MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Structured version   Visualization version   GIF version

Theorem infxpenlem 10025
Description: Lemma for infxpen 10026. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
infxpen.1 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
infxpen.2 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
infxpen.3 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
infxpen.4 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
Assertion
Ref Expression
infxpenlem ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Distinct variable groups:   𝐴,𝑎   𝑤,𝐽   𝑧,𝑤,𝐿   𝑧,𝑚,𝑀   𝜑,𝑤,𝑧   𝑧,𝑄   𝑚,𝑎,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑎)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑚)   𝑄(𝑥,𝑦,𝑤,𝑚,𝑎)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑚,𝑎)   𝐽(𝑥,𝑦,𝑧,𝑚,𝑎)   𝐿(𝑥,𝑦,𝑚,𝑎)   𝑀(𝑥,𝑦,𝑤,𝑎)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3985 . . . 4 (𝑎 = 𝑚 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝑚))
2 xpeq12 5679 . . . . . 6 ((𝑎 = 𝑚𝑎 = 𝑚) → (𝑎 × 𝑎) = (𝑚 × 𝑚))
32anidms 566 . . . . 5 (𝑎 = 𝑚 → (𝑎 × 𝑎) = (𝑚 × 𝑚))
4 id 22 . . . . 5 (𝑎 = 𝑚𝑎 = 𝑚)
53, 4breq12d 5132 . . . 4 (𝑎 = 𝑚 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝑚 × 𝑚) ≈ 𝑚))
61, 5imbi12d 344 . . 3 (𝑎 = 𝑚 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)))
7 sseq2 3985 . . . 4 (𝑎 = 𝐴 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝐴))
8 xpeq12 5679 . . . . . 6 ((𝑎 = 𝐴𝑎 = 𝐴) → (𝑎 × 𝑎) = (𝐴 × 𝐴))
98anidms 566 . . . . 5 (𝑎 = 𝐴 → (𝑎 × 𝑎) = (𝐴 × 𝐴))
10 id 22 . . . . 5 (𝑎 = 𝐴𝑎 = 𝐴)
119, 10breq12d 5132 . . . 4 (𝑎 = 𝐴 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝐴 × 𝐴) ≈ 𝐴))
127, 11imbi12d 344 . . 3 (𝑎 = 𝐴 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴)))
13 infxpen.2 . . . . . . . 8 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
14 vex 3463 . . . . . . . . . . . . 13 𝑎 ∈ V
1514, 14xpex 7745 . . . . . . . . . . . 12 (𝑎 × 𝑎) ∈ V
16 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
1713, 16sylbi 217 . . . . . . . . . . . . . . . . 17 (𝜑𝑎 ∈ On)
18 onss 7777 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → 𝑎 ⊆ On)
1917, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑎 ⊆ On)
20 xpss12 5669 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ On ∧ 𝑎 ⊆ On) → (𝑎 × 𝑎) ⊆ (On × On))
2119, 19, 20syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎 × 𝑎) ⊆ (On × On))
22 leweon.1 . . . . . . . . . . . . . . . . 17 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
23 r0weon.1 . . . . . . . . . . . . . . . . 17 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2422, 23r0weon 10024 . . . . . . . . . . . . . . . 16 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
2524simpli 483 . . . . . . . . . . . . . . 15 𝑅 We (On × On)
26 wess 5640 . . . . . . . . . . . . . . 15 ((𝑎 × 𝑎) ⊆ (On × On) → (𝑅 We (On × On) → 𝑅 We (𝑎 × 𝑎)))
2721, 25, 26mpisyl 21 . . . . . . . . . . . . . 14 (𝜑𝑅 We (𝑎 × 𝑎))
28 weinxp 5739 . . . . . . . . . . . . . 14 (𝑅 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
2927, 28sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
30 infxpen.1 . . . . . . . . . . . . . 14 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
31 weeq1 5641 . . . . . . . . . . . . . 14 (𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) → (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
3329, 32sylibr 234 . . . . . . . . . . . 12 (𝜑𝑄 We (𝑎 × 𝑎))
34 infxpen.4 . . . . . . . . . . . . 13 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
3534oiiso 9549 . . . . . . . . . . . 12 (((𝑎 × 𝑎) ∈ V ∧ 𝑄 We (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
3615, 33, 35sylancr 587 . . . . . . . . . . 11 (𝜑𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
37 isof1o 7315 . . . . . . . . . . 11 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎))
38 f1ocnv 6829 . . . . . . . . . . 11 (𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎) → 𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽)
39 f1of1 6816 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
4036, 37, 38, 394syl 19 . . . . . . . . . 10 (𝜑𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
41 f1f1orn 6828 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽)
4215f1oen 8985 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽 → (𝑎 × 𝑎) ≈ ran 𝐽)
4340, 41, 423syl 18 . . . . . . . . 9 (𝜑 → (𝑎 × 𝑎) ≈ ran 𝐽)
44 f1ofn 6818 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽 Fn (𝑎 × 𝑎))
4536, 37, 38, 444syl 19 . . . . . . . . . 10 (𝜑𝐽 Fn (𝑎 × 𝑎))
4636adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
4737, 38, 393syl 18 . . . . . . . . . . . . . . . . . 18 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
48 cnvimass 6069 . . . . . . . . . . . . . . . . . . 19 (𝑄 “ {𝑤}) ⊆ dom 𝑄
49 inss2 4213 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
5030, 49eqsstri 4005 . . . . . . . . . . . . . . . . . . . . 21 𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
51 dmss 5882 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) → dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎))
53 dmxpid 5910 . . . . . . . . . . . . . . . . . . . 20 dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)) = (𝑎 × 𝑎)
5452, 53sseqtri 4007 . . . . . . . . . . . . . . . . . . 19 dom 𝑄 ⊆ (𝑎 × 𝑎)
5548, 54sstri 3968 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)
56 f1ores 6831 . . . . . . . . . . . . . . . . . 18 ((𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽 ∧ (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5747, 55, 56sylancl 586 . . . . . . . . . . . . . . . . 17 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5815, 15xpex 7745 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 × 𝑎) × (𝑎 × 𝑎)) ∈ V
5958inex2 5288 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ∈ V
6030, 59eqeltri 2830 . . . . . . . . . . . . . . . . . . . 20 𝑄 ∈ V
6160cnvex 7919 . . . . . . . . . . . . . . . . . . 19 𝑄 ∈ V
6261imaex 7908 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ∈ V
6362f1oen 8985 . . . . . . . . . . . . . . . . 17 ((𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
6446, 57, 633syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
65 sseqin2 4198 . . . . . . . . . . . . . . . . . . 19 ((𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎) ↔ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤}))
6655, 65mpbi 230 . . . . . . . . . . . . . . . . . 18 ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤})
6766imaeq2i 6045 . . . . . . . . . . . . . . . . 17 (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽 “ (𝑄 “ {𝑤}))
68 isocnv 7322 . . . . . . . . . . . . . . . . . . . 20 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
70 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑤 ∈ (𝑎 × 𝑎))
71 isoini 7330 . . . . . . . . . . . . . . . . . . 19 ((𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽) ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
7269, 70, 71syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
73 fvex 6888 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝑤) ∈ V
7473epini 6083 . . . . . . . . . . . . . . . . . . . 20 ( E “ {(𝐽𝑤)}) = (𝐽𝑤)
7574ineq2i 4192 . . . . . . . . . . . . . . . . . . 19 (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (dom 𝐽 ∩ (𝐽𝑤))
7634oicl 9541 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐽
77 f1of 6817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7836, 37, 38, 774syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7978ffvelcdmda 7073 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ dom 𝐽)
80 ordelss 6368 . . . . . . . . . . . . . . . . . . . . 21 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ⊆ dom 𝐽)
8176, 79, 80sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ⊆ dom 𝐽)
82 sseqin2 4198 . . . . . . . . . . . . . . . . . . . 20 ((𝐽𝑤) ⊆ dom 𝐽 ↔ (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8381, 82sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8475, 83eqtrid 2782 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (𝐽𝑤))
8572, 84eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽𝑤))
8667, 85eqtr3id 2784 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ (𝑄 “ {𝑤})) = (𝐽𝑤))
8764, 86breqtrd 5145 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽𝑤))
8887ensymd 9017 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≈ (𝑄 “ {𝑤}))
89 infxpen.3 . . . . . . . . . . . . . . . . . . 19 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
90 fvex 6888 . . . . . . . . . . . . . . . . . . . 20 (1st𝑤) ∈ V
91 fvex 6888 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑤) ∈ V
9290, 91unex 7736 . . . . . . . . . . . . . . . . . . 19 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
9389, 92eqeltri 2830 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ V
9493sucex 7798 . . . . . . . . . . . . . . . . 17 suc 𝑀 ∈ V
9594, 94xpex 7745 . . . . . . . . . . . . . . . 16 (suc 𝑀 × suc 𝑀) ∈ V
96 xpss 5670 . . . . . . . . . . . . . . . . . . . 20 (𝑎 × 𝑎) ⊆ (V × V)
97 simp3 1138 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑄 “ {𝑤}))
98 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ V
9998eliniseg 6081 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ V → (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤))
10099elv 3464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤)
10197, 100sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧𝑄𝑤)
10230breqi 5125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑄𝑤𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤)
103 brin 5171 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
104102, 103bitri 275 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑄𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
105104simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤)
106 brxp 5703 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤 ↔ (𝑧 ∈ (𝑎 × 𝑎) ∧ 𝑤 ∈ (𝑎 × 𝑎)))
107106simplbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤𝑧 ∈ (𝑎 × 𝑎))
108101, 105, 1073syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑎 × 𝑎))
10996, 108sselid 3956 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (V × V))
11017adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ On)
1111103adant3 1132 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑎 ∈ On)
112 xp1st 8018 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (1st𝑧) ∈ 𝑎)
113 onelon 6377 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (1st𝑧) ∈ 𝑎) → (1st𝑧) ∈ On)
114112, 113sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (1st𝑧) ∈ On)
115111, 108, 114syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ On)
116 eloni 6362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ On → Ord 𝑎)
117 elxp7 8021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ (𝑎 × 𝑎) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎)))
118117simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎))
119 ordunel 7819 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑎 ∧ (1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
1201193expib 1122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑎 → (((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
121116, 118, 120syl2im 40 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ On → (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
122110, 70, 121sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
12389, 122eqeltrid 2838 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑀𝑎)
124 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 𝑚𝑎)
12513, 124sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑎 𝑚𝑎)
126 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
12713, 126sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ω ⊆ 𝑎)
128 iscard 9987 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 ↔ (𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎))
129 cardlim 9984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎))
130 sseq2 3985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (ω ⊆ (card‘𝑎) ↔ ω ⊆ 𝑎))
131 limeq 6364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (Lim (card‘𝑎) ↔ Lim 𝑎))
132130, 131bibi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((card‘𝑎) = 𝑎 → ((ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎)) ↔ (ω ⊆ 𝑎 ↔ Lim 𝑎)))
133129, 132mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 → (ω ⊆ 𝑎 ↔ Lim 𝑎))
134128, 133sylbir 235 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → (ω ⊆ 𝑎 ↔ Lim 𝑎))
135134biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) ∧ ω ⊆ 𝑎) → Lim 𝑎)
13617, 125, 127, 135syl21anc 837 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Lim 𝑎)
137136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → Lim 𝑎)
138 limsuc 7842 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑎 → (𝑀𝑎 ↔ suc 𝑀𝑎))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑀𝑎 ↔ suc 𝑀𝑎))
140123, 139mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
141 onelon 6377 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ suc 𝑀𝑎) → suc 𝑀 ∈ On)
14217, 140, 141syl2an2r 685 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ∈ On)
1431423adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → suc 𝑀 ∈ On)
144 ssun1 4153 . . . . . . . . . . . . . . . . . . . . 21 (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
145144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
146104simplbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧𝑅𝑤)
147 df-br 5120 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑅)
14823eleq2i 2826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))})
149 opabidw 5499 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))} ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
150147, 148, 1493bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑅𝑤 ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
151150simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
152 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤) → ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)))
153152orim2i 910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)) → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
154151, 153syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
155 fvex 6888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1st𝑧) ∈ V
156 fvex 6888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd𝑧) ∈ V
157155, 156unex 7736 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
158157elsuc 6423 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
159154, 158sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)))
160 suceq 6419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = ((1st𝑤) ∪ (2nd𝑤)) → suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤)))
16189, 160ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤))
162159, 161eleqtrrdi 2845 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
163101, 146, 1623syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
164 ontr2 6400 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (1st𝑧) ∈ suc 𝑀))
165164imp 406 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (1st𝑧) ∈ suc 𝑀)
166115, 143, 145, 163, 165syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ suc 𝑀)
167 xp2nd 8019 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (2nd𝑧) ∈ 𝑎)
168 onelon 6377 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (2nd𝑧) ∈ 𝑎) → (2nd𝑧) ∈ On)
169167, 168sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (2nd𝑧) ∈ On)
170111, 108, 169syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ On)
171 ssun2 4154 . . . . . . . . . . . . . . . . . . . . 21 (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
172171a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
173 ontr2 6400 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (2nd𝑧) ∈ suc 𝑀))
174173imp 406 . . . . . . . . . . . . . . . . . . . 20 ((((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (2nd𝑧) ∈ suc 𝑀)
175170, 143, 172, 163, 174syl22anc 838 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ suc 𝑀)
176 elxp7 8021 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (suc 𝑀 × suc 𝑀) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)))
177176biimpri 228 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
178109, 166, 175, 177syl12anc 836 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
1791783expia 1121 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑧 ∈ (𝑄 “ {𝑤}) → 𝑧 ∈ (suc 𝑀 × suc 𝑀)))
180179ssrdv 3964 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀))
181 ssdomg 9012 . . . . . . . . . . . . . . . 16 ((suc 𝑀 × suc 𝑀) ∈ V → ((𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀)))
18295, 180, 181mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀))
183127adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ω ⊆ 𝑎)
184 nnfi 9179 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
185 xpfi 9328 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑀 ∈ Fin ∧ suc 𝑀 ∈ Fin) → (suc 𝑀 × suc 𝑀) ∈ Fin)
186185anidms 566 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ∈ Fin)
187 isfinite 9664 . . . . . . . . . . . . . . . . . . . . 21 ((suc 𝑀 × suc 𝑀) ∈ Fin ↔ (suc 𝑀 × suc 𝑀) ≺ ω)
188186, 187sylib 218 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ≺ ω)
189184, 188syl 17 . . . . . . . . . . . . . . . . . . 19 (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ ω)
190 ssdomg 9012 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (ω ⊆ 𝑎 → ω ≼ 𝑎))
191190elv 3464 . . . . . . . . . . . . . . . . . . 19 (ω ⊆ 𝑎 → ω ≼ 𝑎)
192 sdomdomtr 9122 . . . . . . . . . . . . . . . . . . 19 (((suc 𝑀 × suc 𝑀) ≺ ω ∧ ω ≼ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
193189, 191, 192syl2an 596 . . . . . . . . . . . . . . . . . 18 ((suc 𝑀 ∈ ω ∧ ω ⊆ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
194193expcom 413 . . . . . . . . . . . . . . . . 17 (ω ⊆ 𝑎 → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
195183, 194syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
196 breq1 5122 . . . . . . . . . . . . . . . . . 18 (𝑚 = suc 𝑀 → (𝑚𝑎 ↔ suc 𝑀𝑎))
197125adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 𝑚𝑎)
198196, 197, 140rspcdva 3602 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
199 omelon 9658 . . . . . . . . . . . . . . . . . . 19 ω ∈ On
200 ontri1 6386 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ suc 𝑀 ∈ On) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
201199, 142, 200sylancr 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
202 sseq2 3985 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → (ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀))
203 xpeq12 5679 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = suc 𝑀𝑚 = suc 𝑀) → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
204203anidms 566 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀 → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
205 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀𝑚 = suc 𝑀)
206204, 205breq12d 5132 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → ((𝑚 × 𝑚) ≈ 𝑚 ↔ (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
207202, 206imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑚 = suc 𝑀 → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ↔ (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)))
208 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
20913, 208sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
210209adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
211207, 210, 140rspcdva 3602 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
212201, 211sylbird 260 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
213 ensdomtr 9125 . . . . . . . . . . . . . . . . . 18 (((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 ∧ suc 𝑀𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
214213expcom 413 . . . . . . . . . . . . . . . . 17 (suc 𝑀𝑎 → ((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
215198, 212, 214sylsyld 61 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
216195, 215pm2.61d 179 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
217 domsdomtr 9124 . . . . . . . . . . . . . . 15 (((𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀) ∧ (suc 𝑀 × suc 𝑀) ≺ 𝑎) → (𝑄 “ {𝑤}) ≺ 𝑎)
218182, 216, 217syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≺ 𝑎)
219 ensdomtr 9125 . . . . . . . . . . . . . 14 (((𝐽𝑤) ≈ (𝑄 “ {𝑤}) ∧ (𝑄 “ {𝑤}) ≺ 𝑎) → (𝐽𝑤) ≺ 𝑎)
22088, 218, 219syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≺ 𝑎)
221 ordelon 6376 . . . . . . . . . . . . . . 15 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ∈ On)
22276, 79, 221sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ On)
223 onenon 9961 . . . . . . . . . . . . . . 15 (𝑎 ∈ On → 𝑎 ∈ dom card)
224110, 223syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ dom card)
225 cardsdomel 9986 . . . . . . . . . . . . . 14 (((𝐽𝑤) ∈ On ∧ 𝑎 ∈ dom card) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
226222, 224, 225syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
227220, 226mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ (card‘𝑎))
228 eleq2 2823 . . . . . . . . . . . . . 14 ((card‘𝑎) = 𝑎 → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
229128, 228sylbir 235 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
23017, 197, 229syl2an2r 685 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
231227, 230mpbid 232 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ 𝑎)
232231ralrimiva 3132 . . . . . . . . . 10 (𝜑 → ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎)
233 fnfvrnss 7110 . . . . . . . . . . 11 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
234 ssdomg 9012 . . . . . . . . . . 11 (𝑎 ∈ V → (ran 𝐽𝑎 → ran 𝐽𝑎))
23514, 233, 234mpsyl 68 . . . . . . . . . 10 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
23645, 232, 235syl2anc 584 . . . . . . . . 9 (𝜑 → ran 𝐽𝑎)
237 endomtr 9024 . . . . . . . . 9 (((𝑎 × 𝑎) ≈ ran 𝐽 ∧ ran 𝐽𝑎) → (𝑎 × 𝑎) ≼ 𝑎)
23843, 236, 237syl2anc 584 . . . . . . . 8 (𝜑 → (𝑎 × 𝑎) ≼ 𝑎)
23913, 238sylbir 235 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≼ 𝑎)
240 df1o2 8485 . . . . . . . . . . . 12 1o = {∅}
241 1onn 8650 . . . . . . . . . . . 12 1o ∈ ω
242240, 241eqeltrri 2831 . . . . . . . . . . 11 {∅} ∈ ω
243 nnsdom 9666 . . . . . . . . . . 11 ({∅} ∈ ω → {∅} ≺ ω)
244 sdomdom 8992 . . . . . . . . . . 11 ({∅} ≺ ω → {∅} ≼ ω)
245242, 243, 244mp2b 10 . . . . . . . . . 10 {∅} ≼ ω
246 domtr 9019 . . . . . . . . . 10 (({∅} ≼ ω ∧ ω ≼ 𝑎) → {∅} ≼ 𝑎)
247245, 191, 246sylancr 587 . . . . . . . . 9 (ω ⊆ 𝑎 → {∅} ≼ 𝑎)
248 0ex 5277 . . . . . . . . . . . 12 ∅ ∈ V
24914, 248xpsnen 9067 . . . . . . . . . . 11 (𝑎 × {∅}) ≈ 𝑎
250249ensymi 9016 . . . . . . . . . 10 𝑎 ≈ (𝑎 × {∅})
25114xpdom2 9079 . . . . . . . . . 10 ({∅} ≼ 𝑎 → (𝑎 × {∅}) ≼ (𝑎 × 𝑎))
252 endomtr 9024 . . . . . . . . . 10 ((𝑎 ≈ (𝑎 × {∅}) ∧ (𝑎 × {∅}) ≼ (𝑎 × 𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
253250, 251, 252sylancr 587 . . . . . . . . 9 ({∅} ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎))
254247, 253syl 17 . . . . . . . 8 (ω ⊆ 𝑎𝑎 ≼ (𝑎 × 𝑎))
255254ad2antrl 728 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
256 sbth 9105 . . . . . . 7 (((𝑎 × 𝑎) ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
257239, 255, 256syl2anc 584 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
258257expr 456 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
259 simplr 768 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
260 simpll 766 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
261 simprr 772 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ¬ ∀𝑚𝑎 𝑚𝑎)
262 rexnal 3089 . . . . . . . . . 10 (∃𝑚𝑎 ¬ 𝑚𝑎 ↔ ¬ ∀𝑚𝑎 𝑚𝑎)
263 onelss 6394 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
264 ssdomg 9012 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
265263, 264syld 47 . . . . . . . . . . . 12 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
266 bren2 8995 . . . . . . . . . . . . 13 (𝑚𝑎 ↔ (𝑚𝑎 ∧ ¬ 𝑚𝑎))
267266simplbi2 500 . . . . . . . . . . . 12 (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎))
268265, 267syl6 35 . . . . . . . . . . 11 (𝑎 ∈ On → (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎)))
269268reximdvai 3151 . . . . . . . . . 10 (𝑎 ∈ On → (∃𝑚𝑎 ¬ 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
270262, 269biimtrrid 243 . . . . . . . . 9 (𝑎 ∈ On → (¬ ∀𝑚𝑎 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
271260, 261, 270sylc 65 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 𝑚𝑎)
272 r19.29 3101 . . . . . . . 8 ((∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ ∃𝑚𝑎 𝑚𝑎) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
273259, 271, 272syl2anc 584 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
274 simprl 770 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
275 onelon 6377 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ On ∧ 𝑚𝑎) → 𝑚 ∈ On)
276 ensym 9015 . . . . . . . . . . . . . . . . . 18 (𝑚𝑎𝑎𝑚)
277 domentr 9025 . . . . . . . . . . . . . . . . . 18 ((ω ≼ 𝑎𝑎𝑚) → ω ≼ 𝑚)
278191, 276, 277syl2an 596 . . . . . . . . . . . . . . . . 17 ((ω ⊆ 𝑎𝑚𝑎) → ω ≼ 𝑚)
279 domnsym 9111 . . . . . . . . . . . . . . . . . . 19 (ω ≼ 𝑚 → ¬ 𝑚 ≺ ω)
280 nnsdom 9666 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ω → 𝑚 ≺ ω)
281279, 280nsyl 140 . . . . . . . . . . . . . . . . . 18 (ω ≼ 𝑚 → ¬ 𝑚 ∈ ω)
282 ontri1 6386 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ 𝑚 ∈ On) → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
283199, 282mpan 690 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
284281, 283imbitrrid 246 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ On → (ω ≼ 𝑚 → ω ⊆ 𝑚))
285275, 278, 284syl2im 40 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ 𝑚𝑎) → ((ω ⊆ 𝑎𝑚𝑎) → ω ⊆ 𝑚))
286285expd 415 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑚𝑎) → (ω ⊆ 𝑎 → (𝑚𝑎 → ω ⊆ 𝑚)))
287286impcom 407 . . . . . . . . . . . . . 14 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (𝑚𝑎 → ω ⊆ 𝑚))
288287imim1d 82 . . . . . . . . . . . . 13 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (𝑚𝑎 → (𝑚 × 𝑚) ≈ 𝑚)))
289288imp32 418 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑚 × 𝑚) ≈ 𝑚)
290 entr 9018 . . . . . . . . . . . . . . . 16 (((𝑚 × 𝑚) ≈ 𝑚𝑚𝑎) → (𝑚 × 𝑚) ≈ 𝑎)
291290ancoms 458 . . . . . . . . . . . . . . 15 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑚 × 𝑚) ≈ 𝑎)
292 xpen 9152 . . . . . . . . . . . . . . . . 17 ((𝑎𝑚𝑎𝑚) → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
293292anidms 566 . . . . . . . . . . . . . . . 16 (𝑎𝑚 → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
294 entr 9018 . . . . . . . . . . . . . . . 16 (((𝑎 × 𝑎) ≈ (𝑚 × 𝑚) ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
295293, 294sylan 580 . . . . . . . . . . . . . . 15 ((𝑎𝑚 ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
296276, 291, 295syl2an2r 685 . . . . . . . . . . . . . 14 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑎 × 𝑎) ≈ 𝑎)
297296ex 412 . . . . . . . . . . . . 13 (𝑚𝑎 → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
298297ad2antll 729 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
299289, 298mpd 15 . . . . . . . . . . 11 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
300299ex 412 . . . . . . . . . 10 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
301300expr 456 . . . . . . . . 9 ((ω ⊆ 𝑎𝑎 ∈ On) → (𝑚𝑎 → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎)))
302301rexlimdv 3139 . . . . . . . 8 ((ω ⊆ 𝑎𝑎 ∈ On) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
303274, 260, 302syl2anc 584 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
304273, 303mpd 15 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
305304expr 456 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (¬ ∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
306258, 305pm2.61d 179 . . . 4 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
307306exp31 419 . . 3 (𝑎 ∈ On → (∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎)))
3086, 12, 307tfis3 7851 . 2 (𝐴 ∈ On → (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴))
309308imp 406 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607   class class class wbr 5119  {copab 5181   E cep 5552   Se wse 5604   We wwe 5605   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354   Fn wfn 6525  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530   Isom wiso 6531  ωcom 7859  1st c1st 7984  2nd c2nd 7985  1oc1o 8471  cen 8954  cdom 8955  csdm 8956  Fincfn 8957  OrdIsocoi 9521  cardccrd 9947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-oi 9522  df-card 9951
This theorem is referenced by:  infxpen  10026
  Copyright terms: Public domain W3C validator