Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domprobmeas Structured version   Visualization version   GIF version

Theorem domprobmeas 34413
Description: A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
domprobmeas (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))

Proof of Theorem domprobmeas
StepHypRef Expression
1 elprob 34412 . . 3 (𝑃 ∈ Prob ↔ (𝑃 ran measures ∧ (𝑃 dom 𝑃) = 1))
21simplbi 497 . 2 (𝑃 ∈ Prob → 𝑃 ran measures)
3 measbasedom 34205 . 2 (𝑃 ran measures ↔ 𝑃 ∈ (measures‘dom 𝑃))
42, 3sylib 218 1 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110   cuni 4857  dom cdm 5614  ran crn 5615  cfv 6477  1c1 10999  measurescmeas 34198  Probcprb 34410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-esum 34031  df-meas 34199  df-prob 34411
This theorem is referenced by:  domprobsiga  34414  prob01  34416  probnul  34417  probcun  34421  probinc  34424  probmeasd  34426  totprobd  34429  cndprob01  34438  cndprobprob  34441  boolesineq  34458  dstrvprob  34475  dstfrvinc  34480  dstfrvclim1  34481
  Copyright terms: Public domain W3C validator