Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . 5
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) → 𝐷 ∈ On) |
2 | | simp1 1136 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → 𝐴 ∈ 𝑉) |
3 | | elmapg 8659 |
. . . . 5
⊢ ((𝐷 ∈ On ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝐷 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐷)) |
4 | 1, 2, 3 | syl2anr 598 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → (𝑓 ∈ (𝐷 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝐷)) |
5 | | simp2 1137 |
. . . . . . . . 9
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) → 𝐸 ∈ On) |
6 | | simp2 1137 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → 𝐵 ∈ 𝑊) |
7 | | elmapg 8659 |
. . . . . . . . 9
⊢ ((𝐸 ∈ On ∧ 𝐵 ∈ 𝑊) → (𝑔 ∈ (𝐸 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐸)) |
8 | 5, 6, 7 | syl2anr 598 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → (𝑔 ∈ (𝐸 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐸)) |
9 | 8 | adantr 482 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴⟶𝐷) → (𝑔 ∈ (𝐸 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐸)) |
10 | | simpl 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸) → 𝑓:𝐴⟶𝐷) |
11 | 10 | ffnd 6631 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸) → 𝑓 Fn 𝐴) |
12 | 11 | adantl 483 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝑓 Fn 𝐴) |
13 | | simpr 486 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸) → 𝑔:𝐵⟶𝐸) |
14 | 13 | ffnd 6631 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸) → 𝑔 Fn 𝐵) |
15 | 14 | adantl 483 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝑔 Fn 𝐵) |
16 | 2 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝐴 ∈ 𝑉) |
17 | 6 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝐵 ∈ 𝑊) |
18 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) |
19 | 12, 15, 16, 17, 18 | offn 7578 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ∘f +o 𝑔) Fn (𝐴 ∩ 𝐵)) |
20 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → 𝐶 = (𝐴 ∩ 𝐵)) |
21 | 20 | fneq2d 6558 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → ((𝑓 ∘f +o 𝑔) Fn 𝐶 ↔ (𝑓 ∘f +o 𝑔) Fn (𝐴 ∩ 𝐵))) |
22 | 21 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ∘f +o 𝑔) Fn 𝐶 ↔ (𝑓 ∘f +o 𝑔) Fn (𝐴 ∩ 𝐵))) |
23 | 19, 22 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ∘f +o 𝑔) Fn 𝐶) |
24 | | fresin 6673 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝐴⟶𝐷 → (𝑓 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶𝐷) |
25 | 24 | adantr 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸) → (𝑓 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶𝐷) |
26 | 25 | adantl 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶𝐷) |
27 | | inss1 4168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
28 | 20, 27 | eqsstrdi 3980 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → 𝐶 ⊆ 𝐴) |
29 | | sseqin2 4155 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) |
30 | 28, 29 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → (𝐴 ∩ 𝐶) = 𝐶) |
31 | 30 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝐴 ∩ 𝐶) = 𝐶) |
32 | 31 | feq2d 6616 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ↾ 𝐶):(𝐴 ∩ 𝐶)⟶𝐷 ↔ (𝑓 ↾ 𝐶):𝐶⟶𝐷)) |
33 | 26, 32 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ↾ 𝐶):𝐶⟶𝐷) |
34 | 33 | ffvelcdmda 6993 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → ((𝑓 ↾ 𝐶)‘𝑐) ∈ 𝐷) |
35 | 5 | ad3antlr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → 𝐸 ∈ On) |
36 | 1 | ad3antlr 729 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → 𝐷 ∈ On) |
37 | | onelon 6306 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈ On ∧ ((𝑓 ↾ 𝐶)‘𝑐) ∈ 𝐷) → ((𝑓 ↾ 𝐶)‘𝑐) ∈ On) |
38 | 36, 34, 37 | syl2anc 585 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → ((𝑓 ↾ 𝐶)‘𝑐) ∈ On) |
39 | | fresin 6673 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔:𝐵⟶𝐸 → (𝑔 ↾ 𝐶):(𝐵 ∩ 𝐶)⟶𝐸) |
40 | 39 | adantl 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸) → (𝑔 ↾ 𝐶):(𝐵 ∩ 𝐶)⟶𝐸) |
41 | 40 | adantl 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑔 ↾ 𝐶):(𝐵 ∩ 𝐶)⟶𝐸) |
42 | | inss2 4169 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
43 | 20, 42 | eqsstrdi 3980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → 𝐶 ⊆ 𝐵) |
44 | | sseqin2 4155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) |
45 | 43, 44 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → (𝐵 ∩ 𝐶) = 𝐶) |
46 | 45 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝐵 ∩ 𝐶) = 𝐶) |
47 | 46 | feq2d 6616 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑔 ↾ 𝐶):(𝐵 ∩ 𝐶)⟶𝐸 ↔ (𝑔 ↾ 𝐶):𝐶⟶𝐸)) |
48 | 41, 47 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑔 ↾ 𝐶):𝐶⟶𝐸) |
49 | 48 | ffvelcdmda 6993 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → ((𝑔 ↾ 𝐶)‘𝑐) ∈ 𝐸) |
50 | | oaordi 8408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸 ∈ On ∧ ((𝑓 ↾ 𝐶)‘𝑐) ∈ On) → (((𝑔 ↾ 𝐶)‘𝑐) ∈ 𝐸 → (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐)) ∈ (((𝑓 ↾ 𝐶)‘𝑐) +o 𝐸))) |
51 | 50 | imp 408 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸 ∈ On ∧ ((𝑓 ↾ 𝐶)‘𝑐) ∈ On) ∧ ((𝑔 ↾ 𝐶)‘𝑐) ∈ 𝐸) → (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐)) ∈ (((𝑓 ↾ 𝐶)‘𝑐) +o 𝐸)) |
52 | 35, 38, 49, 51 | syl21anc 836 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐)) ∈ (((𝑓 ↾ 𝐶)‘𝑐) +o 𝐸)) |
53 | | oveq1 7314 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = ((𝑓 ↾ 𝐶)‘𝑐) → (𝑑 +o 𝐸) = (((𝑓 ↾ 𝐶)‘𝑐) +o 𝐸)) |
54 | 53 | eliuni 4937 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ↾ 𝐶)‘𝑐) ∈ 𝐷 ∧ (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐)) ∈ (((𝑓 ↾ 𝐶)‘𝑐) +o 𝐸)) → (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐)) ∈ ∪
𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) |
55 | 34, 52, 54 | syl2anc 585 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐)) ∈ ∪
𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) |
56 | 12, 15, 16, 17, 18 | ofres 7584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ∘f +o 𝑔) = ((𝑓 ↾ (𝐴 ∩ 𝐵)) ∘f +o (𝑔 ↾ (𝐴 ∩ 𝐵)))) |
57 | 20 | reseq2d 5903 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → (𝑓 ↾ 𝐶) = (𝑓 ↾ (𝐴 ∩ 𝐵))) |
58 | 20 | reseq2d 5903 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → (𝑔 ↾ 𝐶) = (𝑔 ↾ (𝐴 ∩ 𝐵))) |
59 | 57, 58 | oveq12d 7325 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → ((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶)) = ((𝑓 ↾ (𝐴 ∩ 𝐵)) ∘f +o (𝑔 ↾ (𝐴 ∩ 𝐵)))) |
60 | 59 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶)) = ((𝑓 ↾ (𝐴 ∩ 𝐵)) ∘f +o (𝑔 ↾ (𝐴 ∩ 𝐵)))) |
61 | 56, 60 | eqtr4d 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ∘f +o 𝑔) = ((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶))) |
62 | 61 | fveq1d 6806 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ∘f +o 𝑔)‘𝑐) = (((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶))‘𝑐)) |
63 | 62 | adantr 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → ((𝑓 ∘f +o 𝑔)‘𝑐) = (((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶))‘𝑐)) |
64 | 28 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝐶 ⊆ 𝐴) |
65 | 12, 64 | fnssresd 6587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ↾ 𝐶) Fn 𝐶) |
66 | 43 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝐶 ⊆ 𝐵) |
67 | 15, 66 | fnssresd 6587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑔 ↾ 𝐶) Fn 𝐶) |
68 | 65, 67 | jca 513 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ↾ 𝐶) Fn 𝐶 ∧ (𝑔 ↾ 𝐶) Fn 𝐶)) |
69 | | inex1g 5252 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
70 | 2, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → (𝐴 ∩ 𝐵) ∈ V) |
71 | 20, 70 | eqeltrd 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) → 𝐶 ∈ V) |
72 | 71 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝐶 ∈ V) |
73 | 72 | anim1i 616 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → (𝐶 ∈ V ∧ 𝑐 ∈ 𝐶)) |
74 | | fnfvof 7582 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑓 ↾ 𝐶) Fn 𝐶 ∧ (𝑔 ↾ 𝐶) Fn 𝐶) ∧ (𝐶 ∈ V ∧ 𝑐 ∈ 𝐶)) → (((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶))‘𝑐) = (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐))) |
75 | 68, 73, 74 | syl2an2r 683 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → (((𝑓 ↾ 𝐶) ∘f +o (𝑔 ↾ 𝐶))‘𝑐) = (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐))) |
76 | 63, 75 | eqtrd 2776 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → ((𝑓 ∘f +o 𝑔)‘𝑐) = (((𝑓 ↾ 𝐶)‘𝑐) +o ((𝑔 ↾ 𝐶)‘𝑐))) |
77 | | simp3 1138 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) → 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) |
78 | 77 | ad3antlr 729 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) |
79 | 55, 76, 78 | 3eltr4d 2852 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) ∧ 𝑐 ∈ 𝐶) → ((𝑓 ∘f +o 𝑔)‘𝑐) ∈ 𝐹) |
80 | 79 | ralrimiva 3139 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ∀𝑐 ∈ 𝐶 ((𝑓 ∘f +o 𝑔)‘𝑐) ∈ 𝐹) |
81 | | fnfvrnss 7026 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∘f
+o 𝑔) Fn 𝐶 ∧ ∀𝑐 ∈ 𝐶 ((𝑓 ∘f +o 𝑔)‘𝑐) ∈ 𝐹) → ran (𝑓 ∘f +o 𝑔) ⊆ 𝐹) |
82 | 80, 81 | sylan2 594 |
. . . . . . . . . . 11
⊢ (((𝑓 ∘f
+o 𝑔) Fn 𝐶 ∧ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸))) → ran (𝑓 ∘f +o 𝑔) ⊆ 𝐹) |
83 | 82 | expcom 415 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ∘f +o 𝑔) Fn 𝐶 → ran (𝑓 ∘f +o 𝑔) ⊆ 𝐹)) |
84 | 23, 83 | jcai 518 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ∘f +o 𝑔) Fn 𝐶 ∧ ran (𝑓 ∘f +o 𝑔) ⊆ 𝐹)) |
85 | | onelon 6306 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ On ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ On) |
86 | 85 | adantlr 713 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ On ∧ 𝐸 ∈ On) ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ On) |
87 | | simpr 486 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On) → 𝐸 ∈ On) |
88 | 87 | adantr 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐷 ∈ On ∧ 𝐸 ∈ On) ∧ 𝑑 ∈ 𝐷) → 𝐸 ∈ On) |
89 | | oacl 8396 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ On ∧ 𝐸 ∈ On) → (𝑑 +o 𝐸) ∈ On) |
90 | 86, 88, 89 | syl2anc 585 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐷 ∈ On ∧ 𝐸 ∈ On) ∧ 𝑑 ∈ 𝐷) → (𝑑 +o 𝐸) ∈ On) |
91 | 90 | ralrimiva 3139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On) → ∀𝑑 ∈ 𝐷 (𝑑 +o 𝐸) ∈ On) |
92 | | iunon 8201 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ On ∧ ∀𝑑 ∈ 𝐷 (𝑑 +o 𝐸) ∈ On) → ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸) ∈ On) |
93 | 91, 92 | syldan 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On) → ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸) ∈ On) |
94 | 93 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) → ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸) ∈ On) |
95 | 77, 94 | eqeltrd 2837 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸)) → 𝐹 ∈ On) |
96 | 95 | adantl 483 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → 𝐹 ∈ On) |
97 | 96 | adantr 482 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → 𝐹 ∈ On) |
98 | 97, 72 | elmapd 8660 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶) ↔ (𝑓 ∘f +o 𝑔):𝐶⟶𝐹)) |
99 | | df-f 6462 |
. . . . . . . . . 10
⊢ ((𝑓 ∘f
+o 𝑔):𝐶⟶𝐹 ↔ ((𝑓 ∘f +o 𝑔) Fn 𝐶 ∧ ran (𝑓 ∘f +o 𝑔) ⊆ 𝐹)) |
100 | 98, 99 | bitrdi 287 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → ((𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶) ↔ ((𝑓 ∘f +o 𝑔) Fn 𝐶 ∧ ran (𝑓 ∘f +o 𝑔) ⊆ 𝐹))) |
101 | 84, 100 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ (𝑓:𝐴⟶𝐷 ∧ 𝑔:𝐵⟶𝐸)) → (𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶)) |
102 | 101 | expr 458 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴⟶𝐷) → (𝑔:𝐵⟶𝐸 → (𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶))) |
103 | 9, 102 | sylbid 239 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴⟶𝐷) → (𝑔 ∈ (𝐸 ↑m 𝐵) → (𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶))) |
104 | 103 | ralrimiv 3138 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) ∧ 𝑓:𝐴⟶𝐷) → ∀𝑔 ∈ (𝐸 ↑m 𝐵)(𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶)) |
105 | 104 | ex 414 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → (𝑓:𝐴⟶𝐷 → ∀𝑔 ∈ (𝐸 ↑m 𝐵)(𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶))) |
106 | 4, 105 | sylbid 239 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → (𝑓 ∈ (𝐷 ↑m 𝐴) → ∀𝑔 ∈ (𝐸 ↑m 𝐵)(𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶))) |
107 | 106 | ralrimiv 3138 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → ∀𝑓 ∈ (𝐷 ↑m 𝐴)∀𝑔 ∈ (𝐸 ↑m 𝐵)(𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶)) |
108 | | ofmres 7859 |
. . 3
⊢ (
∘f +o ↾ ((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))) = (𝑓 ∈ (𝐷 ↑m 𝐴), 𝑔 ∈ (𝐸 ↑m 𝐵) ↦ (𝑓 ∘f +o 𝑔)) |
109 | 108 | fmpo 7940 |
. 2
⊢
(∀𝑓 ∈
(𝐷 ↑m 𝐴)∀𝑔 ∈ (𝐸 ↑m 𝐵)(𝑓 ∘f +o 𝑔) ∈ (𝐹 ↑m 𝐶) ↔ ( ∘f +o
↾ ((𝐷
↑m 𝐴)
× (𝐸
↑m 𝐵))):((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐹 ↑m 𝐶)) |
110 | 107, 109 | sylib 217 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → ( ∘f
+o ↾ ((𝐷
↑m 𝐴)
× (𝐸
↑m 𝐵))):((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐹 ↑m 𝐶)) |