Step | Hyp | Ref
| Expression |
1 | | dmres 5913 |
. . . 4
⊢ dom
(𝐴 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐴) |
2 | | simp11 1202 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐴 ∈ No
) |
3 | | nodmord 33856 |
. . . . . . 7
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐴) |
5 | | ndmfv 6804 |
. . . . . . . . . 10
⊢ (¬
𝑋 ∈ dom 𝐴 → (𝐴‘𝑋) = ∅) |
6 | | 2on 8311 |
. . . . . . . . . . . . . . 15
⊢
2o ∈ On |
7 | 6 | elexi 3451 |
. . . . . . . . . . . . . 14
⊢
2o ∈ V |
8 | 7 | prid2 4699 |
. . . . . . . . . . . . 13
⊢
2o ∈ {1o, 2o} |
9 | 8 | nosgnn0i 33862 |
. . . . . . . . . . . 12
⊢ ∅
≠ 2o |
10 | | neeq1 3006 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑋) = ∅ → ((𝐴‘𝑋) ≠ 2o ↔ ∅ ≠
2o)) |
11 | 9, 10 | mpbiri 257 |
. . . . . . . . . . 11
⊢ ((𝐴‘𝑋) = ∅ → (𝐴‘𝑋) ≠ 2o) |
12 | 11 | neneqd 2948 |
. . . . . . . . . 10
⊢ ((𝐴‘𝑋) = ∅ → ¬ (𝐴‘𝑋) = 2o) |
13 | 5, 12 | syl 17 |
. . . . . . . . 9
⊢ (¬
𝑋 ∈ dom 𝐴 → ¬ (𝐴‘𝑋) = 2o) |
14 | 13 | con4i 114 |
. . . . . . . 8
⊢ ((𝐴‘𝑋) = 2o → 𝑋 ∈ dom 𝐴) |
15 | 14 | adantl 482 |
. . . . . . 7
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) → 𝑋 ∈ dom 𝐴) |
16 | 15 | 3ad2ant2 1133 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐴) |
17 | | ordsucss 7665 |
. . . . . 6
⊢ (Ord dom
𝐴 → (𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴)) |
18 | 4, 16, 17 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐴) |
19 | | df-ss 3904 |
. . . . 5
⊢ (suc
𝑋 ⊆ dom 𝐴 ↔ (suc 𝑋 ∩ dom 𝐴) = suc 𝑋) |
20 | 18, 19 | sylib 217 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐴) = suc 𝑋) |
21 | 1, 20 | eqtrid 2790 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = suc 𝑋) |
22 | | dmres 5913 |
. . . 4
⊢ dom
(𝐵 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐵) |
23 | | simp12 1203 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐵 ∈ No
) |
24 | | nodmord 33856 |
. . . . . . 7
⊢ (𝐵 ∈
No → Ord dom 𝐵) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐵) |
26 | | nolesgn2o 33874 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2o) |
27 | | ndmfv 6804 |
. . . . . . . . 9
⊢ (¬
𝑋 ∈ dom 𝐵 → (𝐵‘𝑋) = ∅) |
28 | | neeq1 3006 |
. . . . . . . . . . 11
⊢ ((𝐵‘𝑋) = ∅ → ((𝐵‘𝑋) ≠ 2o ↔ ∅ ≠
2o)) |
29 | 9, 28 | mpbiri 257 |
. . . . . . . . . 10
⊢ ((𝐵‘𝑋) = ∅ → (𝐵‘𝑋) ≠ 2o) |
30 | 29 | neneqd 2948 |
. . . . . . . . 9
⊢ ((𝐵‘𝑋) = ∅ → ¬ (𝐵‘𝑋) = 2o) |
31 | 27, 30 | syl 17 |
. . . . . . . 8
⊢ (¬
𝑋 ∈ dom 𝐵 → ¬ (𝐵‘𝑋) = 2o) |
32 | 31 | con4i 114 |
. . . . . . 7
⊢ ((𝐵‘𝑋) = 2o → 𝑋 ∈ dom 𝐵) |
33 | 26, 32 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐵) |
34 | | ordsucss 7665 |
. . . . . 6
⊢ (Ord dom
𝐵 → (𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵)) |
35 | 25, 33, 34 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐵) |
36 | | df-ss 3904 |
. . . . 5
⊢ (suc
𝑋 ⊆ dom 𝐵 ↔ (suc 𝑋 ∩ dom 𝐵) = suc 𝑋) |
37 | 35, 36 | sylib 217 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐵) = suc 𝑋) |
38 | 22, 37 | eqtrid 2790 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐵 ↾ suc 𝑋) = suc 𝑋) |
39 | 21, 38 | eqtr4d 2781 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋)) |
40 | 21 | eleq2d 2824 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) ↔ 𝑥 ∈ suc 𝑋)) |
41 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
42 | 41 | elsuc 6335 |
. . . . . . . 8
⊢ (𝑥 ∈ suc 𝑋 ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋)) |
43 | | simp2l 1198 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋)) |
44 | 43 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴 ↾ 𝑋)‘𝑥) = ((𝐵 ↾ 𝑋)‘𝑥)) |
45 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑥) = ((𝐵 ↾ 𝑋)‘𝑥)) |
46 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
47 | 46 | fvresd 6794 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑥) = (𝐴‘𝑥)) |
48 | 46 | fvresd 6794 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑥) = (𝐵‘𝑥)) |
49 | 45, 47, 48 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ 𝑋) → (𝐴‘𝑥) = (𝐵‘𝑥)) |
50 | 49 | ex 413 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ 𝑋 → (𝐴‘𝑥) = (𝐵‘𝑥))) |
51 | | simp2r 1199 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴‘𝑋) = 2o) |
52 | 51, 26 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
53 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
54 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
55 | 53, 54 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥) = (𝐵‘𝑥) ↔ (𝐴‘𝑋) = (𝐵‘𝑋))) |
56 | 52, 55 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐵‘𝑥))) |
57 | 50, 56 | jaod 856 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋) → (𝐴‘𝑥) = (𝐵‘𝑥))) |
58 | 42, 57 | syl5bi 241 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → (𝐴‘𝑥) = (𝐵‘𝑥))) |
59 | 58 | imp 407 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → (𝐴‘𝑥) = (𝐵‘𝑥)) |
60 | | simpr 485 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → 𝑥 ∈ suc 𝑋) |
61 | 60 | fvresd 6794 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = (𝐴‘𝑥)) |
62 | 60 | fvresd 6794 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐵 ↾ suc 𝑋)‘𝑥) = (𝐵‘𝑥)) |
63 | 59, 61, 62 | 3eqtr4d 2788 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)) |
64 | 63 | ex 413 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))) |
65 | 40, 64 | sylbid 239 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))) |
66 | 65 | ralrimiv 3102 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)) |
67 | | nofun 33852 |
. . . 4
⊢ (𝐴 ∈
No → Fun 𝐴) |
68 | | funres 6476 |
. . . 4
⊢ (Fun
𝐴 → Fun (𝐴 ↾ suc 𝑋)) |
69 | 2, 67, 68 | 3syl 18 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐴 ↾ suc 𝑋)) |
70 | | nofun 33852 |
. . . 4
⊢ (𝐵 ∈
No → Fun 𝐵) |
71 | | funres 6476 |
. . . 4
⊢ (Fun
𝐵 → Fun (𝐵 ↾ suc 𝑋)) |
72 | 23, 70, 71 | 3syl 18 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐵 ↾ suc 𝑋)) |
73 | | eqfunfv 6914 |
. . 3
⊢ ((Fun
(𝐴 ↾ suc 𝑋) ∧ Fun (𝐵 ↾ suc 𝑋)) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))) |
74 | 69, 72, 73 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))) |
75 | 39, 66, 74 | mpbir2and 710 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋)) |