| Step | Hyp | Ref
| Expression |
| 1 | | measinb 34222 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴))) ∈ (measures‘𝑆)) |
| 2 | | measdivcstALTV 34226 |
. . . . 5
⊢ (((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴))) ∈ (measures‘𝑆) ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ (((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))‘𝑥) /𝑒 (𝑀‘𝐴))) ∈ (measures‘𝑆)) |
| 3 | 1, 2 | stoic3 1776 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ (((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))‘𝑥) /𝑒 (𝑀‘𝐴))) ∈ (measures‘𝑆)) |
| 4 | | eqidd 2738 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴))) = (𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))) |
| 5 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 6 | 5 | ineq1d 4219 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 = 𝑥) → (𝑦 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 7 | 6 | fveq2d 6910 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) ∧ 𝑦 = 𝑥) → (𝑀‘(𝑦 ∩ 𝐴)) = (𝑀‘(𝑥 ∩ 𝐴))) |
| 8 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 9 | | simp1 1137 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → 𝑀 ∈ (measures‘𝑆)) |
| 10 | 9 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝑀 ∈ (measures‘𝑆)) |
| 11 | | measbase 34198 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
| 13 | | simp2 1138 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → 𝐴 ∈ 𝑆) |
| 14 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
| 15 | | inelsiga 34136 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝑥 ∩ 𝐴) ∈ 𝑆) |
| 16 | 12, 8, 14, 15 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∩ 𝐴) ∈ 𝑆) |
| 17 | | measvxrge0 34206 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑥 ∩ 𝐴) ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ∈ (0[,]+∞)) |
| 18 | 10, 16, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ∈ (0[,]+∞)) |
| 19 | 4, 7, 8, 18 | fvmptd 7023 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → ((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))‘𝑥) = (𝑀‘(𝑥 ∩ 𝐴))) |
| 20 | 19 | oveq1d 7446 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))‘𝑥) /𝑒 (𝑀‘𝐴)) = ((𝑀‘(𝑥 ∩ 𝐴)) /𝑒 (𝑀‘𝐴))) |
| 21 | | iccssxr 13470 |
. . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* |
| 22 | 21, 18 | sselid 3981 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ∈
ℝ*) |
| 23 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑀‘𝐴) ∈
ℝ+) |
| 24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝐴) ∈
ℝ+) |
| 25 | 24 | rpred 13077 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝐴) ∈ ℝ) |
| 26 | | 0xr 11308 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 27 | | pnfxr 11315 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
| 28 | | iccgelb 13443 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝑀‘(𝑥 ∩ 𝐴)) ∈ (0[,]+∞)) → 0 ≤
(𝑀‘(𝑥 ∩ 𝐴))) |
| 29 | 26, 27, 28 | mp3an12 1453 |
. . . . . . . . 9
⊢ ((𝑀‘(𝑥 ∩ 𝐴)) ∈ (0[,]+∞) → 0 ≤
(𝑀‘(𝑥 ∩ 𝐴))) |
| 30 | 18, 29 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 0 ≤ (𝑀‘(𝑥 ∩ 𝐴))) |
| 31 | | inss2 4238 |
. . . . . . . . . 10
⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 |
| 32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 33 | 10, 16, 14, 32 | measssd 34216 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ≤ (𝑀‘𝐴)) |
| 34 | | xrrege0 13216 |
. . . . . . . 8
⊢ ((((𝑀‘(𝑥 ∩ 𝐴)) ∈ ℝ* ∧ (𝑀‘𝐴) ∈ ℝ) ∧ (0 ≤ (𝑀‘(𝑥 ∩ 𝐴)) ∧ (𝑀‘(𝑥 ∩ 𝐴)) ≤ (𝑀‘𝐴))) → (𝑀‘(𝑥 ∩ 𝐴)) ∈ ℝ) |
| 35 | 22, 25, 30, 33, 34 | syl22anc 839 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ∈ ℝ) |
| 36 | 24 | rpne0d 13082 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝐴) ≠ 0) |
| 37 | | rexdiv 32908 |
. . . . . . 7
⊢ (((𝑀‘(𝑥 ∩ 𝐴)) ∈ ℝ ∧ (𝑀‘𝐴) ∈ ℝ ∧ (𝑀‘𝐴) ≠ 0) → ((𝑀‘(𝑥 ∩ 𝐴)) /𝑒 (𝑀‘𝐴)) = ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) |
| 38 | 35, 25, 36, 37 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → ((𝑀‘(𝑥 ∩ 𝐴)) /𝑒 (𝑀‘𝐴)) = ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) |
| 39 | 20, 38 | eqtrd 2777 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))‘𝑥) /𝑒 (𝑀‘𝐴)) = ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) |
| 40 | 39 | mpteq2dva 5242 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ (((𝑦 ∈ 𝑆 ↦ (𝑀‘(𝑦 ∩ 𝐴)))‘𝑥) /𝑒 (𝑀‘𝐴))) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))) |
| 41 | 35, 24 | rerpdivcld 13108 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)) ∈ ℝ) |
| 42 | 41 | ralrimiva 3146 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) →
∀𝑥 ∈ 𝑆 ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)) ∈ ℝ) |
| 43 | | dmmptg 6262 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)) ∈ ℝ → dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) = 𝑆) |
| 44 | 42, 43 | syl 17 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → dom
(𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) = 𝑆) |
| 45 | 44 | fveq2d 6910 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) →
(measures‘dom (𝑥
∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))) = (measures‘𝑆)) |
| 46 | 45 | eqcomd 2743 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) →
(measures‘𝑆) =
(measures‘dom (𝑥
∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))))) |
| 47 | 3, 40, 46 | 3eltr3d 2855 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))))) |
| 48 | | measbasedom 34203 |
. . 3
⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ ∪ ran
measures ↔ (𝑥 ∈
𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))))) |
| 49 | 47, 48 | sylibr 234 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ ∪ ran
measures) |
| 50 | 44 | unieqd 4920 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → ∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) = ∪ 𝑆) |
| 51 | 50 | fveq2d 6910 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))‘∪ dom
(𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))) = ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))‘∪ 𝑆)) |
| 52 | | eqidd 2738 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))) |
| 53 | 23 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (𝑀‘𝐴) ∈
ℝ+) |
| 54 | 53 | rpcnd 13079 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (𝑀‘𝐴) ∈ ℂ) |
| 55 | 23 | rpne0d 13082 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑀‘𝐴) ≠ 0) |
| 56 | 55 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (𝑀‘𝐴) ≠ 0) |
| 57 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → 𝑥 = ∪
𝑆) |
| 58 | 57 | ineq1d 4219 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (𝑥 ∩ 𝐴) = (∪ 𝑆 ∩ 𝐴)) |
| 59 | | incom 4209 |
. . . . . . . . . 10
⊢ (∪ 𝑆
∩ 𝐴) = (𝐴 ∩ ∪ 𝑆) |
| 60 | | elssuni 4937 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑆 → 𝐴 ⊆ ∪ 𝑆) |
| 61 | | dfss2 3969 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ ∪ 𝑆
↔ (𝐴 ∩ ∪ 𝑆) =
𝐴) |
| 62 | 60, 61 | sylib 218 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → (𝐴 ∩ ∪ 𝑆) = 𝐴) |
| 63 | 59, 62 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑆 → (∪ 𝑆 ∩ 𝐴) = 𝐴) |
| 64 | 13, 63 | syl 17 |
. . . . . . . 8
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (∪ 𝑆
∩ 𝐴) = 𝐴) |
| 65 | 64 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (∪ 𝑆
∩ 𝐴) = 𝐴) |
| 66 | 58, 65 | eqtrd 2777 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (𝑥 ∩ 𝐴) = 𝐴) |
| 67 | 66 | fveq2d 6910 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘𝐴)) |
| 68 | 54, 56, 67 | diveq1bd 12091 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) ∧ 𝑥 = ∪
𝑆) → ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)) = 1) |
| 69 | | sgon 34125 |
. . . . 5
⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
| 70 | | baselsiga 34116 |
. . . . 5
⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝑆)
→ ∪ 𝑆 ∈ 𝑆) |
| 71 | 9, 11, 69, 70 | 4syl 19 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → ∪ 𝑆
∈ 𝑆) |
| 72 | | 1red 11262 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → 1
∈ ℝ) |
| 73 | 52, 68, 71, 72 | fvmptd 7023 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))‘∪ 𝑆) = 1) |
| 74 | 51, 73 | eqtrd 2777 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))‘∪ dom
(𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))) = 1) |
| 75 | | elprob 34411 |
. 2
⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ Prob ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ ∪ ran
measures ∧ ((𝑥 ∈
𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))‘∪ dom
(𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴)))) = 1)) |
| 76 | 49, 74, 75 | sylanbrc 583 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ Prob) |