| Step | Hyp | Ref
| Expression |
| 1 | | dmres 6004 |
. . . 4
⊢ dom
(𝐴 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐴) |
| 2 | | simp11 1204 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐴 ∈ No
) |
| 3 | | nodmord 27622 |
. . . . . . 7
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
| 4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐴) |
| 5 | | ndmfv 6916 |
. . . . . . . . . 10
⊢ (¬
𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) |
| 6 | | 2on 8499 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ On |
| 7 | 6 | elexi 3487 |
. . . . . . . . . . . . . 14
⊢
2o ∈ V |
| 8 | 7 | prid2 4744 |
. . . . . . . . . . . . 13
⊢
2o ∈ {1o, 2o} |
| 9 | 8 | nosgnn0i 27628 |
. . . . . . . . . . . 12
⊢ ∅
≠ 2o |
| 10 | | neeq1 2995 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑋) = ∅ → ((𝐴‘𝑋) ≠ 2o ↔ ∅ ≠
2o)) |
| 11 | 9, 10 | mpbiri 258 |
. . . . . . . . . . 11
⊢ ((𝐴‘𝑋) = ∅ → (𝐴‘𝑋) ≠ 2o) |
| 12 | 11 | neneqd 2938 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑋) = ∅ → ¬ (𝐴‘𝑋) = 2o) |
| 13 | 5, 12 | syl 17 |
. . . . . . . . 9
⊢ (¬
𝑋 ∈ dom 𝐴 → ¬ (𝐴‘𝑋) = 2o) |
| 14 | 13 | con4i 114 |
. . . . . . . 8
⊢ ((𝐴‘𝑋) = 2o → 𝑋 ∈ dom 𝐴) |
| 15 | 14 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) → 𝑋 ∈ dom 𝐴) |
| 16 | 15 | 3ad2ant2 1134 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐴) |
| 17 | | ordsucss 7817 |
. . . . . 6
⊢ (Ord dom
𝐴 → (𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴)) |
| 18 | 4, 16, 17 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐴) |
| 19 | | dfss2 3949 |
. . . . 5
⊢ (suc
𝑋 ⊆ dom 𝐴 ↔ (suc 𝑋 ∩ dom 𝐴) = suc 𝑋) |
| 20 | 18, 19 | sylib 218 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐴) = suc 𝑋) |
| 21 | 1, 20 | eqtrid 2783 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = suc 𝑋) |
| 22 | | dmres 6004 |
. . . 4
⊢ dom
(𝐵 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐵) |
| 23 | | simp12 1205 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐵 ∈ No
) |
| 24 | | nodmord 27622 |
. . . . . . 7
⊢ (𝐵 ∈
No → Ord dom 𝐵) |
| 25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐵) |
| 26 | | nolesgn2o 27640 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) |
| 27 | | ndmfv 6916 |
. . . . . . . . 9
⊢ (¬
𝑋 ∈ dom 𝐵 → (𝐵‘𝑋) = ∅) |
| 28 | | neeq1 2995 |
. . . . . . . . . . 11
⊢ ((𝐵‘𝑋) = ∅ → ((𝐵‘𝑋) ≠ 2o ↔ ∅ ≠
2o)) |
| 29 | 9, 28 | mpbiri 258 |
. . . . . . . . . 10
⊢ ((𝐵‘𝑋) = ∅ → (𝐵‘𝑋) ≠ 2o) |
| 30 | 29 | neneqd 2938 |
. . . . . . . . 9
⊢ ((𝐵‘𝑋) = ∅ → ¬ (𝐵‘𝑋) = 2o) |
| 31 | 27, 30 | syl 17 |
. . . . . . . 8
⊢ (¬
𝑋 ∈ dom 𝐵 → ¬ (𝐵‘𝑋) = 2o) |
| 32 | 31 | con4i 114 |
. . . . . . 7
⊢ ((𝐵‘𝑋) = 2o → 𝑋 ∈ dom 𝐵) |
| 33 | 26, 32 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐵) |
| 34 | | ordsucss 7817 |
. . . . . 6
⊢ (Ord dom
𝐵 → (𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵)) |
| 35 | 25, 33, 34 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐵) |
| 36 | | dfss2 3949 |
. . . . 5
⊢ (suc
𝑋 ⊆ dom 𝐵 ↔ (suc 𝑋 ∩ dom 𝐵) = suc 𝑋) |
| 37 | 35, 36 | sylib 218 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐵) = suc 𝑋) |
| 38 | 22, 37 | eqtrid 2783 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐵 ↾ suc 𝑋) = suc 𝑋) |
| 39 | 21, 38 | eqtr4d 2774 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋)) |
| 40 | 21 | eleq2d 2821 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) ↔ 𝑥 ∈ suc 𝑋)) |
| 41 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 42 | 41 | elsuc 6429 |
. . . . . . . 8
⊢ (𝑥 ∈ suc 𝑋 ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋)) |
| 43 | | simp2l 1200 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋)) |
| 44 | 43 | fveq1d 6883 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴 ↾ 𝑋)‘𝑥) = ((𝐵 ↾ 𝑋)‘𝑥)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑥) = ((𝐵 ↾ 𝑋)‘𝑥)) |
| 46 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 47 | 46 | fvresd 6901 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑥) = (𝐴‘𝑥)) |
| 48 | 46 | fvresd 6901 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑥) = (𝐵‘𝑥)) |
| 49 | 45, 47, 48 | 3eqtr3d 2779 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → (𝐴‘𝑥) = (𝐵‘𝑥)) |
| 50 | 49 | ex 412 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ 𝑋 → (𝐴‘𝑥) = (𝐵‘𝑥))) |
| 51 | | simp2r 1201 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴‘𝑋) = 2o) |
| 52 | 51, 26 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
| 53 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
| 54 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
| 55 | 53, 54 | eqeq12d 2752 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) = (𝐵‘𝑥) ↔ (𝐴‘𝑋) = (𝐵‘𝑋))) |
| 56 | 52, 55 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐵‘𝑥))) |
| 57 | 50, 56 | jaod 859 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋) → (𝐴‘𝑥) = (𝐵‘𝑥))) |
| 58 | 42, 57 | biimtrid 242 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → (𝐴‘𝑥) = (𝐵‘𝑥))) |
| 59 | 58 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → (𝐴‘𝑥) = (𝐵‘𝑥)) |
| 60 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → 𝑥 ∈ suc 𝑋) |
| 61 | 60 | fvresd 6901 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = (𝐴‘𝑥)) |
| 62 | 60 | fvresd 6901 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐵 ↾ suc 𝑋)‘𝑥) = (𝐵‘𝑥)) |
| 63 | 59, 61, 62 | 3eqtr4d 2781 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)) |
| 64 | 63 | ex 412 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))) |
| 65 | 40, 64 | sylbid 240 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))) |
| 66 | 65 | ralrimiv 3132 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)) |
| 67 | | nofun 27618 |
. . . 4
⊢ (𝐴 ∈
No → Fun 𝐴) |
| 68 | | funres 6583 |
. . . 4
⊢ (Fun
𝐴 → Fun (𝐴 ↾ suc 𝑋)) |
| 69 | 2, 67, 68 | 3syl 18 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐴 ↾ suc 𝑋)) |
| 70 | | nofun 27618 |
. . . 4
⊢ (𝐵 ∈
No → Fun 𝐵) |
| 71 | | funres 6583 |
. . . 4
⊢ (Fun
𝐵 → Fun (𝐵 ↾ suc 𝑋)) |
| 72 | 23, 70, 71 | 3syl 18 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐵 ↾ suc 𝑋)) |
| 73 | | eqfunfv 7031 |
. . 3
⊢ ((Fun
(𝐴 ↾ suc 𝑋) ∧ Fun (𝐵 ↾ suc 𝑋)) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))) |
| 74 | 69, 72, 73 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))) |
| 75 | 39, 66, 74 | mpbir2and 713 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) |