![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elprob | Structured version Visualization version GIF version |
Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
Ref | Expression |
---|---|
elprob | ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
2 | dmeq 5917 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
3 | 2 | unieqd 4925 | . . . 4 ⊢ (𝑝 = 𝑃 → ∪ dom 𝑝 = ∪ dom 𝑃) |
4 | 1, 3 | fveq12d 6914 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑝‘∪ dom 𝑝) = (𝑃‘∪ dom 𝑃)) |
5 | 4 | eqeq1d 2737 | . 2 ⊢ (𝑝 = 𝑃 → ((𝑝‘∪ dom 𝑝) = 1 ↔ (𝑃‘∪ dom 𝑃) = 1)) |
6 | df-prob 34390 | . 2 ⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | |
7 | 5, 6 | elrab2 3698 | 1 ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cuni 4912 dom cdm 5689 ran crn 5690 ‘cfv 6563 1c1 11154 measurescmeas 34176 Probcprb 34389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fv 6571 df-prob 34390 |
This theorem is referenced by: domprobmeas 34392 probtot 34394 probfinmeasb 34410 probfinmeasbALTV 34411 probmeasb 34412 dstrvprob 34453 |
Copyright terms: Public domain | W3C validator |