![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elprob | Structured version Visualization version GIF version |
Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
Ref | Expression |
---|---|
elprob | ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
2 | dmeq 5928 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
3 | 2 | unieqd 4944 | . . . 4 ⊢ (𝑝 = 𝑃 → ∪ dom 𝑝 = ∪ dom 𝑃) |
4 | 1, 3 | fveq12d 6927 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑝‘∪ dom 𝑝) = (𝑃‘∪ dom 𝑃)) |
5 | 4 | eqeq1d 2742 | . 2 ⊢ (𝑝 = 𝑃 → ((𝑝‘∪ dom 𝑝) = 1 ↔ (𝑃‘∪ dom 𝑃) = 1)) |
6 | df-prob 34373 | . 2 ⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | |
7 | 5, 6 | elrab2 3711 | 1 ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 dom cdm 5700 ran crn 5701 ‘cfv 6573 1c1 11185 measurescmeas 34159 Probcprb 34372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-dm 5710 df-iota 6525 df-fv 6581 df-prob 34373 |
This theorem is referenced by: domprobmeas 34375 probtot 34377 probfinmeasb 34393 probfinmeasbALTV 34394 probmeasb 34395 dstrvprob 34436 |
Copyright terms: Public domain | W3C validator |