Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probmeasb Structured version   Visualization version   GIF version

Theorem probmeasb 34464
Description: Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probmeasb ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆

Proof of Theorem probmeasb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measinb 34255 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) ∈ (measures‘𝑆))
2 measdivcstALTV 34259 . . . . 5 (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) ∈ (measures‘𝑆) ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) ∈ (measures‘𝑆))
31, 2stoic3 1777 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) ∈ (measures‘𝑆))
4 eqidd 2734 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) = (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))))
5 simpr 484 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
65ineq1d 4168 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → (𝑦𝐴) = (𝑥𝐴))
76fveq2d 6832 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → (𝑀‘(𝑦𝐴)) = (𝑀‘(𝑥𝐴)))
8 simpr 484 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simp1 1136 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝑀 ∈ (measures‘𝑆))
109adantr 480 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑀 ∈ (measures‘𝑆))
11 measbase 34231 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
1210, 11syl 17 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑆 ran sigAlgebra)
13 simp2 1137 . . . . . . . . . . 11 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝐴𝑆)
1413adantr 480 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝐴𝑆)
15 inelsiga 34169 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐴) ∈ 𝑆)
1612, 8, 14, 15syl3anc 1373 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑥𝐴) ∈ 𝑆)
17 measvxrge0 34239 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑥𝐴) ∈ 𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
1810, 16, 17syl2anc 584 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
194, 7, 8, 18fvmptd 6942 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) = (𝑀‘(𝑥𝐴)))
2019oveq1d 7367 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)))
21 iccssxr 13332 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2221, 18sselid 3928 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ ℝ*)
23 simp3 1138 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑀𝐴) ∈ ℝ+)
2423adantr 480 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ∈ ℝ+)
2524rpred 12936 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ∈ ℝ)
26 0xr 11166 . . . . . . . . . 10 0 ∈ ℝ*
27 pnfxr 11173 . . . . . . . . . 10 +∞ ∈ ℝ*
28 iccgelb 13304 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞)) → 0 ≤ (𝑀‘(𝑥𝐴)))
2926, 27, 28mp3an12 1453 . . . . . . . . 9 ((𝑀‘(𝑥𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝑥𝐴)))
3018, 29syl 17 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 0 ≤ (𝑀‘(𝑥𝐴)))
31 inss2 4187 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝐴
3231a1i 11 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑥𝐴) ⊆ 𝐴)
3310, 16, 14, 32measssd 34249 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ≤ (𝑀𝐴))
34 xrrege0 13075 . . . . . . . 8 ((((𝑀‘(𝑥𝐴)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ) ∧ (0 ≤ (𝑀‘(𝑥𝐴)) ∧ (𝑀‘(𝑥𝐴)) ≤ (𝑀𝐴))) → (𝑀‘(𝑥𝐴)) ∈ ℝ)
3522, 25, 30, 33, 34syl22anc 838 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ ℝ)
3624rpne0d 12941 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ≠ 0)
37 rexdiv 32913 . . . . . . 7 (((𝑀‘(𝑥𝐴)) ∈ ℝ ∧ (𝑀𝐴) ∈ ℝ ∧ (𝑀𝐴) ≠ 0) → ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
3835, 25, 36, 37syl3anc 1373 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
3920, 38eqtrd 2768 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
4039mpteq2dva 5186 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) = (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))))
4135, 24rerpdivcld 12967 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ)
4241ralrimiva 3125 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ∀𝑥𝑆 ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ)
43 dmmptg 6194 . . . . . . 7 (∀𝑥𝑆 ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
4442, 43syl 17 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
4544fveq2d 6832 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = (measures‘𝑆))
4645eqcomd 2739 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (measures‘𝑆) = (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
473, 40, 463eltr3d 2847 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
48 measbasedom 34236 . . 3 ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures ↔ (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
4947, 48sylibr 234 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures)
5044unieqd 4871 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
5150fveq2d 6832 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ 𝑆))
52 eqidd 2734 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))))
5323adantr 480 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ∈ ℝ+)
5453rpcnd 12938 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ∈ ℂ)
5523rpne0d 12941 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑀𝐴) ≠ 0)
5655adantr 480 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ≠ 0)
57 simpr 484 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → 𝑥 = 𝑆)
5857ineq1d 4168 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑥𝐴) = ( 𝑆𝐴))
59 incom 4158 . . . . . . . . . 10 ( 𝑆𝐴) = (𝐴 𝑆)
60 elssuni 4889 . . . . . . . . . . 11 (𝐴𝑆𝐴 𝑆)
61 dfss2 3916 . . . . . . . . . . 11 (𝐴 𝑆 ↔ (𝐴 𝑆) = 𝐴)
6260, 61sylib 218 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 𝑆) = 𝐴)
6359, 62eqtrid 2780 . . . . . . . . 9 (𝐴𝑆 → ( 𝑆𝐴) = 𝐴)
6413, 63syl 17 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ( 𝑆𝐴) = 𝐴)
6564adantr 480 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → ( 𝑆𝐴) = 𝐴)
6658, 65eqtrd 2768 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑥𝐴) = 𝐴)
6766fveq2d 6832 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀‘(𝑥𝐴)) = (𝑀𝐴))
6854, 56, 67diveq1bd 11952 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) = 1)
69 sgon 34158 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
70 baselsiga 34149 . . . . 5 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
719, 11, 69, 704syl 19 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝑆𝑆)
72 1red 11120 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 1 ∈ ℝ)
7352, 68, 71, 72fvmptd 6942 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ 𝑆) = 1)
7451, 73eqtrd 2768 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = 1)
75 elprob 34443 . 2 ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob ↔ ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures ∧ ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = 1))
7649, 74, 75sylanbrc 583 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  cin 3897  wss 3898   cuni 4858   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014  +∞cpnf 11150  *cxr 11152  cle 11154   / cdiv 11781  +crp 12892  [,]cicc 13250   /𝑒 cxdiv 32904  sigAlgebracsiga 34142  measurescmeas 34229  Probcprb 34441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-acn 9842  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-ordt 17407  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-ps 18474  df-tsr 18475  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20463  df-subrg 20487  df-abv 20726  df-lmod 20797  df-scaf 20798  df-sra 21109  df-rgmod 21110  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-tmd 23988  df-tgp 23989  df-tsms 24043  df-trg 24076  df-xms 24236  df-ms 24237  df-tms 24238  df-nm 24498  df-ngp 24499  df-nrg 24501  df-nlm 24502  df-ii 24798  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-xdiv 32905  df-esum 34062  df-siga 34143  df-meas 34230  df-prob 34442
This theorem is referenced by:  cndprobprob  34472
  Copyright terms: Public domain W3C validator