Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvprob Structured version   Visualization version   GIF version

Theorem dstrvprob 34474
Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 34473). (Contributed by Thierry Arnoux, 10-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
Assertion
Ref Expression
dstrvprob (𝜑𝐷 ∈ Prob)
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐷,𝑎   𝜑,𝑎

Proof of Theorem dstrvprob
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.3 . . . . . 6 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
2 dstrvprob.1 . . . . . . . . 9 (𝜑𝑃 ∈ Prob)
32adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → 𝑃 ∈ Prob)
4 dstrvprob.2 . . . . . . . . . 10 (𝜑𝑋 ∈ (rRndVar‘𝑃))
54adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑋 ∈ (rRndVar‘𝑃))
6 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑎 ∈ 𝔅)
73, 5, 6orvcelel 34472 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃)
8 prob01 34415 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
93, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
10 elunitrn 13507 . . . . . . . . 9 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ)
1110rexrd 11311 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ*)
12 elunitge0 33898 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
13 elxrge0 13497 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) ↔ ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ* ∧ 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
1411, 12, 13sylanbrc 583 . . . . . . 7 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
159, 14syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
161, 15fmpt3d 7136 . . . . 5 (𝜑𝐷:𝔅⟶(0[,]+∞))
17 simpr 484 . . . . . . . . 9 ((𝜑𝑎 = ∅) → 𝑎 = ∅)
1817oveq2d 7447 . . . . . . . 8 ((𝜑𝑎 = ∅) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ∅))
1918fveq2d 6910 . . . . . . 7 ((𝜑𝑎 = ∅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E ∅)))
20 brsigarn 34185 . . . . . . . . 9 𝔅 ∈ (sigAlgebra‘ℝ)
21 elrnsiga 34127 . . . . . . . . 9 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
22 0elsiga 34115 . . . . . . . . 9 (𝔅 ran sigAlgebra → ∅ ∈ 𝔅)
2320, 21, 22mp2b 10 . . . . . . . 8 ∅ ∈ 𝔅
2423a1i 11 . . . . . . 7 (𝜑 → ∅ ∈ 𝔅)
252, 4, 24orvcelel 34472 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ∅) ∈ dom 𝑃)
262, 25probvalrnd 34426 . . . . . . 7 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) ∈ ℝ)
271, 19, 24, 26fvmptd 7023 . . . . . 6 (𝜑 → (𝐷‘∅) = (𝑃‘(𝑋RV/𝑐 E ∅)))
282, 4, 24orvcelval 34471 . . . . . . 7 (𝜑 → (𝑋RV/𝑐 E ∅) = (𝑋 “ ∅))
2928fveq2d 6910 . . . . . 6 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) = (𝑃‘(𝑋 “ ∅)))
30 ima0 6095 . . . . . . . 8 (𝑋 “ ∅) = ∅
3130fveq2i 6909 . . . . . . 7 (𝑃‘(𝑋 “ ∅)) = (𝑃‘∅)
32 probnul 34416 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
332, 32syl 17 . . . . . . 7 (𝜑 → (𝑃‘∅) = 0)
3431, 33eqtrid 2789 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ∅)) = 0)
3527, 29, 343eqtrd 2781 . . . . 5 (𝜑 → (𝐷‘∅) = 0)
362, 4rrvvf 34446 . . . . . . . . . . . 12 (𝜑𝑋: dom 𝑃⟶ℝ)
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋: dom 𝑃⟶ℝ)
3837ffund 6740 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Fun 𝑋)
39 unipreima 32653 . . . . . . . . . . 11 (Fun 𝑋 → (𝑋 𝑥) = 𝑎𝑥 (𝑋𝑎))
4039fveq2d 6910 . . . . . . . . . 10 (Fun 𝑋 → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
422ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ Prob)
43 domprobmeas 34412 . . . . . . . . . . 11 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
4442, 43syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ (measures‘dom 𝑃))
45 nfv 1914 . . . . . . . . . . . 12 𝑎(𝜑𝑥 ∈ 𝒫 𝔅)
46 nfv 1914 . . . . . . . . . . . . 13 𝑎 𝑥 ≼ ω
47 nfdisj1 5124 . . . . . . . . . . . . 13 𝑎Disj 𝑎𝑥 𝑎
4846, 47nfan 1899 . . . . . . . . . . . 12 𝑎(𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)
4945, 48nfan 1899 . . . . . . . . . . 11 𝑎((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎))
50 simplll 775 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝜑)
51 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎𝑥)
52 simpllr 776 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑥 ∈ 𝒫 𝔅)
53 elelpwi 4610 . . . . . . . . . . . . . 14 ((𝑎𝑥𝑥 ∈ 𝒫 𝔅) → 𝑎 ∈ 𝔅)
5451, 52, 53syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎 ∈ 𝔅)
552, 4rrvfinvima 34452 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃)
5655r19.21bi 3251 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝑋𝑎) ∈ dom 𝑃)
5750, 54, 56syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋𝑎) ∈ dom 𝑃)
5857ex 412 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝑋𝑎) ∈ dom 𝑃))
5949, 58ralrimi 3257 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃)
60 simprl 771 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ≼ ω)
61 simprr 773 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 𝑎)
62 disjpreima 32597 . . . . . . . . . . 11 ((Fun 𝑋Disj 𝑎𝑥 𝑎) → Disj 𝑎𝑥 (𝑋𝑎))
6338, 61, 62syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 (𝑋𝑎))
64 measvuni 34215 . . . . . . . . . 10 ((𝑃 ∈ (measures‘dom 𝑃) ∧ ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃 ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 (𝑋𝑎))) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6544, 59, 60, 63, 64syl112anc 1376 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6641, 65eqtrd 2777 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
674ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋 ∈ (rRndVar‘𝑃))
681ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
6920, 21mp1i 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝔅 ran sigAlgebra)
70 simplr 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝒫 𝔅)
71 sigaclcu 34118 . . . . . . . . . 10 ((𝔅 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝔅𝑥 ≼ ω) → 𝑥 ∈ 𝔅)
7269, 70, 60, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝔅)
7342, 67, 68, 72dstrvval 34473 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = (𝑃‘(𝑋 𝑥)))
741, 9fvmpt2d 7029 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7550, 54, 74syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7642adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑃 ∈ Prob)
7767adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑋 ∈ (rRndVar‘𝑃))
7876, 77, 54orvcelval 34471 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋RV/𝑐 E 𝑎) = (𝑋𝑎))
7978fveq2d 6910 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋𝑎)))
8075, 79eqtrd 2777 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8180ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝐷𝑎) = (𝑃‘(𝑋𝑎))))
8249, 81ralrimi 3257 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8349, 82esumeq2d 34038 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Σ*𝑎𝑥(𝐷𝑎) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
8466, 73, 833eqtr4d 2787 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))
8584ex 412 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝔅) → ((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
8685ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
87 ismeas 34200 . . . . . 6 (𝔅 ran sigAlgebra → (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))))
8820, 21, 87mp2b 10 . . . . 5 (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))))
8916, 35, 86, 88syl3anbrc 1344 . . . 4 (𝜑𝐷 ∈ (measures‘𝔅))
901dmeqd 5916 . . . . . 6 (𝜑 → dom 𝐷 = dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
9115ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
92 dmmptg 6262 . . . . . . 7 (∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9391, 92syl 17 . . . . . 6 (𝜑 → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9490, 93eqtrd 2777 . . . . 5 (𝜑 → dom 𝐷 = 𝔅)
9594fveq2d 6910 . . . 4 (𝜑 → (measures‘dom 𝐷) = (measures‘𝔅))
9689, 95eleqtrrd 2844 . . 3 (𝜑𝐷 ∈ (measures‘dom 𝐷))
97 measbasedom 34203 . . 3 (𝐷 ran measures ↔ 𝐷 ∈ (measures‘dom 𝐷))
9896, 97sylibr 234 . 2 (𝜑𝐷 ran measures)
9994unieqd 4920 . . . . 5 (𝜑 dom 𝐷 = 𝔅)
100 unibrsiga 34187 . . . . 5 𝔅 = ℝ
10199, 100eqtrdi 2793 . . . 4 (𝜑 dom 𝐷 = ℝ)
102101fveq2d 6910 . . 3 (𝜑 → (𝐷 dom 𝐷) = (𝐷‘ℝ))
103 simpr 484 . . . . . . . 8 ((𝜑𝑎 = ℝ) → 𝑎 = ℝ)
104103oveq2d 7447 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ℝ))
105 baselsiga 34116 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → ℝ ∈ 𝔅)
10620, 105mp1i 13 . . . . . . . . 9 (𝜑 → ℝ ∈ 𝔅)
1072, 4, 106orvcelval 34471 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
108107adantr 480 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
109104, 108eqtrd 2777 . . . . . 6 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋 “ ℝ))
110109fveq2d 6910 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋 “ ℝ)))
111 fimacnv 6758 . . . . . . . . 9 (𝑋: dom 𝑃⟶ℝ → (𝑋 “ ℝ) = dom 𝑃)
11236, 111syl 17 . . . . . . . 8 (𝜑 → (𝑋 “ ℝ) = dom 𝑃)
113112fveq2d 6910 . . . . . . 7 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = (𝑃 dom 𝑃))
114 probtot 34414 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
1152, 114syl 17 . . . . . . 7 (𝜑 → (𝑃 dom 𝑃) = 1)
116113, 115eqtrd 2777 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = 1)
117116adantr 480 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋 “ ℝ)) = 1)
118110, 117eqtrd 2777 . . . 4 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = 1)
119 1red 11262 . . . 4 (𝜑 → 1 ∈ ℝ)
1201, 118, 106, 119fvmptd 7023 . . 3 (𝜑 → (𝐷‘ℝ) = 1)
121102, 120eqtrd 2777 . 2 (𝜑 → (𝐷 dom 𝐷) = 1)
122 elprob 34411 . 2 (𝐷 ∈ Prob ↔ (𝐷 ran measures ∧ (𝐷 dom 𝐷) = 1))
12398, 121, 122sylanbrc 583 1 (𝜑𝐷 ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  c0 4333  𝒫 cpw 4600   cuni 4907   ciun 4991  Disj wdisj 5110   class class class wbr 5143  cmpt 5225   E cep 5583  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  cdom 8983  cr 11154  0cc0 11155  1c1 11156  +∞cpnf 11292  *cxr 11294  cle 11296  [,]cicc 13390  Σ*cesum 34028  sigAlgebracsiga 34109  𝔅cbrsiga 34182  measurescmeas 34196  Probcprb 34409  rRndVarcrrv 34442  RV/𝑐corvc 34458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-ordt 17546  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-ps 18611  df-tsr 18612  df-plusf 18652  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-abv 20810  df-lmod 20860  df-scaf 20861  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tmd 24080  df-tgp 24081  df-tsms 24135  df-trg 24168  df-xms 24330  df-ms 24331  df-tms 24332  df-nm 24595  df-ngp 24596  df-nrg 24598  df-nlm 24599  df-ii 24903  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-esum 34029  df-siga 34110  df-sigagen 34140  df-brsiga 34183  df-meas 34197  df-mbfm 34251  df-prob 34410  df-rrv 34443  df-orvc 34459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator