Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > domprobmeas | Structured version Visualization version GIF version |
Description: A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
Ref | Expression |
---|---|
domprobmeas | ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprob 32276 | . . 3 ⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ ∪ ran measures) |
3 | measbasedom 32070 | . 2 ⊢ (𝑃 ∈ ∪ ran measures ↔ 𝑃 ∈ (measures‘dom 𝑃)) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 dom cdm 5580 ran crn 5581 ‘cfv 6418 1c1 10803 measurescmeas 32063 Probcprb 32274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-esum 31896 df-meas 32064 df-prob 32275 |
This theorem is referenced by: domprobsiga 32278 prob01 32280 probnul 32281 probcun 32285 probinc 32288 probmeasd 32290 totprobd 32293 cndprob01 32302 cndprobprob 32305 dstrvprob 32338 dstfrvinc 32343 dstfrvclim1 32344 |
Copyright terms: Public domain | W3C validator |