Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domprobmeas Structured version   Visualization version   GIF version

Theorem domprobmeas 34408
Description: A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.)
Assertion
Ref Expression
domprobmeas (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))

Proof of Theorem domprobmeas
StepHypRef Expression
1 elprob 34407 . . 3 (𝑃 ∈ Prob ↔ (𝑃 ran measures ∧ (𝑃 dom 𝑃) = 1))
21simplbi 497 . 2 (𝑃 ∈ Prob → 𝑃 ran measures)
3 measbasedom 34199 . 2 (𝑃 ran measures ↔ 𝑃 ∈ (measures‘dom 𝑃))
42, 3sylib 218 1 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4874  dom cdm 5641  ran crn 5642  cfv 6514  1c1 11076  measurescmeas 34192  Probcprb 34405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-esum 34025  df-meas 34193  df-prob 34406
This theorem is referenced by:  domprobsiga  34409  prob01  34411  probnul  34412  probcun  34416  probinc  34419  probmeasd  34421  totprobd  34424  cndprob01  34433  cndprobprob  34436  boolesineq  34453  dstrvprob  34470  dstfrvinc  34475  dstfrvclim1  34476
  Copyright terms: Public domain W3C validator