Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domprobmeas Structured version   Visualization version   GIF version

Theorem domprobmeas 34413
Description: A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
domprobmeas (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))

Proof of Theorem domprobmeas
StepHypRef Expression
1 elprob 34412 . . 3 (𝑃 ∈ Prob ↔ (𝑃 ran measures ∧ (𝑃 dom 𝑃) = 1))
21simplbi 497 . 2 (𝑃 ∈ Prob → 𝑃 ran measures)
3 measbasedom 34204 . 2 (𝑃 ran measures ↔ 𝑃 ∈ (measures‘dom 𝑃))
42, 3sylib 218 1 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107   cuni 4906  dom cdm 5684  ran crn 5685  cfv 6560  1c1 11157  measurescmeas 34197  Probcprb 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-esum 34030  df-meas 34198  df-prob 34411
This theorem is referenced by:  domprobsiga  34414  prob01  34416  probnul  34417  probcun  34421  probinc  34424  probmeasd  34426  totprobd  34429  cndprob01  34438  cndprobprob  34441  boolesineq  34458  dstrvprob  34475  dstfrvinc  34480  dstfrvclim1  34481
  Copyright terms: Public domain W3C validator