Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvprob Structured version   Visualization version   GIF version

Theorem dstrvprob 34470
Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 34469). (Contributed by Thierry Arnoux, 10-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
Assertion
Ref Expression
dstrvprob (𝜑𝐷 ∈ Prob)
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐷,𝑎   𝜑,𝑎

Proof of Theorem dstrvprob
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.3 . . . . . 6 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
2 dstrvprob.1 . . . . . . . . 9 (𝜑𝑃 ∈ Prob)
32adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → 𝑃 ∈ Prob)
4 dstrvprob.2 . . . . . . . . . 10 (𝜑𝑋 ∈ (rRndVar‘𝑃))
54adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑋 ∈ (rRndVar‘𝑃))
6 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑎 ∈ 𝔅)
73, 5, 6orvcelel 34468 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃)
8 prob01 34411 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
93, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
10 elunitrn 13435 . . . . . . . . 9 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ)
1110rexrd 11231 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ*)
12 elunitge0 33896 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
13 elxrge0 13425 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) ↔ ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ* ∧ 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
1411, 12, 13sylanbrc 583 . . . . . . 7 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
159, 14syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
161, 15fmpt3d 7091 . . . . 5 (𝜑𝐷:𝔅⟶(0[,]+∞))
17 simpr 484 . . . . . . . . 9 ((𝜑𝑎 = ∅) → 𝑎 = ∅)
1817oveq2d 7406 . . . . . . . 8 ((𝜑𝑎 = ∅) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ∅))
1918fveq2d 6865 . . . . . . 7 ((𝜑𝑎 = ∅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E ∅)))
20 brsigarn 34181 . . . . . . . . 9 𝔅 ∈ (sigAlgebra‘ℝ)
21 elrnsiga 34123 . . . . . . . . 9 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
22 0elsiga 34111 . . . . . . . . 9 (𝔅 ran sigAlgebra → ∅ ∈ 𝔅)
2320, 21, 22mp2b 10 . . . . . . . 8 ∅ ∈ 𝔅
2423a1i 11 . . . . . . 7 (𝜑 → ∅ ∈ 𝔅)
252, 4, 24orvcelel 34468 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ∅) ∈ dom 𝑃)
262, 25probvalrnd 34422 . . . . . . 7 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) ∈ ℝ)
271, 19, 24, 26fvmptd 6978 . . . . . 6 (𝜑 → (𝐷‘∅) = (𝑃‘(𝑋RV/𝑐 E ∅)))
282, 4, 24orvcelval 34467 . . . . . . 7 (𝜑 → (𝑋RV/𝑐 E ∅) = (𝑋 “ ∅))
2928fveq2d 6865 . . . . . 6 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) = (𝑃‘(𝑋 “ ∅)))
30 ima0 6051 . . . . . . . 8 (𝑋 “ ∅) = ∅
3130fveq2i 6864 . . . . . . 7 (𝑃‘(𝑋 “ ∅)) = (𝑃‘∅)
32 probnul 34412 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
332, 32syl 17 . . . . . . 7 (𝜑 → (𝑃‘∅) = 0)
3431, 33eqtrid 2777 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ∅)) = 0)
3527, 29, 343eqtrd 2769 . . . . 5 (𝜑 → (𝐷‘∅) = 0)
362, 4rrvvf 34442 . . . . . . . . . . . 12 (𝜑𝑋: dom 𝑃⟶ℝ)
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋: dom 𝑃⟶ℝ)
3837ffund 6695 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Fun 𝑋)
39 unipreima 32574 . . . . . . . . . . 11 (Fun 𝑋 → (𝑋 𝑥) = 𝑎𝑥 (𝑋𝑎))
4039fveq2d 6865 . . . . . . . . . 10 (Fun 𝑋 → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
422ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ Prob)
43 domprobmeas 34408 . . . . . . . . . . 11 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
4442, 43syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ (measures‘dom 𝑃))
45 nfv 1914 . . . . . . . . . . . 12 𝑎(𝜑𝑥 ∈ 𝒫 𝔅)
46 nfv 1914 . . . . . . . . . . . . 13 𝑎 𝑥 ≼ ω
47 nfdisj1 5091 . . . . . . . . . . . . 13 𝑎Disj 𝑎𝑥 𝑎
4846, 47nfan 1899 . . . . . . . . . . . 12 𝑎(𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)
4945, 48nfan 1899 . . . . . . . . . . 11 𝑎((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎))
50 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝜑)
51 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎𝑥)
52 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑥 ∈ 𝒫 𝔅)
53 elelpwi 4576 . . . . . . . . . . . . . 14 ((𝑎𝑥𝑥 ∈ 𝒫 𝔅) → 𝑎 ∈ 𝔅)
5451, 52, 53syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎 ∈ 𝔅)
552, 4rrvfinvima 34448 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃)
5655r19.21bi 3230 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝑋𝑎) ∈ dom 𝑃)
5750, 54, 56syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋𝑎) ∈ dom 𝑃)
5857ex 412 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝑋𝑎) ∈ dom 𝑃))
5949, 58ralrimi 3236 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃)
60 simprl 770 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ≼ ω)
61 simprr 772 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 𝑎)
62 disjpreima 32520 . . . . . . . . . . 11 ((Fun 𝑋Disj 𝑎𝑥 𝑎) → Disj 𝑎𝑥 (𝑋𝑎))
6338, 61, 62syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 (𝑋𝑎))
64 measvuni 34211 . . . . . . . . . 10 ((𝑃 ∈ (measures‘dom 𝑃) ∧ ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃 ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 (𝑋𝑎))) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6544, 59, 60, 63, 64syl112anc 1376 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6641, 65eqtrd 2765 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
674ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋 ∈ (rRndVar‘𝑃))
681ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
6920, 21mp1i 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝔅 ran sigAlgebra)
70 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝒫 𝔅)
71 sigaclcu 34114 . . . . . . . . . 10 ((𝔅 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝔅𝑥 ≼ ω) → 𝑥 ∈ 𝔅)
7269, 70, 60, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝔅)
7342, 67, 68, 72dstrvval 34469 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = (𝑃‘(𝑋 𝑥)))
741, 9fvmpt2d 6984 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7550, 54, 74syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7642adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑃 ∈ Prob)
7767adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑋 ∈ (rRndVar‘𝑃))
7876, 77, 54orvcelval 34467 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋RV/𝑐 E 𝑎) = (𝑋𝑎))
7978fveq2d 6865 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋𝑎)))
8075, 79eqtrd 2765 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8180ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝐷𝑎) = (𝑃‘(𝑋𝑎))))
8249, 81ralrimi 3236 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8349, 82esumeq2d 34034 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Σ*𝑎𝑥(𝐷𝑎) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
8466, 73, 833eqtr4d 2775 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))
8584ex 412 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝔅) → ((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
8685ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
87 ismeas 34196 . . . . . 6 (𝔅 ran sigAlgebra → (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))))
8820, 21, 87mp2b 10 . . . . 5 (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))))
8916, 35, 86, 88syl3anbrc 1344 . . . 4 (𝜑𝐷 ∈ (measures‘𝔅))
901dmeqd 5872 . . . . . 6 (𝜑 → dom 𝐷 = dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
9115ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
92 dmmptg 6218 . . . . . . 7 (∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9391, 92syl 17 . . . . . 6 (𝜑 → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9490, 93eqtrd 2765 . . . . 5 (𝜑 → dom 𝐷 = 𝔅)
9594fveq2d 6865 . . . 4 (𝜑 → (measures‘dom 𝐷) = (measures‘𝔅))
9689, 95eleqtrrd 2832 . . 3 (𝜑𝐷 ∈ (measures‘dom 𝐷))
97 measbasedom 34199 . . 3 (𝐷 ran measures ↔ 𝐷 ∈ (measures‘dom 𝐷))
9896, 97sylibr 234 . 2 (𝜑𝐷 ran measures)
9994unieqd 4887 . . . . 5 (𝜑 dom 𝐷 = 𝔅)
100 unibrsiga 34183 . . . . 5 𝔅 = ℝ
10199, 100eqtrdi 2781 . . . 4 (𝜑 dom 𝐷 = ℝ)
102101fveq2d 6865 . . 3 (𝜑 → (𝐷 dom 𝐷) = (𝐷‘ℝ))
103 simpr 484 . . . . . . . 8 ((𝜑𝑎 = ℝ) → 𝑎 = ℝ)
104103oveq2d 7406 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ℝ))
105 baselsiga 34112 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → ℝ ∈ 𝔅)
10620, 105mp1i 13 . . . . . . . . 9 (𝜑 → ℝ ∈ 𝔅)
1072, 4, 106orvcelval 34467 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
108107adantr 480 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
109104, 108eqtrd 2765 . . . . . 6 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋 “ ℝ))
110109fveq2d 6865 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋 “ ℝ)))
111 fimacnv 6713 . . . . . . . . 9 (𝑋: dom 𝑃⟶ℝ → (𝑋 “ ℝ) = dom 𝑃)
11236, 111syl 17 . . . . . . . 8 (𝜑 → (𝑋 “ ℝ) = dom 𝑃)
113112fveq2d 6865 . . . . . . 7 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = (𝑃 dom 𝑃))
114 probtot 34410 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
1152, 114syl 17 . . . . . . 7 (𝜑 → (𝑃 dom 𝑃) = 1)
116113, 115eqtrd 2765 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = 1)
117116adantr 480 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋 “ ℝ)) = 1)
118110, 117eqtrd 2765 . . . 4 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = 1)
119 1red 11182 . . . 4 (𝜑 → 1 ∈ ℝ)
1201, 118, 106, 119fvmptd 6978 . . 3 (𝜑 → (𝐷‘ℝ) = 1)
121102, 120eqtrd 2765 . 2 (𝜑 → (𝐷 dom 𝐷) = 1)
122 elprob 34407 . 2 (𝐷 ∈ Prob ↔ (𝐷 ran measures ∧ (𝐷 dom 𝐷) = 1))
12398, 121, 122sylanbrc 583 1 (𝜑𝐷 ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  c0 4299  𝒫 cpw 4566   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191   E cep 5540  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  cr 11074  0cc0 11075  1c1 11076  +∞cpnf 11212  *cxr 11214  cle 11216  [,]cicc 13316  Σ*cesum 34024  sigAlgebracsiga 34105  𝔅cbrsiga 34178  measurescmeas 34192  Probcprb 34405  rRndVarcrrv 34438  RV/𝑐corvc 34454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025  df-siga 34106  df-sigagen 34136  df-brsiga 34179  df-meas 34193  df-mbfm 34247  df-prob 34406  df-rrv 34439  df-orvc 34455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator