Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > probfinmeasbALTV | Structured version Visualization version GIF version |
Description: Alternate version of probfinmeasb 31965. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
probfinmeasbALTV | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measdivcstALTV 31763 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘𝑆)) | |
2 | ovex 7203 | . . . . . . 7 ⊢ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V | |
3 | 2 | rgenw 3065 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝑆 ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V |
4 | dmmptg 6074 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑆 ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) ∈ V → dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = 𝑆) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = 𝑆 |
6 | 5 | fveq2i 6677 | . . . 4 ⊢ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = (measures‘𝑆) |
7 | 1, 6 | eleqtrrdi 2844 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))))) |
8 | measbasedom 31740 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures ↔ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ (measures‘dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))))) | |
9 | 7, 8 | sylibr 237 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures) |
10 | 5 | unieqi 4809 | . . . 4 ⊢ ∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = ∪ 𝑆 |
11 | 10 | fveq2i 6677 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) |
12 | measbase 31735 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
13 | isrnsigau 31665 | . . . . . . . . 9 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
14 | 13 | simprd 499 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
15 | 14 | simp1d 1143 | . . . . . . 7 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) |
16 | 12, 15 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → ∪ 𝑆 ∈ 𝑆) |
17 | id 22 | . . . . . . 7 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ+) | |
18 | 17, 17 | rpxdivcld 30783 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+) |
19 | 16, 18 | anim12i 616 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (∪ 𝑆 ∈ 𝑆 ∧ ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+)) |
20 | fveq2 6674 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑆 → (𝑀‘𝑥) = (𝑀‘∪ 𝑆)) | |
21 | 20 | oveq1d 7185 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑆 → ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
22 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) | |
23 | 21, 22 | fvmptg 6773 | . . . . 5 ⊢ ((∪ 𝑆 ∈ 𝑆 ∧ ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
24 | 19, 23 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆))) |
25 | rpre 12480 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ∈ ℝ) | |
26 | rpne0 12488 | . . . . . 6 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → (𝑀‘∪ 𝑆) ≠ 0) | |
27 | xdivid 30777 | . . . . . 6 ⊢ (((𝑀‘∪ 𝑆) ∈ ℝ ∧ (𝑀‘∪ 𝑆) ≠ 0) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) | |
28 | 25, 26, 27 | syl2anc 587 | . . . . 5 ⊢ ((𝑀‘∪ 𝑆) ∈ ℝ+ → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
29 | 28 | adantl 485 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑀‘∪ 𝑆) /𝑒 (𝑀‘∪ 𝑆)) = 1) |
30 | 24, 29 | eqtrd 2773 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ 𝑆) = 1) |
31 | 11, 30 | syl5eq 2785 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = 1) |
32 | elprob 31946 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ ∪ ran measures ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))‘∪ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆)))) = 1)) | |
33 | 9, 31, 32 | sylanbrc 586 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 Vcvv 3398 ∖ cdif 3840 ⊆ wss 3843 𝒫 cpw 4488 ∪ cuni 4796 class class class wbr 5030 ↦ cmpt 5110 dom cdm 5525 ran crn 5526 ‘cfv 6339 (class class class)co 7170 ωcom 7599 ≼ cdom 8553 ℝcr 10614 0cc0 10615 1c1 10616 ℝ+crp 12472 /𝑒 cxdiv 30766 sigAlgebracsiga 31646 measurescmeas 31733 Probcprb 31944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-disj 4996 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ioc 12826 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-seq 13461 df-hash 13783 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-tset 16687 df-ple 16688 df-ds 16690 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-ordt 16877 df-xrs 16878 df-mre 16960 df-mrc 16961 df-acs 16963 df-ps 17926 df-tsr 17927 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-submnd 18073 df-cntz 18565 df-cmn 19026 df-fbas 20214 df-fg 20215 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-ntr 21771 df-nei 21849 df-cn 21978 df-cnp 21979 df-haus 22066 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-tsms 22878 df-xdiv 30767 df-esum 31566 df-siga 31647 df-meas 31734 df-prob 31945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |