Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probmeasb Structured version   Visualization version   GIF version

Theorem probmeasb 33030
Description: Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probmeasb ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝑥,𝑆

Proof of Theorem probmeasb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measinb 32820 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) ∈ (measures‘𝑆))
2 measdivcstALTV 32824 . . . . 5 (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) ∈ (measures‘𝑆) ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) ∈ (measures‘𝑆))
31, 2stoic3 1778 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) ∈ (measures‘𝑆))
4 eqidd 2737 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))) = (𝑦𝑆 ↦ (𝑀‘(𝑦𝐴))))
5 simpr 485 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
65ineq1d 4171 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → (𝑦𝐴) = (𝑥𝐴))
76fveq2d 6846 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) ∧ 𝑦 = 𝑥) → (𝑀‘(𝑦𝐴)) = (𝑀‘(𝑥𝐴)))
8 simpr 485 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑥𝑆)
9 simp1 1136 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝑀 ∈ (measures‘𝑆))
109adantr 481 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑀 ∈ (measures‘𝑆))
11 measbase 32796 . . . . . . . . . . 11 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
1210, 11syl 17 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝑆 ran sigAlgebra)
13 simp2 1137 . . . . . . . . . . 11 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝐴𝑆)
1413adantr 481 . . . . . . . . . 10 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 𝐴𝑆)
15 inelsiga 32734 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐴) ∈ 𝑆)
1612, 8, 14, 15syl3anc 1371 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑥𝐴) ∈ 𝑆)
17 measvxrge0 32804 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑥𝐴) ∈ 𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
1810, 16, 17syl2anc 584 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
194, 7, 8, 18fvmptd 6955 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) = (𝑀‘(𝑥𝐴)))
2019oveq1d 7372 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)))
21 iccssxr 13347 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
2221, 18sselid 3942 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ ℝ*)
23 simp3 1138 . . . . . . . . . 10 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑀𝐴) ∈ ℝ+)
2423adantr 481 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ∈ ℝ+)
2524rpred 12957 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ∈ ℝ)
26 0xr 11202 . . . . . . . . . 10 0 ∈ ℝ*
27 pnfxr 11209 . . . . . . . . . 10 +∞ ∈ ℝ*
28 iccgelb 13320 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞)) → 0 ≤ (𝑀‘(𝑥𝐴)))
2926, 27, 28mp3an12 1451 . . . . . . . . 9 ((𝑀‘(𝑥𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝑥𝐴)))
3018, 29syl 17 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → 0 ≤ (𝑀‘(𝑥𝐴)))
31 inss2 4189 . . . . . . . . . 10 (𝑥𝐴) ⊆ 𝐴
3231a1i 11 . . . . . . . . 9 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑥𝐴) ⊆ 𝐴)
3310, 16, 14, 32measssd 32814 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ≤ (𝑀𝐴))
34 xrrege0 13093 . . . . . . . 8 ((((𝑀‘(𝑥𝐴)) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ) ∧ (0 ≤ (𝑀‘(𝑥𝐴)) ∧ (𝑀‘(𝑥𝐴)) ≤ (𝑀𝐴))) → (𝑀‘(𝑥𝐴)) ∈ ℝ)
3522, 25, 30, 33, 34syl22anc 837 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ ℝ)
3624rpne0d 12962 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (𝑀𝐴) ≠ 0)
37 rexdiv 31782 . . . . . . 7 (((𝑀‘(𝑥𝐴)) ∈ ℝ ∧ (𝑀𝐴) ∈ ℝ ∧ (𝑀𝐴) ≠ 0) → ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
3835, 25, 36, 37syl3anc 1371 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀‘(𝑥𝐴)) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
3920, 38eqtrd 2776 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴)) = ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))
4039mpteq2dva 5205 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ (((𝑦𝑆 ↦ (𝑀‘(𝑦𝐴)))‘𝑥) /𝑒 (𝑀𝐴))) = (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))))
4135, 24rerpdivcld 12988 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥𝑆) → ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ)
4241ralrimiva 3143 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ∀𝑥𝑆 ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ)
43 dmmptg 6194 . . . . . . 7 (∀𝑥𝑆 ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) ∈ ℝ → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
4442, 43syl 17 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
4544fveq2d 6846 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = (measures‘𝑆))
4645eqcomd 2742 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (measures‘𝑆) = (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
473, 40, 463eltr3d 2852 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
48 measbasedom 32801 . . 3 ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures ↔ (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ (measures‘dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))))
4947, 48sylibr 233 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures)
5044unieqd 4879 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = 𝑆)
5150fveq2d 6846 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ 𝑆))
52 eqidd 2737 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) = (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))))
5323adantr 481 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ∈ ℝ+)
5453rpcnd 12959 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ∈ ℂ)
5523rpne0d 12962 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑀𝐴) ≠ 0)
5655adantr 481 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀𝐴) ≠ 0)
57 simpr 485 . . . . . . . 8 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → 𝑥 = 𝑆)
5857ineq1d 4171 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑥𝐴) = ( 𝑆𝐴))
59 incom 4161 . . . . . . . . . 10 ( 𝑆𝐴) = (𝐴 𝑆)
60 elssuni 4898 . . . . . . . . . . 11 (𝐴𝑆𝐴 𝑆)
61 df-ss 3927 . . . . . . . . . . 11 (𝐴 𝑆 ↔ (𝐴 𝑆) = 𝐴)
6260, 61sylib 217 . . . . . . . . . 10 (𝐴𝑆 → (𝐴 𝑆) = 𝐴)
6359, 62eqtrid 2788 . . . . . . . . 9 (𝐴𝑆 → ( 𝑆𝐴) = 𝐴)
6413, 63syl 17 . . . . . . . 8 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ( 𝑆𝐴) = 𝐴)
6564adantr 481 . . . . . . 7 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → ( 𝑆𝐴) = 𝐴)
6658, 65eqtrd 2776 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑥𝐴) = 𝐴)
6766fveq2d 6846 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → (𝑀‘(𝑥𝐴)) = (𝑀𝐴))
6854, 56, 67diveq1bd 11979 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) ∧ 𝑥 = 𝑆) → ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)) = 1)
69 sgon 32723 . . . . 5 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
70 baselsiga 32714 . . . . 5 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
719, 11, 69, 704syl 19 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 𝑆𝑆)
72 1red 11156 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → 1 ∈ ℝ)
7352, 68, 71, 72fvmptd 6955 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ 𝑆) = 1)
7451, 73eqtrd 2776 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = 1)
75 elprob 33009 . 2 ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob ↔ ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ ran measures ∧ ((𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))‘ dom (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴)))) = 1))
7649, 74, 75sylanbrc 583 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆 ∧ (𝑀𝐴) ∈ ℝ+) → (𝑥𝑆 ↦ ((𝑀‘(𝑥𝐴)) / (𝑀𝐴))) ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  cin 3909  wss 3910   cuni 4865   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  +∞cpnf 11186  *cxr 11188  cle 11190   / cdiv 11812  +crp 12915  [,]cicc 13267   /𝑒 cxdiv 31773  sigAlgebracsiga 32707  measurescmeas 32794  Probcprb 33007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-ordt 17383  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-ps 18455  df-tsr 18456  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-abv 20276  df-lmod 20324  df-scaf 20325  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tmd 23423  df-tgp 23424  df-tsms 23478  df-trg 23511  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-nrg 23941  df-nlm 23942  df-ii 24240  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-xdiv 31774  df-esum 32627  df-siga 32708  df-meas 32795  df-prob 33008
This theorem is referenced by:  cndprobprob  33038
  Copyright terms: Public domain W3C validator