| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elprob | Structured version Visualization version GIF version | ||
| Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
| Ref | Expression |
|---|---|
| elprob | ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
| 2 | dmeq 5867 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
| 3 | 2 | unieqd 4884 | . . . 4 ⊢ (𝑝 = 𝑃 → ∪ dom 𝑝 = ∪ dom 𝑃) |
| 4 | 1, 3 | fveq12d 6865 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑝‘∪ dom 𝑝) = (𝑃‘∪ dom 𝑃)) |
| 5 | 4 | eqeq1d 2731 | . 2 ⊢ (𝑝 = 𝑃 → ((𝑝‘∪ dom 𝑝) = 1 ↔ (𝑃‘∪ dom 𝑃) = 1)) |
| 6 | df-prob 34399 | . 2 ⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | |
| 7 | 5, 6 | elrab2 3662 | 1 ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 dom cdm 5638 ran crn 5639 ‘cfv 6511 1c1 11069 measurescmeas 34185 Probcprb 34398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 df-iota 6464 df-fv 6519 df-prob 34399 |
| This theorem is referenced by: domprobmeas 34401 probtot 34403 probfinmeasb 34419 probfinmeasbALTV 34420 probmeasb 34421 dstrvprob 34463 |
| Copyright terms: Public domain | W3C validator |