Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probmeasb Structured version   Visualization version   GIF version

Theorem probmeasb 34391
Description: Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probmeasb ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆

Proof of Theorem probmeasb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measinb 34181 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) ∈ (measures‘𝑆))
2 measdivcstALTV 34185 . . . . 5 (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) ∈ (measures‘𝑆) ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) ∈ (measures‘𝑆))
31, 2stoic3 1775 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) ∈ (measures‘𝑆))
4 eqidd 2735 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) = (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))))
5 simpr 484 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
65ineq1d 4199 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → (𝑦𝐴) = (𝑥𝐴))
76fveq2d 6890 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → (𝑀‘(𝑦𝐴)) = (𝑀‘(𝑥𝐴)))
8 simpr 484 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simp1 1136 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝑀 ∈ (measures‘𝑆))
109adantr 480 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑀 ∈ (measures‘𝑆))
11 measbase 34157 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
1210, 11syl 17 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑆 ran sigAlgebra)
13 simp2 1137 . . . . . . . . . . 11 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝐴𝑆)
1413adantr 480 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝐴𝑆)
15 inelsiga 34095 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐴) ∈ 𝑆)
1612, 8, 14, 15syl3anc 1372 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑥𝐴) ∈ 𝑆)
17 measvxrge0 34165 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑥𝐴) ∈ 𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
1810, 16, 17syl2anc 584 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
194, 7, 8, 18fvmptd 7003 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) = (𝑀‘(𝑥𝐴)))
2019oveq1d 7428 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)))
21 iccssxr 13452 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2221, 18sselid 3961 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ ℝ*)
23 simp3 1138 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑀𝐴) ∈ ℝ+)
2423adantr 480 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ∈ ℝ+)
2524rpred 13059 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ∈ ℝ)
26 0xr 11290 . . . . . . . . . 10 0 ∈ ℝ*
27 pnfxr 11297 . . . . . . . . . 10 +∞ ∈ ℝ*
28 iccgelb 13425 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞)) → 0 ≤ (𝑀‘(𝑥𝐴)))
2926, 27, 28mp3an12 1452 . . . . . . . . 9 ((𝑀‘(𝑥𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝑥𝐴)))
3018, 29syl 17 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 0 ≤ (𝑀‘(𝑥𝐴)))
31 inss2 4218 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝐴
3231a1i 11 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑥𝐴) ⊆ 𝐴)
3310, 16, 14, 32measssd 34175 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ≤ (𝑀𝐴))
34 xrrege0 13198 . . . . . . . 8 ((((𝑀‘(𝑥𝐴)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ) ∧ (0 ≤ (𝑀‘(𝑥𝐴)) ∧ (𝑀‘(𝑥𝐴)) ≤ (𝑀𝐴))) → (𝑀‘(𝑥𝐴)) ∈ ℝ)
3522, 25, 30, 33, 34syl22anc 838 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ ℝ)
3624rpne0d 13064 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ≠ 0)
37 rexdiv 32848 . . . . . . 7 (((𝑀‘(𝑥𝐴)) ∈ ℝ ∧ (𝑀𝐴) ∈ ℝ ∧ (𝑀𝐴) ≠ 0) → ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
3835, 25, 36, 37syl3anc 1372 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
3920, 38eqtrd 2769 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
4039mpteq2dva 5222 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) = (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))))
4135, 24rerpdivcld 13090 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ)
4241ralrimiva 3133 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ∀𝑥𝑆 ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ)
43 dmmptg 6242 . . . . . . 7 (∀𝑥𝑆 ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
4442, 43syl 17 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
4544fveq2d 6890 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = (measures‘𝑆))
4645eqcomd 2740 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (measures‘𝑆) = (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
473, 40, 463eltr3d 2847 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
48 measbasedom 34162 . . 3 ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures ↔ (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
4947, 48sylibr 234 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures)
5044unieqd 4900 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
5150fveq2d 6890 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ 𝑆))
52 eqidd 2735 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))))
5323adantr 480 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ∈ ℝ+)
5453rpcnd 13061 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ∈ ℂ)
5523rpne0d 13064 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑀𝐴) ≠ 0)
5655adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ≠ 0)
57 simpr 484 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → 𝑥 = 𝑆)
5857ineq1d 4199 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑥𝐴) = ( 𝑆𝐴))
59 incom 4189 . . . . . . . . . 10 ( 𝑆𝐴) = (𝐴 𝑆)
60 elssuni 4917 . . . . . . . . . . 11 (𝐴𝑆𝐴 𝑆)
61 dfss2 3949 . . . . . . . . . . 11 (𝐴 𝑆 ↔ (𝐴 𝑆) = 𝐴)
6260, 61sylib 218 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 𝑆) = 𝐴)
6359, 62eqtrid 2781 . . . . . . . . 9 (𝐴𝑆 → ( 𝑆𝐴) = 𝐴)
6413, 63syl 17 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ( 𝑆𝐴) = 𝐴)
6564adantr 480 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → ( 𝑆𝐴) = 𝐴)
6658, 65eqtrd 2769 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑥𝐴) = 𝐴)
6766fveq2d 6890 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀‘(𝑥𝐴)) = (𝑀𝐴))
6854, 56, 67diveq1bd 12073 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) = 1)
69 sgon 34084 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
70 baselsiga 34075 . . . . 5 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
719, 11, 69, 704syl 19 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝑆𝑆)
72 1red 11244 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 1 ∈ ℝ)
7352, 68, 71, 72fvmptd 7003 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ 𝑆) = 1)
7451, 73eqtrd 2769 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = 1)
75 elprob 34370 . 2 ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob ↔ ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures ∧ ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = 1))
7649, 74, 75sylanbrc 583 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  cin 3930  wss 3931   cuni 4887   class class class wbr 5123  cmpt 5205  dom cdm 5665  ran crn 5666  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138  +∞cpnf 11274  *cxr 11276  cle 11278   / cdiv 11902  +crp 13016  [,]cicc 13372   /𝑒 cxdiv 32839  sigAlgebracsiga 34068  measurescmeas 34155  Probcprb 34368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-ordt 17517  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-ps 18580  df-tsr 18581  df-plusf 18621  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20514  df-subrg 20538  df-abv 20778  df-lmod 20828  df-scaf 20829  df-sra 21140  df-rgmod 21141  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-tmd 24026  df-tgp 24027  df-tsms 24081  df-trg 24114  df-xms 24275  df-ms 24276  df-tms 24277  df-nm 24539  df-ngp 24540  df-nrg 24542  df-nlm 24543  df-ii 24839  df-cncf 24840  df-limc 25837  df-dv 25838  df-log 26534  df-xdiv 32840  df-esum 33988  df-siga 34069  df-meas 34156  df-prob 34369
This theorem is referenced by:  cndprobprob  34399
  Copyright terms: Public domain W3C validator