Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolesgn2ores Structured version   Visualization version   GIF version

Theorem nolesgn2ores 33802
Description: Given 𝐴 less than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 2o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2ores (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))

Proof of Theorem nolesgn2ores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmres 5902 . . . 4 dom (𝐴 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐴)
2 simp11 1201 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐴 No )
3 nodmord 33783 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
42, 3syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐴)
5 ndmfv 6786 . . . . . . . . . 10 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
6 2on 8275 . . . . . . . . . . . . . . 15 2o ∈ On
76elexi 3441 . . . . . . . . . . . . . 14 2o ∈ V
87prid2 4696 . . . . . . . . . . . . 13 2o ∈ {1o, 2o}
98nosgnn0i 33789 . . . . . . . . . . . 12 ∅ ≠ 2o
10 neeq1 3005 . . . . . . . . . . . 12 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ≠ 2o ↔ ∅ ≠ 2o))
119, 10mpbiri 257 . . . . . . . . . . 11 ((𝐴𝑋) = ∅ → (𝐴𝑋) ≠ 2o)
1211neneqd 2947 . . . . . . . . . 10 ((𝐴𝑋) = ∅ → ¬ (𝐴𝑋) = 2o)
135, 12syl 17 . . . . . . . . 9 𝑋 ∈ dom 𝐴 → ¬ (𝐴𝑋) = 2o)
1413con4i 114 . . . . . . . 8 ((𝐴𝑋) = 2o𝑋 ∈ dom 𝐴)
1514adantl 481 . . . . . . 7 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) → 𝑋 ∈ dom 𝐴)
16153ad2ant2 1132 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐴)
17 ordsucss 7640 . . . . . 6 (Ord dom 𝐴 → (𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴))
184, 16, 17sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐴)
19 df-ss 3900 . . . . 5 (suc 𝑋 ⊆ dom 𝐴 ↔ (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
2018, 19sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
211, 20syl5eq 2791 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = suc 𝑋)
22 dmres 5902 . . . 4 dom (𝐵 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐵)
23 simp12 1202 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝐵 No )
24 nodmord 33783 . . . . . . 7 (𝐵 No → Ord dom 𝐵)
2523, 24syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Ord dom 𝐵)
26 nolesgn2o 33801 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐵𝑋) = 2o)
27 ndmfv 6786 . . . . . . . . 9 𝑋 ∈ dom 𝐵 → (𝐵𝑋) = ∅)
28 neeq1 3005 . . . . . . . . . . 11 ((𝐵𝑋) = ∅ → ((𝐵𝑋) ≠ 2o ↔ ∅ ≠ 2o))
299, 28mpbiri 257 . . . . . . . . . 10 ((𝐵𝑋) = ∅ → (𝐵𝑋) ≠ 2o)
3029neneqd 2947 . . . . . . . . 9 ((𝐵𝑋) = ∅ → ¬ (𝐵𝑋) = 2o)
3127, 30syl 17 . . . . . . . 8 𝑋 ∈ dom 𝐵 → ¬ (𝐵𝑋) = 2o)
3231con4i 114 . . . . . . 7 ((𝐵𝑋) = 2o𝑋 ∈ dom 𝐵)
3326, 32syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → 𝑋 ∈ dom 𝐵)
34 ordsucss 7640 . . . . . 6 (Ord dom 𝐵 → (𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵))
3525, 33, 34sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → suc 𝑋 ⊆ dom 𝐵)
36 df-ss 3900 . . . . 5 (suc 𝑋 ⊆ dom 𝐵 ↔ (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3735, 36sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3822, 37syl5eq 2791 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐵 ↾ suc 𝑋) = suc 𝑋)
3921, 38eqtr4d 2781 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋))
4021eleq2d 2824 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) ↔ 𝑥 ∈ suc 𝑋))
41 vex 3426 . . . . . . . . 9 𝑥 ∈ V
4241elsuc 6320 . . . . . . . 8 (𝑥 ∈ suc 𝑋 ↔ (𝑥𝑋𝑥 = 𝑋))
43 simp2l 1197 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴𝑋) = (𝐵𝑋))
4443fveq1d 6758 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
4544adantr 480 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
46 simpr 484 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → 𝑥𝑋)
4746fvresd 6776 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
4846fvresd 6776 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
4945, 47, 483eqtr3d 2786 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥𝑋) → (𝐴𝑥) = (𝐵𝑥))
5049ex 412 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥𝑋 → (𝐴𝑥) = (𝐵𝑥)))
51 simp2r 1198 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴𝑋) = 2o)
5251, 26eqtr4d 2781 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴𝑋) = (𝐵𝑋))
53 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
54 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
5553, 54eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐴𝑋) = (𝐵𝑋)))
5652, 55syl5ibrcom 246 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 = 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5750, 56jaod 855 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝑥𝑋𝑥 = 𝑋) → (𝐴𝑥) = (𝐵𝑥)))
5842, 57syl5bi 241 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5958imp 406 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → (𝐴𝑥) = (𝐵𝑥))
60 simpr 484 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → 𝑥 ∈ suc 𝑋)
6160fvresd 6776 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = (𝐴𝑥))
6260fvresd 6776 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐵 ↾ suc 𝑋)‘𝑥) = (𝐵𝑥))
6359, 61, 623eqtr4d 2788 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
6463ex 412 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ suc 𝑋 → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6540, 64sylbid 239 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6665ralrimiv 3106 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
67 nofun 33779 . . . 4 (𝐴 No → Fun 𝐴)
68 funres 6460 . . . 4 (Fun 𝐴 → Fun (𝐴 ↾ suc 𝑋))
692, 67, 683syl 18 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐴 ↾ suc 𝑋))
70 nofun 33779 . . . 4 (𝐵 No → Fun 𝐵)
71 funres 6460 . . . 4 (Fun 𝐵 → Fun (𝐵 ↾ suc 𝑋))
7223, 70, 713syl 18 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → Fun (𝐵 ↾ suc 𝑋))
73 eqfunfv 6896 . . 3 ((Fun (𝐴 ↾ suc 𝑋) ∧ Fun (𝐵 ↾ suc 𝑋)) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7469, 72, 73syl2anc 583 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7539, 66, 74mpbir2and 709 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 2o) ∧ ¬ 𝐵 <s 𝐴) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cin 3882  wss 3883  c0 4253   class class class wbr 5070  dom cdm 5580  cres 5582  Ord word 6250  Oncon0 6251  suc csuc 6253  Fun wfun 6412  cfv 6418  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774
This theorem is referenced by:  nosupbnd1lem3  33840
  Copyright terms: Public domain W3C validator