Step | Hyp | Ref
| Expression |
1 | | dstrvprob.3 |
. . . . . 6
⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦
(𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) |
2 | | dstrvprob.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ Prob) |
3 | 2 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
𝑃 ∈
Prob) |
4 | | dstrvprob.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
5 | 4 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
𝑋 ∈
(rRndVar‘𝑃)) |
6 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
𝑎 ∈
𝔅ℝ) |
7 | 3, 5, 6 | orvcelel 32153 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
(𝑋∘RV/𝑐 E 𝑎) ∈ dom 𝑃) |
8 | | prob01 32097 |
. . . . . . . 8
⊢ ((𝑃 ∈ Prob ∧ (𝑋∘RV/𝑐 E
𝑎) ∈ dom 𝑃) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
(0[,]1)) |
9 | 3, 7, 8 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
(𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
(0[,]1)) |
10 | | elunitrn 13060 |
. . . . . . . . 9
⊢ ((𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
ℝ) |
11 | 10 | rexrd 10888 |
. . . . . . . 8
⊢ ((𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
ℝ*) |
12 | | elunitge0 31568 |
. . . . . . . 8
⊢ ((𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈ (0[,]1) → 0 ≤
(𝑃‘(𝑋∘RV/𝑐 E 𝑎))) |
13 | | elxrge0 13050 |
. . . . . . . 8
⊢ ((𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈ (0[,]+∞) ↔
((𝑃‘(𝑋∘RV/𝑐 E
𝑎)) ∈
ℝ* ∧ 0 ≤ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) |
14 | 11, 12, 13 | sylanbrc 586 |
. . . . . . 7
⊢ ((𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈ (0[,]1) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
(0[,]+∞)) |
15 | 9, 14 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
(𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
(0[,]+∞)) |
16 | 1, 15 | fmpt3d 6938 |
. . . . 5
⊢ (𝜑 → 𝐷:𝔅ℝ⟶(0[,]+∞)) |
17 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 = ∅) → 𝑎 = ∅) |
18 | 17 | oveq2d 7234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 = ∅) → (𝑋∘RV/𝑐 E 𝑎) = (𝑋∘RV/𝑐 E
∅)) |
19 | 18 | fveq2d 6726 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 = ∅) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) = (𝑃‘(𝑋∘RV/𝑐 E
∅))) |
20 | | brsigarn 31869 |
. . . . . . . . 9
⊢
𝔅ℝ ∈
(sigAlgebra‘ℝ) |
21 | | elrnsiga 31811 |
. . . . . . . . 9
⊢
(𝔅ℝ ∈ (sigAlgebra‘ℝ) →
𝔅ℝ ∈ ∪ ran
sigAlgebra) |
22 | | 0elsiga 31799 |
. . . . . . . . 9
⊢
(𝔅ℝ ∈ ∪ ran
sigAlgebra → ∅ ∈ 𝔅ℝ) |
23 | 20, 21, 22 | mp2b 10 |
. . . . . . . 8
⊢ ∅
∈ 𝔅ℝ |
24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈
𝔅ℝ) |
25 | 2, 4, 24 | orvcelel 32153 |
. . . . . . . 8
⊢ (𝜑 → (𝑋∘RV/𝑐 E ∅)
∈ dom 𝑃) |
26 | 2, 25 | probvalrnd 32108 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 E ∅))
∈ ℝ) |
27 | 1, 19, 24, 26 | fvmptd 6830 |
. . . . . 6
⊢ (𝜑 → (𝐷‘∅) = (𝑃‘(𝑋∘RV/𝑐 E
∅))) |
28 | 2, 4, 24 | orvcelval 32152 |
. . . . . . 7
⊢ (𝜑 → (𝑋∘RV/𝑐 E ∅) =
(◡𝑋 “ ∅)) |
29 | 28 | fveq2d 6726 |
. . . . . 6
⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 E ∅)) =
(𝑃‘(◡𝑋 “ ∅))) |
30 | | ima0 5950 |
. . . . . . . 8
⊢ (◡𝑋 “ ∅) = ∅ |
31 | 30 | fveq2i 6725 |
. . . . . . 7
⊢ (𝑃‘(◡𝑋 “ ∅)) = (𝑃‘∅) |
32 | | probnul 32098 |
. . . . . . . 8
⊢ (𝑃 ∈ Prob → (𝑃‘∅) =
0) |
33 | 2, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘∅) = 0) |
34 | 31, 33 | syl5eq 2790 |
. . . . . 6
⊢ (𝜑 → (𝑃‘(◡𝑋 “ ∅)) = 0) |
35 | 27, 29, 34 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → (𝐷‘∅) = 0) |
36 | 2, 4 | rrvvf 32128 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
37 | 36 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝑋:∪ dom 𝑃⟶ℝ) |
38 | 37 | ffund 6554 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → Fun 𝑋) |
39 | | unipreima 30705 |
. . . . . . . . . . 11
⊢ (Fun
𝑋 → (◡𝑋 “ ∪ 𝑥) = ∪ 𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎)) |
40 | 39 | fveq2d 6726 |
. . . . . . . . . 10
⊢ (Fun
𝑋 → (𝑃‘(◡𝑋 “ ∪ 𝑥)) = (𝑃‘∪
𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎))) |
41 | 38, 40 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝑃‘(◡𝑋 “ ∪ 𝑥)) = (𝑃‘∪
𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎))) |
42 | 2 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝑃 ∈ Prob) |
43 | | domprobmeas 32094 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom
𝑃)) |
44 | 42, 43 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝑃 ∈ (measures‘dom 𝑃)) |
45 | | nfv 1922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎(𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) |
46 | | nfv 1922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎 𝑥 ≼
ω |
47 | | nfdisj1 5037 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑎Disj
𝑎 ∈ 𝑥 𝑎 |
48 | 46, 47 | nfan 1907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑎(𝑥 ≼ ω ∧
Disj 𝑎 ∈ 𝑥 𝑎) |
49 | 45, 48 | nfan 1907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) |
50 | | simplll 775 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → 𝜑) |
51 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → 𝑎 ∈ 𝑥) |
52 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → 𝑥 ∈ 𝒫
𝔅ℝ) |
53 | | elelpwi 4530 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) → 𝑎 ∈
𝔅ℝ) |
54 | 51, 52, 53 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → 𝑎 ∈
𝔅ℝ) |
55 | 2, 4 | rrvfinvima 32134 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑎 ∈ 𝔅ℝ (◡𝑋 “ 𝑎) ∈ dom 𝑃) |
56 | 55 | r19.21bi 3130 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
(◡𝑋 “ 𝑎) ∈ dom 𝑃) |
57 | 50, 54, 56 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → (◡𝑋 “ 𝑎) ∈ dom 𝑃) |
58 | 57 | ex 416 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝑎 ∈ 𝑥 → (◡𝑋 “ 𝑎) ∈ dom 𝑃)) |
59 | 49, 58 | ralrimi 3137 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → ∀𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎) ∈ dom 𝑃) |
60 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝑥 ≼ ω) |
61 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → Disj 𝑎 ∈ 𝑥 𝑎) |
62 | | disjpreima 30647 |
. . . . . . . . . . 11
⊢ ((Fun
𝑋 ∧ Disj 𝑎 ∈ 𝑥 𝑎) → Disj 𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎)) |
63 | 38, 61, 62 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → Disj 𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎)) |
64 | | measvuni 31899 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ (measures‘dom
𝑃) ∧ ∀𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎) ∈ dom 𝑃 ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎))) → (𝑃‘∪
𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎)) = Σ*𝑎 ∈ 𝑥(𝑃‘(◡𝑋 “ 𝑎))) |
65 | 44, 59, 60, 63, 64 | syl112anc 1376 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝑃‘∪
𝑎 ∈ 𝑥 (◡𝑋 “ 𝑎)) = Σ*𝑎 ∈ 𝑥(𝑃‘(◡𝑋 “ 𝑎))) |
66 | 41, 65 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝑃‘(◡𝑋 “ ∪ 𝑥)) = Σ*𝑎 ∈ 𝑥(𝑃‘(◡𝑋 “ 𝑎))) |
67 | 4 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝑋 ∈ (rRndVar‘𝑃)) |
68 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦
(𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) |
69 | 20, 21 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝔅ℝ ∈
∪ ran sigAlgebra) |
70 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → 𝑥 ∈ 𝒫
𝔅ℝ) |
71 | | sigaclcu 31802 |
. . . . . . . . . 10
⊢
((𝔅ℝ ∈ ∪ ran
sigAlgebra ∧ 𝑥 ∈
𝒫 𝔅ℝ ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ 𝔅ℝ) |
72 | 69, 70, 60, 71 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → ∪ 𝑥 ∈
𝔅ℝ) |
73 | 42, 67, 68, 72 | dstrvval 32154 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝐷‘∪ 𝑥) = (𝑃‘(◡𝑋 “ ∪ 𝑥))) |
74 | 1, 9 | fvmpt2d 6836 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝔅ℝ) →
(𝐷‘𝑎) = (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) |
75 | 50, 54, 74 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → (𝐷‘𝑎) = (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) |
76 | 42 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → 𝑃 ∈ Prob) |
77 | 67 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → 𝑋 ∈ (rRndVar‘𝑃)) |
78 | 76, 77, 54 | orvcelval 32152 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → (𝑋∘RV/𝑐 E 𝑎) = (◡𝑋 “ 𝑎)) |
79 | 78 | fveq2d 6726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) = (𝑃‘(◡𝑋 “ 𝑎))) |
80 | 75, 79 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) ∧ 𝑎 ∈ 𝑥) → (𝐷‘𝑎) = (𝑃‘(◡𝑋 “ 𝑎))) |
81 | 80 | ex 416 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝑎 ∈ 𝑥 → (𝐷‘𝑎) = (𝑃‘(◡𝑋 “ 𝑎)))) |
82 | 49, 81 | ralrimi 3137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → ∀𝑎 ∈ 𝑥 (𝐷‘𝑎) = (𝑃‘(◡𝑋 “ 𝑎))) |
83 | 49, 82 | esumeq2d 31722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → Σ*𝑎 ∈ 𝑥(𝐷‘𝑎) = Σ*𝑎 ∈ 𝑥(𝑃‘(◡𝑋 “ 𝑎))) |
84 | 66, 73, 83 | 3eqtr4d 2787 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) ∧ (𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎)) → (𝐷‘∪ 𝑥) = Σ*𝑎 ∈ 𝑥(𝐷‘𝑎)) |
85 | 84 | ex 416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫
𝔅ℝ) → ((𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎) → (𝐷‘∪ 𝑥) = Σ*𝑎 ∈ 𝑥(𝐷‘𝑎))) |
86 | 85 | ralrimiva 3105 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝒫
𝔅ℝ((𝑥 ≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎) → (𝐷‘∪ 𝑥) = Σ*𝑎 ∈ 𝑥(𝐷‘𝑎))) |
87 | | ismeas 31884 |
. . . . . 6
⊢
(𝔅ℝ ∈ ∪ ran
sigAlgebra → (𝐷 ∈
(measures‘𝔅ℝ) ↔ (𝐷:𝔅ℝ⟶(0[,]+∞)
∧ (𝐷‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝔅ℝ((𝑥
≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎) → (𝐷‘∪ 𝑥) = Σ*𝑎 ∈ 𝑥(𝐷‘𝑎))))) |
88 | 20, 21, 87 | mp2b 10 |
. . . . 5
⊢ (𝐷 ∈
(measures‘𝔅ℝ) ↔ (𝐷:𝔅ℝ⟶(0[,]+∞)
∧ (𝐷‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝔅ℝ((𝑥
≼ ω ∧ Disj 𝑎 ∈ 𝑥 𝑎) → (𝐷‘∪ 𝑥) = Σ*𝑎 ∈ 𝑥(𝐷‘𝑎)))) |
89 | 16, 35, 86, 88 | syl3anbrc 1345 |
. . . 4
⊢ (𝜑 → 𝐷 ∈
(measures‘𝔅ℝ)) |
90 | 1 | dmeqd 5779 |
. . . . . 6
⊢ (𝜑 → dom 𝐷 = dom (𝑎 ∈ 𝔅ℝ ↦
(𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) |
91 | 15 | ralrimiva 3105 |
. . . . . . 7
⊢ (𝜑 → ∀𝑎 ∈ 𝔅ℝ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈
(0[,]+∞)) |
92 | | dmmptg 6110 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝔅ℝ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) ∈ (0[,]+∞) →
dom (𝑎 ∈
𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎))) =
𝔅ℝ) |
93 | 91, 92 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom (𝑎 ∈ 𝔅ℝ ↦
(𝑃‘(𝑋∘RV/𝑐 E 𝑎))) =
𝔅ℝ) |
94 | 90, 93 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → dom 𝐷 =
𝔅ℝ) |
95 | 94 | fveq2d 6726 |
. . . 4
⊢ (𝜑 → (measures‘dom 𝐷) =
(measures‘𝔅ℝ)) |
96 | 89, 95 | eleqtrrd 2841 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (measures‘dom 𝐷)) |
97 | | measbasedom 31887 |
. . 3
⊢ (𝐷 ∈ ∪ ran measures ↔ 𝐷 ∈ (measures‘dom 𝐷)) |
98 | 96, 97 | sylibr 237 |
. 2
⊢ (𝜑 → 𝐷 ∈ ∪ ran
measures) |
99 | 94 | unieqd 4838 |
. . . . 5
⊢ (𝜑 → ∪ dom 𝐷 = ∪
𝔅ℝ) |
100 | | unibrsiga 31871 |
. . . . 5
⊢ ∪ 𝔅ℝ = ℝ |
101 | 99, 100 | eqtrdi 2794 |
. . . 4
⊢ (𝜑 → ∪ dom 𝐷 = ℝ) |
102 | 101 | fveq2d 6726 |
. . 3
⊢ (𝜑 → (𝐷‘∪ dom
𝐷) = (𝐷‘ℝ)) |
103 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 = ℝ) → 𝑎 = ℝ) |
104 | 103 | oveq2d 7234 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 = ℝ) → (𝑋∘RV/𝑐 E 𝑎) = (𝑋∘RV/𝑐 E
ℝ)) |
105 | | baselsiga 31800 |
. . . . . . . . . 10
⊢
(𝔅ℝ ∈ (sigAlgebra‘ℝ) →
ℝ ∈ 𝔅ℝ) |
106 | 20, 105 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → ℝ ∈
𝔅ℝ) |
107 | 2, 4, 106 | orvcelval 32152 |
. . . . . . . 8
⊢ (𝜑 → (𝑋∘RV/𝑐 E ℝ) =
(◡𝑋 “ ℝ)) |
108 | 107 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 = ℝ) → (𝑋∘RV/𝑐 E ℝ) =
(◡𝑋 “ ℝ)) |
109 | 104, 108 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 = ℝ) → (𝑋∘RV/𝑐 E 𝑎) = (◡𝑋 “ ℝ)) |
110 | 109 | fveq2d 6726 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = ℝ) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) = (𝑃‘(◡𝑋 “ ℝ))) |
111 | | fimacnv 6572 |
. . . . . . . . 9
⊢ (𝑋:∪
dom 𝑃⟶ℝ →
(◡𝑋 “ ℝ) = ∪ dom 𝑃) |
112 | 36, 111 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑋 “ ℝ) = ∪ dom 𝑃) |
113 | 112 | fveq2d 6726 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘(◡𝑋 “ ℝ)) = (𝑃‘∪ dom
𝑃)) |
114 | | probtot 32096 |
. . . . . . . 8
⊢ (𝑃 ∈ Prob → (𝑃‘∪ dom 𝑃) = 1) |
115 | 2, 114 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘∪ dom
𝑃) = 1) |
116 | 113, 115 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → (𝑃‘(◡𝑋 “ ℝ)) = 1) |
117 | 116 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 = ℝ) → (𝑃‘(◡𝑋 “ ℝ)) = 1) |
118 | 110, 117 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 = ℝ) → (𝑃‘(𝑋∘RV/𝑐 E 𝑎)) = 1) |
119 | | 1red 10839 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
120 | 1, 118, 106, 119 | fvmptd 6830 |
. . 3
⊢ (𝜑 → (𝐷‘ℝ) = 1) |
121 | 102, 120 | eqtrd 2777 |
. 2
⊢ (𝜑 → (𝐷‘∪ dom
𝐷) = 1) |
122 | | elprob 32093 |
. 2
⊢ (𝐷 ∈ Prob ↔ (𝐷 ∈ ∪ ran measures ∧ (𝐷‘∪ dom
𝐷) = 1)) |
123 | 98, 121, 122 | sylanbrc 586 |
1
⊢ (𝜑 → 𝐷 ∈ Prob) |