Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstrvprob Structured version   Visualization version   GIF version

Theorem dstrvprob 32155
Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 32154). (Contributed by Thierry Arnoux, 10-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
dstrvprob.3 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
Assertion
Ref Expression
dstrvprob (𝜑𝐷 ∈ Prob)
Distinct variable groups:   𝑃,𝑎   𝑋,𝑎   𝐷,𝑎   𝜑,𝑎

Proof of Theorem dstrvprob
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.3 . . . . . 6 (𝜑𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
2 dstrvprob.1 . . . . . . . . 9 (𝜑𝑃 ∈ Prob)
32adantr 484 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → 𝑃 ∈ Prob)
4 dstrvprob.2 . . . . . . . . . 10 (𝜑𝑋 ∈ (rRndVar‘𝑃))
54adantr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑋 ∈ (rRndVar‘𝑃))
6 simpr 488 . . . . . . . . 9 ((𝜑𝑎 ∈ 𝔅) → 𝑎 ∈ 𝔅)
73, 5, 6orvcelel 32153 . . . . . . . 8 ((𝜑𝑎 ∈ 𝔅) → (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃)
8 prob01 32097 . . . . . . . 8 ((𝑃 ∈ Prob ∧ (𝑋RV/𝑐 E 𝑎) ∈ dom 𝑃) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
93, 7, 8syl2anc 587 . . . . . . 7 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1))
10 elunitrn 13060 . . . . . . . . 9 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ)
1110rexrd 10888 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ*)
12 elunitge0 31568 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎)))
13 elxrge0 13050 . . . . . . . 8 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) ↔ ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ ℝ* ∧ 0 ≤ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
1411, 12, 13sylanbrc 586 . . . . . . 7 ((𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
159, 14syl 17 . . . . . 6 ((𝜑𝑎 ∈ 𝔅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
161, 15fmpt3d 6938 . . . . 5 (𝜑𝐷:𝔅⟶(0[,]+∞))
17 simpr 488 . . . . . . . . 9 ((𝜑𝑎 = ∅) → 𝑎 = ∅)
1817oveq2d 7234 . . . . . . . 8 ((𝜑𝑎 = ∅) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ∅))
1918fveq2d 6726 . . . . . . 7 ((𝜑𝑎 = ∅) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋RV/𝑐 E ∅)))
20 brsigarn 31869 . . . . . . . . 9 𝔅 ∈ (sigAlgebra‘ℝ)
21 elrnsiga 31811 . . . . . . . . 9 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
22 0elsiga 31799 . . . . . . . . 9 (𝔅 ran sigAlgebra → ∅ ∈ 𝔅)
2320, 21, 22mp2b 10 . . . . . . . 8 ∅ ∈ 𝔅
2423a1i 11 . . . . . . 7 (𝜑 → ∅ ∈ 𝔅)
252, 4, 24orvcelel 32153 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ∅) ∈ dom 𝑃)
262, 25probvalrnd 32108 . . . . . . 7 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) ∈ ℝ)
271, 19, 24, 26fvmptd 6830 . . . . . 6 (𝜑 → (𝐷‘∅) = (𝑃‘(𝑋RV/𝑐 E ∅)))
282, 4, 24orvcelval 32152 . . . . . . 7 (𝜑 → (𝑋RV/𝑐 E ∅) = (𝑋 “ ∅))
2928fveq2d 6726 . . . . . 6 (𝜑 → (𝑃‘(𝑋RV/𝑐 E ∅)) = (𝑃‘(𝑋 “ ∅)))
30 ima0 5950 . . . . . . . 8 (𝑋 “ ∅) = ∅
3130fveq2i 6725 . . . . . . 7 (𝑃‘(𝑋 “ ∅)) = (𝑃‘∅)
32 probnul 32098 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃‘∅) = 0)
332, 32syl 17 . . . . . . 7 (𝜑 → (𝑃‘∅) = 0)
3431, 33syl5eq 2790 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ∅)) = 0)
3527, 29, 343eqtrd 2781 . . . . 5 (𝜑 → (𝐷‘∅) = 0)
362, 4rrvvf 32128 . . . . . . . . . . . 12 (𝜑𝑋: dom 𝑃⟶ℝ)
3736ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋: dom 𝑃⟶ℝ)
3837ffund 6554 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Fun 𝑋)
39 unipreima 30705 . . . . . . . . . . 11 (Fun 𝑋 → (𝑋 𝑥) = 𝑎𝑥 (𝑋𝑎))
4039fveq2d 6726 . . . . . . . . . 10 (Fun 𝑋 → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
4138, 40syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = (𝑃 𝑎𝑥 (𝑋𝑎)))
422ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ Prob)
43 domprobmeas 32094 . . . . . . . . . . 11 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
4442, 43syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑃 ∈ (measures‘dom 𝑃))
45 nfv 1922 . . . . . . . . . . . 12 𝑎(𝜑𝑥 ∈ 𝒫 𝔅)
46 nfv 1922 . . . . . . . . . . . . 13 𝑎 𝑥 ≼ ω
47 nfdisj1 5037 . . . . . . . . . . . . 13 𝑎Disj 𝑎𝑥 𝑎
4846, 47nfan 1907 . . . . . . . . . . . 12 𝑎(𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)
4945, 48nfan 1907 . . . . . . . . . . 11 𝑎((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎))
50 simplll 775 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝜑)
51 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎𝑥)
52 simpllr 776 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑥 ∈ 𝒫 𝔅)
53 elelpwi 4530 . . . . . . . . . . . . . 14 ((𝑎𝑥𝑥 ∈ 𝒫 𝔅) → 𝑎 ∈ 𝔅)
5451, 52, 53syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑎 ∈ 𝔅)
552, 4rrvfinvima 32134 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃)
5655r19.21bi 3130 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝑋𝑎) ∈ dom 𝑃)
5750, 54, 56syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋𝑎) ∈ dom 𝑃)
5857ex 416 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝑋𝑎) ∈ dom 𝑃))
5949, 58ralrimi 3137 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃)
60 simprl 771 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ≼ ω)
61 simprr 773 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 𝑎)
62 disjpreima 30647 . . . . . . . . . . 11 ((Fun 𝑋Disj 𝑎𝑥 𝑎) → Disj 𝑎𝑥 (𝑋𝑎))
6338, 61, 62syl2anc 587 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Disj 𝑎𝑥 (𝑋𝑎))
64 measvuni 31899 . . . . . . . . . 10 ((𝑃 ∈ (measures‘dom 𝑃) ∧ ∀𝑎𝑥 (𝑋𝑎) ∈ dom 𝑃 ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 (𝑋𝑎))) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6544, 59, 60, 63, 64syl112anc 1376 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃 𝑎𝑥 (𝑋𝑎)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
6641, 65eqtrd 2777 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑃‘(𝑋 𝑥)) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
674ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑋 ∈ (rRndVar‘𝑃))
681ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝐷 = (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
6920, 21mp1i 13 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝔅 ran sigAlgebra)
70 simplr 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝒫 𝔅)
71 sigaclcu 31802 . . . . . . . . . 10 ((𝔅 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝔅𝑥 ≼ ω) → 𝑥 ∈ 𝔅)
7269, 70, 60, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → 𝑥 ∈ 𝔅)
7342, 67, 68, 72dstrvval 32154 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = (𝑃‘(𝑋 𝑥)))
741, 9fvmpt2d 6836 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝔅) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7550, 54, 74syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋RV/𝑐 E 𝑎)))
7642adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑃 ∈ Prob)
7767adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → 𝑋 ∈ (rRndVar‘𝑃))
7876, 77, 54orvcelval 32152 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑋RV/𝑐 E 𝑎) = (𝑋𝑎))
7978fveq2d 6726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋𝑎)))
8075, 79eqtrd 2777 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) ∧ 𝑎𝑥) → (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8180ex 416 . . . . . . . . . 10 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝑎𝑥 → (𝐷𝑎) = (𝑃‘(𝑋𝑎))))
8249, 81ralrimi 3137 . . . . . . . . 9 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → ∀𝑎𝑥 (𝐷𝑎) = (𝑃‘(𝑋𝑎)))
8349, 82esumeq2d 31722 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → Σ*𝑎𝑥(𝐷𝑎) = Σ*𝑎𝑥(𝑃‘(𝑋𝑎)))
8466, 73, 833eqtr4d 2787 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 𝔅) ∧ (𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎)) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))
8584ex 416 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 𝔅) → ((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
8685ralrimiva 3105 . . . . 5 (𝜑 → ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))
87 ismeas 31884 . . . . . 6 (𝔅 ran sigAlgebra → (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎)))))
8820, 21, 87mp2b 10 . . . . 5 (𝐷 ∈ (measures‘𝔅) ↔ (𝐷:𝔅⟶(0[,]+∞) ∧ (𝐷‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝔅((𝑥 ≼ ω ∧ Disj 𝑎𝑥 𝑎) → (𝐷 𝑥) = Σ*𝑎𝑥(𝐷𝑎))))
8916, 35, 86, 88syl3anbrc 1345 . . . 4 (𝜑𝐷 ∈ (measures‘𝔅))
901dmeqd 5779 . . . . . 6 (𝜑 → dom 𝐷 = dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))))
9115ralrimiva 3105 . . . . . . 7 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞))
92 dmmptg 6110 . . . . . . 7 (∀𝑎 ∈ 𝔅 (𝑃‘(𝑋RV/𝑐 E 𝑎)) ∈ (0[,]+∞) → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9391, 92syl 17 . . . . . 6 (𝜑 → dom (𝑎 ∈ 𝔅 ↦ (𝑃‘(𝑋RV/𝑐 E 𝑎))) = 𝔅)
9490, 93eqtrd 2777 . . . . 5 (𝜑 → dom 𝐷 = 𝔅)
9594fveq2d 6726 . . . 4 (𝜑 → (measures‘dom 𝐷) = (measures‘𝔅))
9689, 95eleqtrrd 2841 . . 3 (𝜑𝐷 ∈ (measures‘dom 𝐷))
97 measbasedom 31887 . . 3 (𝐷 ran measures ↔ 𝐷 ∈ (measures‘dom 𝐷))
9896, 97sylibr 237 . 2 (𝜑𝐷 ran measures)
9994unieqd 4838 . . . . 5 (𝜑 dom 𝐷 = 𝔅)
100 unibrsiga 31871 . . . . 5 𝔅 = ℝ
10199, 100eqtrdi 2794 . . . 4 (𝜑 dom 𝐷 = ℝ)
102101fveq2d 6726 . . 3 (𝜑 → (𝐷 dom 𝐷) = (𝐷‘ℝ))
103 simpr 488 . . . . . . . 8 ((𝜑𝑎 = ℝ) → 𝑎 = ℝ)
104103oveq2d 7234 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋RV/𝑐 E ℝ))
105 baselsiga 31800 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → ℝ ∈ 𝔅)
10620, 105mp1i 13 . . . . . . . . 9 (𝜑 → ℝ ∈ 𝔅)
1072, 4, 106orvcelval 32152 . . . . . . . 8 (𝜑 → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
108107adantr 484 . . . . . . 7 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E ℝ) = (𝑋 “ ℝ))
109104, 108eqtrd 2777 . . . . . 6 ((𝜑𝑎 = ℝ) → (𝑋RV/𝑐 E 𝑎) = (𝑋 “ ℝ))
110109fveq2d 6726 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = (𝑃‘(𝑋 “ ℝ)))
111 fimacnv 6572 . . . . . . . . 9 (𝑋: dom 𝑃⟶ℝ → (𝑋 “ ℝ) = dom 𝑃)
11236, 111syl 17 . . . . . . . 8 (𝜑 → (𝑋 “ ℝ) = dom 𝑃)
113112fveq2d 6726 . . . . . . 7 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = (𝑃 dom 𝑃))
114 probtot 32096 . . . . . . . 8 (𝑃 ∈ Prob → (𝑃 dom 𝑃) = 1)
1152, 114syl 17 . . . . . . 7 (𝜑 → (𝑃 dom 𝑃) = 1)
116113, 115eqtrd 2777 . . . . . 6 (𝜑 → (𝑃‘(𝑋 “ ℝ)) = 1)
117116adantr 484 . . . . 5 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋 “ ℝ)) = 1)
118110, 117eqtrd 2777 . . . 4 ((𝜑𝑎 = ℝ) → (𝑃‘(𝑋RV/𝑐 E 𝑎)) = 1)
119 1red 10839 . . . 4 (𝜑 → 1 ∈ ℝ)
1201, 118, 106, 119fvmptd 6830 . . 3 (𝜑 → (𝐷‘ℝ) = 1)
121102, 120eqtrd 2777 . 2 (𝜑 → (𝐷 dom 𝐷) = 1)
122 elprob 32093 . 2 (𝐷 ∈ Prob ↔ (𝐷 ran measures ∧ (𝐷 dom 𝐷) = 1))
12398, 121, 122sylanbrc 586 1 (𝜑𝐷 ∈ Prob)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  c0 4242  𝒫 cpw 4518   cuni 4824   ciun 4909  Disj wdisj 5023   class class class wbr 5058  cmpt 5140   E cep 5464  ccnv 5555  dom cdm 5556  ran crn 5557  cima 5559  Fun wfun 6379  wf 6381  cfv 6385  (class class class)co 7218  ωcom 7649  cdom 8629  cr 10733  0cc0 10734  1c1 10735  +∞cpnf 10869  *cxr 10871  cle 10873  [,]cicc 12943  Σ*cesum 31712  sigAlgebracsiga 31793  𝔅cbrsiga 31866  measurescmeas 31880  Probcprb 32091  rRndVarcrrv 32124  RV/𝑐corvc 32139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-inf2 9261  ax-ac2 10082  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811  ax-pre-sup 10812  ax-addf 10813  ax-mulf 10814
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-iin 4912  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-se 5515  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-isom 6394  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-of 7474  df-om 7650  df-1st 7766  df-2nd 7767  df-supp 7909  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-2o 8208  df-er 8396  df-map 8515  df-pm 8516  df-ixp 8584  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-fsupp 8991  df-fi 9032  df-sup 9063  df-inf 9064  df-oi 9131  df-dju 9522  df-card 9560  df-acn 9563  df-ac 9735  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-div 11495  df-nn 11836  df-2 11898  df-3 11899  df-4 11900  df-5 11901  df-6 11902  df-7 11903  df-8 11904  df-9 11905  df-n0 12096  df-z 12182  df-dec 12299  df-uz 12444  df-q 12550  df-rp 12592  df-xneg 12709  df-xadd 12710  df-xmul 12711  df-ioo 12944  df-ioc 12945  df-ico 12946  df-icc 12947  df-fz 13101  df-fzo 13244  df-fl 13372  df-mod 13448  df-seq 13580  df-exp 13641  df-fac 13845  df-bc 13874  df-hash 13902  df-shft 14635  df-cj 14667  df-re 14668  df-im 14669  df-sqrt 14803  df-abs 14804  df-limsup 15037  df-clim 15054  df-rlim 15055  df-sum 15255  df-ef 15634  df-sin 15636  df-cos 15637  df-pi 15639  df-struct 16705  df-sets 16722  df-slot 16740  df-ndx 16750  df-base 16766  df-ress 16790  df-plusg 16820  df-mulr 16821  df-starv 16822  df-sca 16823  df-vsca 16824  df-ip 16825  df-tset 16826  df-ple 16827  df-ds 16829  df-unif 16830  df-hom 16831  df-cco 16832  df-rest 16932  df-topn 16933  df-0g 16951  df-gsum 16952  df-topgen 16953  df-pt 16954  df-prds 16957  df-ordt 17011  df-xrs 17012  df-qtop 17017  df-imas 17018  df-xps 17020  df-mre 17094  df-mrc 17095  df-acs 17097  df-ps 18077  df-tsr 18078  df-plusf 18118  df-mgm 18119  df-sgrp 18168  df-mnd 18179  df-mhm 18223  df-submnd 18224  df-grp 18373  df-minusg 18374  df-sbg 18375  df-mulg 18494  df-subg 18545  df-cntz 18716  df-cmn 19177  df-abl 19178  df-mgp 19510  df-ur 19522  df-ring 19569  df-cring 19570  df-subrg 19803  df-abv 19858  df-lmod 19906  df-scaf 19907  df-sra 20214  df-rgmod 20215  df-psmet 20360  df-xmet 20361  df-met 20362  df-bl 20363  df-mopn 20364  df-fbas 20365  df-fg 20366  df-cnfld 20369  df-top 21796  df-topon 21813  df-topsp 21835  df-bases 21848  df-cld 21921  df-ntr 21922  df-cls 21923  df-nei 22000  df-lp 22038  df-perf 22039  df-cn 22129  df-cnp 22130  df-haus 22217  df-tx 22464  df-hmeo 22657  df-fil 22748  df-fm 22840  df-flim 22841  df-flf 22842  df-tmd 22974  df-tgp 22975  df-tsms 23029  df-trg 23062  df-xms 23223  df-ms 23224  df-tms 23225  df-nm 23485  df-ngp 23486  df-nrg 23488  df-nlm 23489  df-ii 23779  df-cncf 23780  df-limc 24768  df-dv 24769  df-log 25450  df-esum 31713  df-siga 31794  df-sigagen 31824  df-brsiga 31867  df-meas 31881  df-mbfm 31935  df-prob 32092  df-rrv 32125  df-orvc 32140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator