Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elprob Structured version   Visualization version   GIF version

Theorem elprob 34391
Description: The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Assertion
Ref Expression
elprob (𝑃 ∈ Prob ↔ (𝑃 ran measures ∧ (𝑃 dom 𝑃) = 1))

Proof of Theorem elprob
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑝 = 𝑃𝑝 = 𝑃)
2 dmeq 5917 . . . . 5 (𝑝 = 𝑃 → dom 𝑝 = dom 𝑃)
32unieqd 4925 . . . 4 (𝑝 = 𝑃 dom 𝑝 = dom 𝑃)
41, 3fveq12d 6914 . . 3 (𝑝 = 𝑃 → (𝑝 dom 𝑝) = (𝑃 dom 𝑃))
54eqeq1d 2737 . 2 (𝑝 = 𝑃 → ((𝑝 dom 𝑝) = 1 ↔ (𝑃 dom 𝑃) = 1))
6 df-prob 34390 . 2 Prob = {𝑝 ran measures ∣ (𝑝 dom 𝑝) = 1}
75, 6elrab2 3698 1 (𝑃 ∈ Prob ↔ (𝑃 ran measures ∧ (𝑃 dom 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106   cuni 4912  dom cdm 5689  ran crn 5690  cfv 6563  1c1 11154  measurescmeas 34176  Probcprb 34389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-prob 34390
This theorem is referenced by:  domprobmeas  34392  probtot  34394  probfinmeasb  34410  probfinmeasbALTV  34411  probmeasb  34412  dstrvprob  34453
  Copyright terms: Public domain W3C validator