Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvprob Structured version   Visualization version   GIF version

Theorem dstrvprob 32438
Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 32437). (Contributed by Thierry Arnoux, 10-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
Assertion
Ref Expression
dstrvprob (𝜑𝐷 ∈ Prob)
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐷,𝑎   𝜑,𝑎

Proof of Theorem dstrvprob
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.3 . . . . . 6 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
2 dstrvprob.1 . . . . . . . . 9 (𝜑𝑃 ∈ Prob)
32adantr 481 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → 𝑃 ∈ Prob)
4 dstrvprob.2 . . . . . . . . . 10 (𝜑𝑋 ∈ (rRndVar‘𝑃))
54adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑋 ∈ (rRndVar‘𝑃))
6 simpr 485 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑎 ∈ 𝔅)
73, 5, 6orvcelel 32436 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃)
8 prob01 32380 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
93, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
10 elunitrn 13199 . . . . . . . . 9 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ)
1110rexrd 11025 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ*)
12 elunitge0 31849 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
13 elxrge0 13189 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) ↔ ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ* ∧ 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
1411, 12, 13sylanbrc 583 . . . . . . 7 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
159, 14syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
161, 15fmpt3d 6990 . . . . 5 (𝜑𝐷:𝔅⟶(0[,]+∞))
17 simpr 485 . . . . . . . . 9 ((𝜑𝑎 = ∅) → 𝑎 = ∅)
1817oveq2d 7291 . . . . . . . 8 ((𝜑𝑎 = ∅) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ∅))
1918fveq2d 6778 . . . . . . 7 ((𝜑𝑎 = ∅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E ∅)))
20 brsigarn 32152 . . . . . . . . 9 𝔅 ∈ (sigAlgebra‘ℝ)
21 elrnsiga 32094 . . . . . . . . 9 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
22 0elsiga 32082 . . . . . . . . 9 (𝔅 ran sigAlgebra → ∅ ∈ 𝔅)
2320, 21, 22mp2b 10 . . . . . . . 8 ∅ ∈ 𝔅
2423a1i 11 . . . . . . 7 (𝜑 → ∅ ∈ 𝔅)
252, 4, 24orvcelel 32436 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ∅) ∈ dom 𝑃)
262, 25probvalrnd 32391 . . . . . . 7 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) ∈ ℝ)
271, 19, 24, 26fvmptd 6882 . . . . . 6 (𝜑 → (𝐷‘∅) = (𝑃‘(𝑋RV/𝑐 E ∅)))
282, 4, 24orvcelval 32435 . . . . . . 7 (𝜑 → (𝑋RV/𝑐 E ∅) = (𝑋 “ ∅))
2928fveq2d 6778 . . . . . 6 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) = (𝑃‘(𝑋 “ ∅)))
30 ima0 5985 . . . . . . . 8 (𝑋 “ ∅) = ∅
3130fveq2i 6777 . . . . . . 7 (𝑃‘(𝑋 “ ∅)) = (𝑃‘∅)
32 probnul 32381 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
332, 32syl 17 . . . . . . 7 (𝜑 → (𝑃‘∅) = 0)
3431, 33eqtrid 2790 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ∅)) = 0)
3527, 29, 343eqtrd 2782 . . . . 5 (𝜑 → (𝐷‘∅) = 0)
362, 4rrvvf 32411 . . . . . . . . . . . 12 (𝜑𝑋: dom 𝑃⟶ℝ)
3736ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋: dom 𝑃⟶ℝ)
3837ffund 6604 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Fun 𝑋)
39 unipreima 30981 . . . . . . . . . . 11 (Fun 𝑋 → (𝑋 𝑥) = 𝑎𝑥 (𝑋𝑎))
4039fveq2d 6778 . . . . . . . . . 10 (Fun 𝑋 → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
422ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ Prob)
43 domprobmeas 32377 . . . . . . . . . . 11 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
4442, 43syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ (measures‘dom 𝑃))
45 nfv 1917 . . . . . . . . . . . 12 𝑎(𝜑𝑥 ∈ 𝒫 𝔅)
46 nfv 1917 . . . . . . . . . . . . 13 𝑎 𝑥 ≼ ω
47 nfdisj1 5053 . . . . . . . . . . . . 13 𝑎Disj 𝑎𝑥 𝑎
4846, 47nfan 1902 . . . . . . . . . . . 12 𝑎(𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)
4945, 48nfan 1902 . . . . . . . . . . 11 𝑎((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎))
50 simplll 772 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝜑)
51 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎𝑥)
52 simpllr 773 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑥 ∈ 𝒫 𝔅)
53 elelpwi 4545 . . . . . . . . . . . . . 14 ((𝑎𝑥𝑥 ∈ 𝒫 𝔅) → 𝑎 ∈ 𝔅)
5451, 52, 53syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎 ∈ 𝔅)
552, 4rrvfinvima 32417 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃)
5655r19.21bi 3134 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝑋𝑎) ∈ dom 𝑃)
5750, 54, 56syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋𝑎) ∈ dom 𝑃)
5857ex 413 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝑋𝑎) ∈ dom 𝑃))
5949, 58ralrimi 3141 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃)
60 simprl 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ≼ ω)
61 simprr 770 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 𝑎)
62 disjpreima 30923 . . . . . . . . . . 11 ((Fun 𝑋Disj 𝑎𝑥 𝑎) → Disj 𝑎𝑥 (𝑋𝑎))
6338, 61, 62syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 (𝑋𝑎))
64 measvuni 32182 . . . . . . . . . 10 ((𝑃 ∈ (measures‘dom 𝑃) ∧ ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃 ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 (𝑋𝑎))) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6544, 59, 60, 63, 64syl112anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6641, 65eqtrd 2778 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
674ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋 ∈ (rRndVar‘𝑃))
681ad2antrr 723 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
6920, 21mp1i 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝔅 ran sigAlgebra)
70 simplr 766 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝒫 𝔅)
71 sigaclcu 32085 . . . . . . . . . 10 ((𝔅 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝔅𝑥 ≼ ω) → 𝑥 ∈ 𝔅)
7269, 70, 60, 71syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝔅)
7342, 67, 68, 72dstrvval 32437 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = (𝑃‘(𝑋 𝑥)))
741, 9fvmpt2d 6888 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7550, 54, 74syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7642adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑃 ∈ Prob)
7767adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑋 ∈ (rRndVar‘𝑃))
7876, 77, 54orvcelval 32435 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋RV/𝑐 E 𝑎) = (𝑋𝑎))
7978fveq2d 6778 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋𝑎)))
8075, 79eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8180ex 413 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝐷𝑎) = (𝑃‘(𝑋𝑎))))
8249, 81ralrimi 3141 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8349, 82esumeq2d 32005 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Σ*𝑎𝑥(𝐷𝑎) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
8466, 73, 833eqtr4d 2788 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))
8584ex 413 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝔅) → ((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
8685ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
87 ismeas 32167 . . . . . 6 (𝔅 ran sigAlgebra → (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))))
8820, 21, 87mp2b 10 . . . . 5 (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))))
8916, 35, 86, 88syl3anbrc 1342 . . . 4 (𝜑𝐷 ∈ (measures‘𝔅))
901dmeqd 5814 . . . . . 6 (𝜑 → dom 𝐷 = dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
9115ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
92 dmmptg 6145 . . . . . . 7 (∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9391, 92syl 17 . . . . . 6 (𝜑 → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9490, 93eqtrd 2778 . . . . 5 (𝜑 → dom 𝐷 = 𝔅)
9594fveq2d 6778 . . . 4 (𝜑 → (measures‘dom 𝐷) = (measures‘𝔅))
9689, 95eleqtrrd 2842 . . 3 (𝜑𝐷 ∈ (measures‘dom 𝐷))
97 measbasedom 32170 . . 3 (𝐷 ran measures ↔ 𝐷 ∈ (measures‘dom 𝐷))
9896, 97sylibr 233 . 2 (𝜑𝐷 ran measures)
9994unieqd 4853 . . . . 5 (𝜑 dom 𝐷 = 𝔅)
100 unibrsiga 32154 . . . . 5 𝔅 = ℝ
10199, 100eqtrdi 2794 . . . 4 (𝜑 dom 𝐷 = ℝ)
102101fveq2d 6778 . . 3 (𝜑 → (𝐷 dom 𝐷) = (𝐷‘ℝ))
103 simpr 485 . . . . . . . 8 ((𝜑𝑎 = ℝ) → 𝑎 = ℝ)
104103oveq2d 7291 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ℝ))
105 baselsiga 32083 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → ℝ ∈ 𝔅)
10620, 105mp1i 13 . . . . . . . . 9 (𝜑 → ℝ ∈ 𝔅)
1072, 4, 106orvcelval 32435 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
108107adantr 481 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
109104, 108eqtrd 2778 . . . . . 6 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋 “ ℝ))
110109fveq2d 6778 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋 “ ℝ)))
111 fimacnv 6622 . . . . . . . . 9 (𝑋: dom 𝑃⟶ℝ → (𝑋 “ ℝ) = dom 𝑃)
11236, 111syl 17 . . . . . . . 8 (𝜑 → (𝑋 “ ℝ) = dom 𝑃)
113112fveq2d 6778 . . . . . . 7 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = (𝑃 dom 𝑃))
114 probtot 32379 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
1152, 114syl 17 . . . . . . 7 (𝜑 → (𝑃 dom 𝑃) = 1)
116113, 115eqtrd 2778 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = 1)
117116adantr 481 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋 “ ℝ)) = 1)
118110, 117eqtrd 2778 . . . 4 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = 1)
119 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
1201, 118, 106, 119fvmptd 6882 . . 3 (𝜑 → (𝐷‘ℝ) = 1)
121102, 120eqtrd 2778 . 2 (𝜑 → (𝐷 dom 𝐷) = 1)
122 elprob 32376 . 2 (𝐷 ∈ Prob ↔ (𝐷 ran measures ∧ (𝐷 dom 𝐷) = 1))
12398, 121, 122sylanbrc 583 1 (𝜑𝐷 ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  c0 4256  𝒫 cpw 4533   cuni 4839   ciun 4924  Disj wdisj 5039   class class class wbr 5074  cmpt 5157   E cep 5494  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  cr 10870  0cc0 10871  1c1 10872  +∞cpnf 11006  *cxr 11008  cle 11010  [,]cicc 13082  Σ*cesum 31995  sigAlgebracsiga 32076  𝔅cbrsiga 32149  measurescmeas 32163  Probcprb 32374  rRndVarcrrv 32407  RV/𝑐corvc 32422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-ordt 17212  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-abv 20077  df-lmod 20125  df-scaf 20126  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tmd 23223  df-tgp 23224  df-tsms 23278  df-trg 23311  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-ii 24040  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-esum 31996  df-siga 32077  df-sigagen 32107  df-brsiga 32150  df-meas 32164  df-mbfm 32218  df-prob 32375  df-rrv 32408  df-orvc 32423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator