![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elprob | Structured version Visualization version GIF version |
Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
Ref | Expression |
---|---|
elprob | ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
2 | dmeq 5906 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
3 | 2 | unieqd 4921 | . . . 4 ⊢ (𝑝 = 𝑃 → ∪ dom 𝑝 = ∪ dom 𝑃) |
4 | 1, 3 | fveq12d 6904 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑝‘∪ dom 𝑝) = (𝑃‘∪ dom 𝑃)) |
5 | 4 | eqeq1d 2730 | . 2 ⊢ (𝑝 = 𝑃 → ((𝑝‘∪ dom 𝑝) = 1 ↔ (𝑃‘∪ dom 𝑃) = 1)) |
6 | df-prob 34028 | . 2 ⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | |
7 | 5, 6 | elrab2 3685 | 1 ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cuni 4908 dom cdm 5678 ran crn 5679 ‘cfv 6548 1c1 11140 measurescmeas 33814 Probcprb 34027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-dm 5688 df-iota 6500 df-fv 6556 df-prob 34028 |
This theorem is referenced by: domprobmeas 34030 probtot 34032 probfinmeasb 34048 probfinmeasbALTV 34049 probmeasb 34050 dstrvprob 34091 |
Copyright terms: Public domain | W3C validator |