) ⊆ 𝐹))
10098, 99bitrdi 287 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → ((𝑓f +o 𝑔) ∈ (𝐹m 𝐶) ↔ ((𝑓f +o 𝑔) Fn 𝐶 ∧ ran (𝑓f +o 𝑔) ⊆ 𝐹)))
10184, 100mpbird 257 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴𝐷𝑔:𝐵𝐸)) → (𝑓f +o 𝑔) ∈ (𝐹m 𝐶))
102101expr 456 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴𝐷) → (𝑔:𝐵𝐸 → (𝑓f +o 𝑔) ∈ (𝐹m 𝐶)))
1039, 102sylbid 240 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴𝐷) → (𝑔 ∈ (𝐸m 𝐵) → (𝑓f +o 𝑔) ∈ (𝐹m 𝐶)))
104103ralrimiv 3125 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴𝐷) → ∀𝑔 ∈ (𝐸m 𝐵)(𝑓f +o 𝑔) ∈ (𝐹m 𝐶))
105104ex 412 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → (𝑓:𝐴𝐷 → ∀𝑔 ∈ (𝐸m 𝐵)(𝑓f +o 𝑔) ∈ (𝐹m 𝐶)))
1064, 105sylbid 240 . . 3 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → (𝑓 ∈ (𝐷m 𝐴) → ∀𝑔 ∈ (𝐸m 𝐵)(𝑓f +o 𝑔) ∈ (𝐹m 𝐶)))
107106ralrimiv 3125 . 2 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → ∀𝑓 ∈ (𝐷m 𝐴)∀𝑔 ∈ (𝐸m 𝐵)(𝑓f +o 𝑔) ∈ (𝐹m 𝐶))
108 ofmres 7966 . . 3 ( ∘f +o ↾ ((𝐷m 𝐴) × (𝐸m 𝐵))) = (𝑓 ∈ (𝐷m 𝐴), 𝑔 ∈ (𝐸m 𝐵) ↦ (𝑓f +o 𝑔))
109108fmpo 8050 . 2 (∀𝑓 ∈ (𝐷m 𝐴)∀𝑔 ∈ (𝐸m 𝐵)(𝑓f +o 𝑔) ∈ (𝐹m 𝐶) ↔ ( ∘f +o ↾ ((𝐷m 𝐴) × (𝐸m 𝐵))):((𝐷m 𝐴) × (𝐸m 𝐵))⟶(𝐹m 𝐶))
110107, 109sylib 218 1 (((𝐴𝑉𝐵𝑊𝐶 = (𝐴𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = 𝑑𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷m 𝐴) × (𝐸m 𝐵))):((𝐷m 𝐴) × (𝐸m 𝐵))⟶(𝐹m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917   ciun 4958   × cxp 5639  ran crn 5642  cres 5643  Oncon0 6335   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654   +o coa 8434  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441  df-map 8804
This theorem is referenced by:  ofoaf  43351
  Copyright terms: Public domain W3C validator