| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elprob | Structured version Visualization version GIF version | ||
| Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
| Ref | Expression |
|---|---|
| elprob | ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) | |
| 2 | dmeq 5843 | . . . . 5 ⊢ (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃) | |
| 3 | 2 | unieqd 4872 | . . . 4 ⊢ (𝑝 = 𝑃 → ∪ dom 𝑝 = ∪ dom 𝑃) |
| 4 | 1, 3 | fveq12d 6829 | . . 3 ⊢ (𝑝 = 𝑃 → (𝑝‘∪ dom 𝑝) = (𝑃‘∪ dom 𝑃)) |
| 5 | 4 | eqeq1d 2733 | . 2 ⊢ (𝑝 = 𝑃 → ((𝑝‘∪ dom 𝑝) = 1 ↔ (𝑃‘∪ dom 𝑃) = 1)) |
| 6 | df-prob 34419 | . 2 ⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | |
| 7 | 5, 6 | elrab2 3650 | 1 ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cuni 4859 dom cdm 5616 ran crn 5617 ‘cfv 6481 1c1 11007 measurescmeas 34206 Probcprb 34418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-prob 34419 |
| This theorem is referenced by: domprobmeas 34421 probtot 34423 probfinmeasb 34439 probfinmeasbALTV 34440 probmeasb 34441 dstrvprob 34483 |
| Copyright terms: Public domain | W3C validator |