Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probfinmeasb Structured version   Visualization version   GIF version

Theorem probfinmeasb 34396
Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
probfinmeasb ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ Prob)

Proof of Theorem probfinmeasb
StepHypRef Expression
1 measdivcst 34191 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ (measures‘𝑆))
2 measfn 34171 . . . . . . . 8 (𝑀 ∈ (measures‘𝑆) → 𝑀 Fn 𝑆)
32adantr 480 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → 𝑀 Fn 𝑆)
4 measbase 34164 . . . . . . . 8 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
54adantr 480 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → 𝑆 ran sigAlgebra)
6 simpr 484 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀 𝑆) ∈ ℝ+)
73, 5, 6ofcfn 34067 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) Fn 𝑆)
87fndmd 6587 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → dom (𝑀f/c /𝑒 (𝑀 𝑆)) = 𝑆)
98fveq2d 6826 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (measures‘dom (𝑀f/c /𝑒 (𝑀 𝑆))) = (measures‘𝑆))
101, 9eleqtrrd 2831 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ (measures‘dom (𝑀f/c /𝑒 (𝑀 𝑆))))
11 measbasedom 34169 . . 3 ((𝑀f/c /𝑒 (𝑀 𝑆)) ∈ ran measures ↔ (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ (measures‘dom (𝑀f/c /𝑒 (𝑀 𝑆))))
1210, 11sylibr 234 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ ran measures)
138unieqd 4871 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → dom (𝑀f/c /𝑒 (𝑀 𝑆)) = 𝑆)
1413fveq2d 6826 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ dom (𝑀f/c /𝑒 (𝑀 𝑆))) = ((𝑀f/c /𝑒 (𝑀 𝑆))‘ 𝑆))
15 unielsiga 34095 . . . . 5 (𝑆 ran sigAlgebra → 𝑆𝑆)
165, 15syl 17 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → 𝑆𝑆)
17 eqidd 2730 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) ∧ 𝑆𝑆) → (𝑀 𝑆) = (𝑀 𝑆))
183, 5, 6, 17ofcval 34066 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) ∧ 𝑆𝑆) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ 𝑆) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
1916, 18mpdan 687 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ 𝑆) = ((𝑀 𝑆) /𝑒 (𝑀 𝑆)))
20 rpre 12902 . . . . 5 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ∈ ℝ)
21 rpne0 12910 . . . . 5 ((𝑀 𝑆) ∈ ℝ+ → (𝑀 𝑆) ≠ 0)
22 xdivid 32868 . . . . 5 (((𝑀 𝑆) ∈ ℝ ∧ (𝑀 𝑆) ≠ 0) → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2320, 21, 22syl2anc 584 . . . 4 ((𝑀 𝑆) ∈ ℝ+ → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2423adantl 481 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀 𝑆) /𝑒 (𝑀 𝑆)) = 1)
2514, 19, 243eqtrd 2768 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → ((𝑀f/c /𝑒 (𝑀 𝑆))‘ dom (𝑀f/c /𝑒 (𝑀 𝑆))) = 1)
26 elprob 34377 . 2 ((𝑀f/c /𝑒 (𝑀 𝑆)) ∈ Prob ↔ ((𝑀f/c /𝑒 (𝑀 𝑆)) ∈ ran measures ∧ ((𝑀f/c /𝑒 (𝑀 𝑆))‘ dom (𝑀f/c /𝑒 (𝑀 𝑆))) = 1))
2712, 25, 26sylanbrc 583 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀 𝑆) ∈ ℝ+) → (𝑀f/c /𝑒 (𝑀 𝑆)) ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   cuni 4858  dom cdm 5619  ran crn 5620   Fn wfn 6477  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010  +crp 12893   /𝑒 cxdiv 32857  f/c cofc 34062  sigAlgebracsiga 34075  measurescmeas 34162  Probcprb 34375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-ordt 17405  df-xrs 17406  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-cntz 19196  df-cmn 19661  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-ntr 22905  df-nei 22983  df-cn 23112  df-cnp 23113  df-haus 23200  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tsms 24012  df-xdiv 32858  df-esum 33995  df-ofc 34063  df-siga 34076  df-meas 34163  df-prob 34376
This theorem is referenced by:  coinflipprob  34448
  Copyright terms: Public domain W3C validator