| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > probfinmeasbALTV | Structured version Visualization version GIF version | ||
| Description: Alternate version of probfinmeasb 34441. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| probfinmeasbALTV | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measdivcstALTV 34238 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘𝑆)) | |
| 2 | ovex 7379 | . . . . . . 7 ⊢ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V | |
| 3 | 2 | rgenw 3051 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝑆 ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V |
| 4 | dmmptg 6189 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑆 ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V → dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = 𝑆) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = 𝑆 |
| 6 | 5 | fveq2i 6825 | . . . 4 ⊢ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = (measures‘𝑆) |
| 7 | 1, 6 | eleqtrrdi 2842 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))))) |
| 8 | measbasedom 34215 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures ↔ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))))) | |
| 9 | 7, 8 | sylibr 234 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures) |
| 10 | 5 | unieqi 4868 | . . . 4 ⊢ ∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = ∪ 𝑆 |
| 11 | 10 | fveq2i 6825 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) |
| 12 | measbase 34210 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 13 | isrnsigau 34140 | . . . . . . . . 9 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 14 | 13 | simprd 495 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 15 | 14 | simp1d 1142 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) |
| 16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → ∪ 𝑆 ∈ 𝑆) |
| 17 | id 22 | . . . . . . 7 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ+) | |
| 18 | 17, 17 | rpxdivcld 32914 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+) |
| 19 | 16, 18 | anim12i 613 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (∪ 𝑆 ∈ 𝑆 ∧ ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+)) |
| 20 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑆 → (𝑀‘𝑥) = (𝑀‘∪ 𝑆)) | |
| 21 | 20 | oveq1d 7361 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑆 → ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 22 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) | |
| 23 | 21, 22 | fvmptg 6927 | . . . . 5 ⊢ ((∪ 𝑆 ∈ 𝑆 ∧ ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 24 | 19, 23 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
| 25 | rpre 12899 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ) | |
| 26 | rpne0 12907 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ≠ 0) | |
| 27 | xdivid 32908 | . . . . . 6 ⊢ (((𝑀‘∪ 𝑆) ∈ ℝ ∧ (𝑀‘∪ 𝑆) ≠ 0) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) | |
| 28 | 25, 26, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
| 29 | 28 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
| 30 | 24, 29 | eqtrd 2766 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = 1) |
| 31 | 11, 30 | eqtrid 2778 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = 1) |
| 32 | elprob 34422 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = 1)) | |
| 33 | 9, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ran crn 5615 ‘cfv 6481 (class class class)co 7346 ωcom 7796 ≼ cdom 8867 ℝcr 11005 0cc0 11006 1c1 11007 ℝ+crp 12890 /𝑒 cxdiv 32897 sigAlgebracsiga 34121 measurescmeas 34208 Probcprb 34420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-ordt 17405 df-xrs 17406 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-cntz 19229 df-cmn 19694 df-fbas 21288 df-fg 21289 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-ntr 22935 df-nei 23013 df-cn 23142 df-cnp 23143 df-haus 23230 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tsms 24042 df-xdiv 32898 df-esum 34041 df-siga 34122 df-meas 34209 df-prob 34421 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |