| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > probfinmeasb | Structured version Visualization version GIF version | ||
| Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| probfinmeasb | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measdivcst 34191 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ (measures‘𝑆)) | |
| 2 | measfn 34171 | . . . . . . . 8 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀 Fn 𝑆) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → 𝑀 Fn 𝑆) |
| 4 | measbase 34164 | . . . . . . . 8 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀‘∪ 𝑆) ∈ ℝ+) | |
| 7 | 3, 5, 6 | ofcfn 34067 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) Fn 𝑆) |
| 8 | 7 | fndmd 6587 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) = 𝑆) |
| 9 | 8 | fveq2d 6826 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (measures‘dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = (measures‘𝑆)) |
| 10 | 1, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ (measures‘dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)))) |
| 11 | measbasedom 34169 | . . 3 ⊢ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ ∪ ran measures ↔ (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ (measures‘dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)))) | |
| 12 | 10, 11 | sylibr 234 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ ∪ ran measures) |
| 13 | 8 | unieqd 4871 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) = ∪ 𝑆) |
| 14 | 13 | fveq2d 6826 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ 𝑆)) |
| 15 | unielsiga 34095 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) | |
| 16 | 5, 15 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ∪ 𝑆 ∈ 𝑆) |
| 17 | eqidd 2730 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) ∧ ∪ 𝑆 ∈ 𝑆) → (𝑀‘∪ 𝑆) = (𝑀‘∪ 𝑆)) | |
| 18 | 3, 5, 6, 17 | ofcval 34066 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) ∧ ∪ 𝑆 ∈ 𝑆) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 19 | 16, 18 | mpdan 687 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 20 | rpre 12902 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ) | |
| 21 | rpne0 12910 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ≠ 0) | |
| 22 | xdivid 32868 | . . . . 5 ⊢ (((𝑀‘∪ 𝑆) ∈ ℝ ∧ (𝑀‘∪ 𝑆) ≠ 0) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) | |
| 23 | 20, 21, 22 | syl2anc 584 | . . . 4 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
| 25 | 14, 19, 24 | 3eqtrd 2768 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = 1) |
| 26 | elprob 34377 | . 2 ⊢ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob ↔ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ ∪ ran measures ∧ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = 1)) | |
| 27 | 12, 25, 26 | sylanbrc 583 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cuni 4858 dom cdm 5619 ran crn 5620 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 ℝ+crp 12893 /𝑒 cxdiv 32857 ∘f/c cofc 34062 sigAlgebracsiga 34075 measurescmeas 34162 Probcprb 34375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-ordt 17405 df-xrs 17406 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-cntz 19196 df-cmn 19661 df-fbas 21258 df-fg 21259 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-ntr 22905 df-nei 22983 df-cn 23112 df-cnp 23113 df-haus 23200 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tsms 24012 df-xdiv 32858 df-esum 33995 df-ofc 34063 df-siga 34076 df-meas 34163 df-prob 34376 |
| This theorem is referenced by: coinflipprob 34448 |
| Copyright terms: Public domain | W3C validator |