MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nolesgn2ores Structured version   Visualization version   GIF version

Theorem nolesgn2ores 27621
Description: Given 𝐴 less-than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2ores (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))

Proof of Theorem nolesgn2ores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmres 6011 . . . 4 dom (𝐴 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐴)
2 simp11 1200 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐴 No )
3 nodmord 27602 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
42, 3syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐴)
5 ndmfv 6926 . . . . . . . . . 10 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
6 2on 8497 . . . . . . . . . . . . . . 15 2o ∈ On
76elexi 3484 . . . . . . . . . . . . . 14 2o ∈ V
87prid2 4763 . . . . . . . . . . . . 13 2o ∈ {1o, 2o}
98nosgnn0i 27608 . . . . . . . . . . . 12 ∅ ≠ 2o
10 neeq1 2993 . . . . . . . . . . . 12 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ≠ 2o ↔ ∅ ≠ 2o))
119, 10mpbiri 257 . . . . . . . . . . 11 ((𝐴𝑋) = ∅ → (𝐴𝑋) ≠ 2o)
1211neneqd 2935 . . . . . . . . . 10 ((𝐴𝑋) = ∅ → ¬ (𝐴𝑋) = 2o)
135, 12syl 17 . . . . . . . . 9 𝑋 ∈ dom 𝐴 → ¬ (𝐴𝑋) = 2o)
1413con4i 114 . . . . . . . 8 ((𝐴𝑋) = 2o𝑋 ∈ dom 𝐴)
1514adantl 480 . . . . . . 7 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) → 𝑋 ∈ dom 𝐴)
16153ad2ant2 1131 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐴)
17 ordsucss 7818 . . . . . 6 (Ord dom 𝐴 → (𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴))
184, 16, 17sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐴)
19 dfss2 3958 . . . . 5 (suc 𝑋 ⊆ dom 𝐴 ↔ (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
2018, 19sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
211, 20eqtrid 2777 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = suc 𝑋)
22 dmres 6011 . . . 4 dom (𝐵 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐵)
23 simp12 1201 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐵 No )
24 nodmord 27602 . . . . . . 7 (𝐵 No → Ord dom 𝐵)
2523, 24syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐵)
26 nolesgn2o 27620 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)
27 ndmfv 6926 . . . . . . . . 9 𝑋 ∈ dom 𝐵 → (𝐵𝑋) = ∅)
28 neeq1 2993 . . . . . . . . . . 11 ((𝐵𝑋) = ∅ → ((𝐵𝑋) ≠ 2o ↔ ∅ ≠ 2o))
299, 28mpbiri 257 . . . . . . . . . 10 ((𝐵𝑋) = ∅ → (𝐵𝑋) ≠ 2o)
3029neneqd 2935 . . . . . . . . 9 ((𝐵𝑋) = ∅ → ¬ (𝐵𝑋) = 2o)
3127, 30syl 17 . . . . . . . 8 𝑋 ∈ dom 𝐵 → ¬ (𝐵𝑋) = 2o)
3231con4i 114 . . . . . . 7 ((𝐵𝑋) = 2o𝑋 ∈ dom 𝐵)
3326, 32syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐵)
34 ordsucss 7818 . . . . . 6 (Ord dom 𝐵 → (𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵))
3525, 33, 34sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐵)
36 dfss2 3958 . . . . 5 (suc 𝑋 ⊆ dom 𝐵 ↔ (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3735, 36sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3822, 37eqtrid 2777 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐵 ↾ suc 𝑋) = suc 𝑋)
3921, 38eqtr4d 2768 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋))
4021eleq2d 2811 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) ↔ 𝑥 ∈ suc 𝑋))
41 vex 3467 . . . . . . . . 9 𝑥 ∈ V
4241elsuc 6434 . . . . . . . 8 (𝑥 ∈ suc 𝑋 ↔ (𝑥𝑋𝑥 = 𝑋))
43 simp2l 1196 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴𝑋) = (𝐵𝑋))
4443fveq1d 6893 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
4544adantr 479 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
46 simpr 483 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
4746fvresd 6911 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
4846fvresd 6911 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
4945, 47, 483eqtr3d 2773 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → (𝐴𝑥) = (𝐵𝑥))
5049ex 411 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥𝑋 → (𝐴𝑥) = (𝐵𝑥)))
51 simp2r 1197 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴𝑋) = 2o)
5251, 26eqtr4d 2768 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴𝑋) = (𝐵𝑋))
53 fveq2 6891 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
54 fveq2 6891 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
5553, 54eqeq12d 2741 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐴𝑋) = (𝐵𝑋)))
5652, 55syl5ibrcom 246 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 = 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5750, 56jaod 857 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝑥𝑋𝑥 = 𝑋) → (𝐴𝑥) = (𝐵𝑥)))
5842, 57biimtrid 241 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5958imp 405 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → (𝐴𝑥) = (𝐵𝑥))
60 simpr 483 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → 𝑥 ∈ suc 𝑋)
6160fvresd 6911 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = (𝐴𝑥))
6260fvresd 6911 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐵 ↾ suc 𝑋)‘𝑥) = (𝐵𝑥))
6359, 61, 623eqtr4d 2775 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
6463ex 411 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6540, 64sylbid 239 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6665ralrimiv 3135 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
67 nofun 27598 . . . 4 (𝐴 No → Fun 𝐴)
68 funres 6589 . . . 4 (Fun 𝐴 → Fun (𝐴 ↾ suc 𝑋))
692, 67, 683syl 18 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐴 ↾ suc 𝑋))
70 nofun 27598 . . . 4 (𝐵 No → Fun 𝐵)
71 funres 6589 . . . 4 (Fun 𝐵 → Fun (𝐵 ↾ suc 𝑋))
7223, 70, 713syl 18 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐵 ↾ suc 𝑋))
73 eqfunfv 7039 . . 3 ((Fun (𝐴 ↾ suc 𝑋) ∧ Fun (𝐵 ↾ suc 𝑋)) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7469, 72, 73syl2anc 582 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7539, 66, 74mpbir2and 711 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2930  wral 3051  cin 3939  wss 3940  c0 4318   class class class wbr 5143  dom cdm 5672  cres 5674  Ord word 6363  Oncon0 6364  suc csuc 6366  Fun wfun 6536  cfv 6542  1oc1o 8476  2oc2o 8477   No csur 27589   <s cslt 27590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1o 8483  df-2o 8484  df-no 27592  df-slt 27593
This theorem is referenced by:  nosupbnd1lem3  27659
  Copyright terms: Public domain W3C validator