Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvprob Structured version   Visualization version   GIF version

Theorem dstrvprob 33071
Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 33070). (Contributed by Thierry Arnoux, 10-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
Assertion
Ref Expression
dstrvprob (𝜑𝐷 ∈ Prob)
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐷,𝑎   𝜑,𝑎

Proof of Theorem dstrvprob
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.3 . . . . . 6 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
2 dstrvprob.1 . . . . . . . . 9 (𝜑𝑃 ∈ Prob)
32adantr 481 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → 𝑃 ∈ Prob)
4 dstrvprob.2 . . . . . . . . . 10 (𝜑𝑋 ∈ (rRndVar‘𝑃))
54adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑋 ∈ (rRndVar‘𝑃))
6 simpr 485 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑎 ∈ 𝔅)
73, 5, 6orvcelel 33069 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃)
8 prob01 33013 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
93, 7, 8syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
10 elunitrn 13384 . . . . . . . . 9 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ)
1110rexrd 11205 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ*)
12 elunitge0 32480 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
13 elxrge0 13374 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) ↔ ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ* ∧ 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
1411, 12, 13sylanbrc 583 . . . . . . 7 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
159, 14syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
161, 15fmpt3d 7064 . . . . 5 (𝜑𝐷:𝔅⟶(0[,]+∞))
17 simpr 485 . . . . . . . . 9 ((𝜑𝑎 = ∅) → 𝑎 = ∅)
1817oveq2d 7373 . . . . . . . 8 ((𝜑𝑎 = ∅) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ∅))
1918fveq2d 6846 . . . . . . 7 ((𝜑𝑎 = ∅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E ∅)))
20 brsigarn 32783 . . . . . . . . 9 𝔅 ∈ (sigAlgebra‘ℝ)
21 elrnsiga 32725 . . . . . . . . 9 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
22 0elsiga 32713 . . . . . . . . 9 (𝔅 ran sigAlgebra → ∅ ∈ 𝔅)
2320, 21, 22mp2b 10 . . . . . . . 8 ∅ ∈ 𝔅
2423a1i 11 . . . . . . 7 (𝜑 → ∅ ∈ 𝔅)
252, 4, 24orvcelel 33069 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ∅) ∈ dom 𝑃)
262, 25probvalrnd 33024 . . . . . . 7 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) ∈ ℝ)
271, 19, 24, 26fvmptd 6955 . . . . . 6 (𝜑 → (𝐷‘∅) = (𝑃‘(𝑋RV/𝑐 E ∅)))
282, 4, 24orvcelval 33068 . . . . . . 7 (𝜑 → (𝑋RV/𝑐 E ∅) = (𝑋 “ ∅))
2928fveq2d 6846 . . . . . 6 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) = (𝑃‘(𝑋 “ ∅)))
30 ima0 6029 . . . . . . . 8 (𝑋 “ ∅) = ∅
3130fveq2i 6845 . . . . . . 7 (𝑃‘(𝑋 “ ∅)) = (𝑃‘∅)
32 probnul 33014 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
332, 32syl 17 . . . . . . 7 (𝜑 → (𝑃‘∅) = 0)
3431, 33eqtrid 2788 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ∅)) = 0)
3527, 29, 343eqtrd 2780 . . . . 5 (𝜑 → (𝐷‘∅) = 0)
362, 4rrvvf 33044 . . . . . . . . . . . 12 (𝜑𝑋: dom 𝑃⟶ℝ)
3736ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋: dom 𝑃⟶ℝ)
3837ffund 6672 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Fun 𝑋)
39 unipreima 31560 . . . . . . . . . . 11 (Fun 𝑋 → (𝑋 𝑥) = 𝑎𝑥 (𝑋𝑎))
4039fveq2d 6846 . . . . . . . . . 10 (Fun 𝑋 → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
422ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ Prob)
43 domprobmeas 33010 . . . . . . . . . . 11 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
4442, 43syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ (measures‘dom 𝑃))
45 nfv 1917 . . . . . . . . . . . 12 𝑎(𝜑𝑥 ∈ 𝒫 𝔅)
46 nfv 1917 . . . . . . . . . . . . 13 𝑎 𝑥 ≼ ω
47 nfdisj1 5084 . . . . . . . . . . . . 13 𝑎Disj 𝑎𝑥 𝑎
4846, 47nfan 1902 . . . . . . . . . . . 12 𝑎(𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)
4945, 48nfan 1902 . . . . . . . . . . 11 𝑎((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎))
50 simplll 773 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝜑)
51 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎𝑥)
52 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑥 ∈ 𝒫 𝔅)
53 elelpwi 4570 . . . . . . . . . . . . . 14 ((𝑎𝑥𝑥 ∈ 𝒫 𝔅) → 𝑎 ∈ 𝔅)
5451, 52, 53syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎 ∈ 𝔅)
552, 4rrvfinvima 33050 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃)
5655r19.21bi 3234 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝑋𝑎) ∈ dom 𝑃)
5750, 54, 56syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋𝑎) ∈ dom 𝑃)
5857ex 413 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝑋𝑎) ∈ dom 𝑃))
5949, 58ralrimi 3240 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃)
60 simprl 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ≼ ω)
61 simprr 771 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 𝑎)
62 disjpreima 31502 . . . . . . . . . . 11 ((Fun 𝑋Disj 𝑎𝑥 𝑎) → Disj 𝑎𝑥 (𝑋𝑎))
6338, 61, 62syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 (𝑋𝑎))
64 measvuni 32813 . . . . . . . . . 10 ((𝑃 ∈ (measures‘dom 𝑃) ∧ ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃 ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 (𝑋𝑎))) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6544, 59, 60, 63, 64syl112anc 1374 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6641, 65eqtrd 2776 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
674ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋 ∈ (rRndVar‘𝑃))
681ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
6920, 21mp1i 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝔅 ran sigAlgebra)
70 simplr 767 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝒫 𝔅)
71 sigaclcu 32716 . . . . . . . . . 10 ((𝔅 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝔅𝑥 ≼ ω) → 𝑥 ∈ 𝔅)
7269, 70, 60, 71syl3anc 1371 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝔅)
7342, 67, 68, 72dstrvval 33070 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = (𝑃‘(𝑋 𝑥)))
741, 9fvmpt2d 6961 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7550, 54, 74syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7642adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑃 ∈ Prob)
7767adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑋 ∈ (rRndVar‘𝑃))
7876, 77, 54orvcelval 33068 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋RV/𝑐 E 𝑎) = (𝑋𝑎))
7978fveq2d 6846 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋𝑎)))
8075, 79eqtrd 2776 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8180ex 413 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝐷𝑎) = (𝑃‘(𝑋𝑎))))
8249, 81ralrimi 3240 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8349, 82esumeq2d 32636 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Σ*𝑎𝑥(𝐷𝑎) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
8466, 73, 833eqtr4d 2786 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))
8584ex 413 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝔅) → ((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
8685ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
87 ismeas 32798 . . . . . 6 (𝔅 ran sigAlgebra → (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))))
8820, 21, 87mp2b 10 . . . . 5 (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))))
8916, 35, 86, 88syl3anbrc 1343 . . . 4 (𝜑𝐷 ∈ (measures‘𝔅))
901dmeqd 5861 . . . . . 6 (𝜑 → dom 𝐷 = dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
9115ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
92 dmmptg 6194 . . . . . . 7 (∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9391, 92syl 17 . . . . . 6 (𝜑 → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9490, 93eqtrd 2776 . . . . 5 (𝜑 → dom 𝐷 = 𝔅)
9594fveq2d 6846 . . . 4 (𝜑 → (measures‘dom 𝐷) = (measures‘𝔅))
9689, 95eleqtrrd 2841 . . 3 (𝜑𝐷 ∈ (measures‘dom 𝐷))
97 measbasedom 32801 . . 3 (𝐷 ran measures ↔ 𝐷 ∈ (measures‘dom 𝐷))
9896, 97sylibr 233 . 2 (𝜑𝐷 ran measures)
9994unieqd 4879 . . . . 5 (𝜑 dom 𝐷 = 𝔅)
100 unibrsiga 32785 . . . . 5 𝔅 = ℝ
10199, 100eqtrdi 2792 . . . 4 (𝜑 dom 𝐷 = ℝ)
102101fveq2d 6846 . . 3 (𝜑 → (𝐷 dom 𝐷) = (𝐷‘ℝ))
103 simpr 485 . . . . . . . 8 ((𝜑𝑎 = ℝ) → 𝑎 = ℝ)
104103oveq2d 7373 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ℝ))
105 baselsiga 32714 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → ℝ ∈ 𝔅)
10620, 105mp1i 13 . . . . . . . . 9 (𝜑 → ℝ ∈ 𝔅)
1072, 4, 106orvcelval 33068 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
108107adantr 481 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
109104, 108eqtrd 2776 . . . . . 6 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋 “ ℝ))
110109fveq2d 6846 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋 “ ℝ)))
111 fimacnv 6690 . . . . . . . . 9 (𝑋: dom 𝑃⟶ℝ → (𝑋 “ ℝ) = dom 𝑃)
11236, 111syl 17 . . . . . . . 8 (𝜑 → (𝑋 “ ℝ) = dom 𝑃)
113112fveq2d 6846 . . . . . . 7 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = (𝑃 dom 𝑃))
114 probtot 33012 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
1152, 114syl 17 . . . . . . 7 (𝜑 → (𝑃 dom 𝑃) = 1)
116113, 115eqtrd 2776 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = 1)
117116adantr 481 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋 “ ℝ)) = 1)
118110, 117eqtrd 2776 . . . 4 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = 1)
119 1red 11156 . . . 4 (𝜑 → 1 ∈ ℝ)
1201, 118, 106, 119fvmptd 6955 . . 3 (𝜑 → (𝐷‘ℝ) = 1)
121102, 120eqtrd 2776 . 2 (𝜑 → (𝐷 dom 𝐷) = 1)
122 elprob 33009 . 2 (𝐷 ∈ Prob ↔ (𝐷 ran measures ∧ (𝐷 dom 𝐷) = 1))
12398, 121, 122sylanbrc 583 1 (𝜑𝐷 ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  c0 4282  𝒫 cpw 4560   cuni 4865   ciun 4954  Disj wdisj 5070   class class class wbr 5105  cmpt 5188   E cep 5536  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  cdom 8881  cr 11050  0cc0 11051  1c1 11052  +∞cpnf 11186  *cxr 11188  cle 11190  [,]cicc 13267  Σ*cesum 32626  sigAlgebracsiga 32707  𝔅cbrsiga 32780  measurescmeas 32794  Probcprb 33007  rRndVarcrrv 33040  RV/𝑐corvc 33055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-ordt 17383  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-ps 18455  df-tsr 18456  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-abv 20276  df-lmod 20324  df-scaf 20325  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tmd 23423  df-tgp 23424  df-tsms 23478  df-trg 23511  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-nrg 23941  df-nlm 23942  df-ii 24240  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-esum 32627  df-siga 32708  df-sigagen 32738  df-brsiga 32781  df-meas 32795  df-mbfm 32849  df-prob 33008  df-rrv 33041  df-orvc 33056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator