| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > probfinmeasb | Structured version Visualization version GIF version | ||
| Description: Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| probfinmeasb | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measdivcst 34187 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ (measures‘𝑆)) | |
| 2 | measfn 34167 | . . . . . . . 8 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀 Fn 𝑆) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → 𝑀 Fn 𝑆) |
| 4 | measbase 34160 | . . . . . . . 8 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀‘∪ 𝑆) ∈ ℝ+) | |
| 7 | 3, 5, 6 | ofcfn 34063 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) Fn 𝑆) |
| 8 | 7 | fndmd 6605 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) = 𝑆) |
| 9 | 8 | fveq2d 6844 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (measures‘dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = (measures‘𝑆)) |
| 10 | 1, 9 | eleqtrrd 2831 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ (measures‘dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)))) |
| 11 | measbasedom 34165 | . . 3 ⊢ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ ∪ ran measures ↔ (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ (measures‘dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)))) | |
| 12 | 10, 11 | sylibr 234 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ ∪ ran measures) |
| 13 | 8 | unieqd 4880 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) = ∪ 𝑆) |
| 14 | 13 | fveq2d 6844 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ 𝑆)) |
| 15 | unielsiga 34091 | . . . . 5 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) | |
| 16 | 5, 15 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ∪ 𝑆 ∈ 𝑆) |
| 17 | eqidd 2730 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) ∧ ∪ 𝑆 ∈ 𝑆) → (𝑀‘∪ 𝑆) = (𝑀‘∪ 𝑆)) | |
| 18 | 3, 5, 6, 17 | ofcval 34062 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) ∧ ∪ 𝑆 ∈ 𝑆) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 19 | 16, 18 | mpdan 687 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 20 | rpre 12936 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ) | |
| 21 | rpne0 12944 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ≠ 0) | |
| 22 | xdivid 32821 | . . . . 5 ⊢ (((𝑀‘∪ 𝑆) ∈ ℝ ∧ (𝑀‘∪ 𝑆) ≠ 0) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) | |
| 23 | 20, 21, 22 | syl2anc 584 | . . . 4 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
| 24 | 23 | adantl 481 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
| 25 | 14, 19, 24 | 3eqtrd 2768 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = 1) |
| 26 | elprob 34373 | . 2 ⊢ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob ↔ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ ∪ ran measures ∧ ((𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))‘∪ dom (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆))) = 1)) | |
| 27 | 12, 25, 26 | sylanbrc 583 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∪ cuni 4867 dom cdm 5631 ran crn 5632 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 ℝ+crp 12927 /𝑒 cxdiv 32810 ∘f/c cofc 34058 sigAlgebracsiga 34071 measurescmeas 34158 Probcprb 34371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ds 17218 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-ordt 17440 df-xrs 17441 df-mre 17523 df-mrc 17524 df-acs 17526 df-ps 18501 df-tsr 18502 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-cntz 19225 df-cmn 19688 df-fbas 21237 df-fg 21238 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-ntr 22883 df-nei 22961 df-cn 23090 df-cnp 23091 df-haus 23178 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-tsms 23990 df-xdiv 32811 df-esum 33991 df-ofc 34059 df-siga 34072 df-meas 34159 df-prob 34372 |
| This theorem is referenced by: coinflipprob 34444 |
| Copyright terms: Public domain | W3C validator |