Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domprobmeas Structured version   Visualization version   GIF version

Theorem domprobmeas 33707
Description: A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
domprobmeas (𝑃 ∈ Prob β†’ 𝑃 ∈ (measuresβ€˜dom 𝑃))

Proof of Theorem domprobmeas
StepHypRef Expression
1 elprob 33706 . . 3 (𝑃 ∈ Prob ↔ (𝑃 ∈ βˆͺ ran measures ∧ (π‘ƒβ€˜βˆͺ dom 𝑃) = 1))
21simplbi 496 . 2 (𝑃 ∈ Prob β†’ 𝑃 ∈ βˆͺ ran measures)
3 measbasedom 33498 . 2 (𝑃 ∈ βˆͺ ran measures ↔ 𝑃 ∈ (measuresβ€˜dom 𝑃))
42, 3sylib 217 1 (𝑃 ∈ Prob β†’ 𝑃 ∈ (measuresβ€˜dom 𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  βˆͺ cuni 4907  dom cdm 5675  ran crn 5676  β€˜cfv 6542  1c1 11113  measurescmeas 33491  Probcprb 33704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-esum 33324  df-meas 33492  df-prob 33705
This theorem is referenced by:  domprobsiga  33708  prob01  33710  probnul  33711  probcun  33715  probinc  33718  probmeasd  33720  totprobd  33723  cndprob01  33732  cndprobprob  33735  dstrvprob  33768  dstfrvinc  33773  dstfrvclim1  33774
  Copyright terms: Public domain W3C validator