MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Structured version   Visualization version   GIF version

Theorem infxpenlem 9424
Description: Lemma for infxpen 9425. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
infxpen.1 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
infxpen.2 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
infxpen.3 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
infxpen.4 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
Assertion
Ref Expression
infxpenlem ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Distinct variable groups:   𝐴,𝑎   𝑤,𝐽   𝑧,𝑤,𝐿   𝑧,𝑚,𝑀   𝜑,𝑤,𝑧   𝑧,𝑄   𝑚,𝑎,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑎)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑚)   𝑄(𝑥,𝑦,𝑤,𝑚,𝑎)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑚,𝑎)   𝐽(𝑥,𝑦,𝑧,𝑚,𝑎)   𝐿(𝑥,𝑦,𝑚,𝑎)   𝑀(𝑥,𝑦,𝑤,𝑎)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3941 . . . 4 (𝑎 = 𝑚 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝑚))
2 xpeq12 5544 . . . . . 6 ((𝑎 = 𝑚𝑎 = 𝑚) → (𝑎 × 𝑎) = (𝑚 × 𝑚))
32anidms 570 . . . . 5 (𝑎 = 𝑚 → (𝑎 × 𝑎) = (𝑚 × 𝑚))
4 id 22 . . . . 5 (𝑎 = 𝑚𝑎 = 𝑚)
53, 4breq12d 5043 . . . 4 (𝑎 = 𝑚 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝑚 × 𝑚) ≈ 𝑚))
61, 5imbi12d 348 . . 3 (𝑎 = 𝑚 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)))
7 sseq2 3941 . . . 4 (𝑎 = 𝐴 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝐴))
8 xpeq12 5544 . . . . . 6 ((𝑎 = 𝐴𝑎 = 𝐴) → (𝑎 × 𝑎) = (𝐴 × 𝐴))
98anidms 570 . . . . 5 (𝑎 = 𝐴 → (𝑎 × 𝑎) = (𝐴 × 𝐴))
10 id 22 . . . . 5 (𝑎 = 𝐴𝑎 = 𝐴)
119, 10breq12d 5043 . . . 4 (𝑎 = 𝐴 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝐴 × 𝐴) ≈ 𝐴))
127, 11imbi12d 348 . . 3 (𝑎 = 𝐴 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴)))
13 infxpen.2 . . . . . . . 8 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
14 vex 3444 . . . . . . . . . . . . 13 𝑎 ∈ V
1514, 14xpex 7456 . . . . . . . . . . . 12 (𝑎 × 𝑎) ∈ V
16 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
1713, 16sylbi 220 . . . . . . . . . . . . . . . . 17 (𝜑𝑎 ∈ On)
18 onss 7485 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → 𝑎 ⊆ On)
1917, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑎 ⊆ On)
20 xpss12 5534 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ On ∧ 𝑎 ⊆ On) → (𝑎 × 𝑎) ⊆ (On × On))
2119, 19, 20syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎 × 𝑎) ⊆ (On × On))
22 leweon.1 . . . . . . . . . . . . . . . . 17 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
23 r0weon.1 . . . . . . . . . . . . . . . . 17 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2422, 23r0weon 9423 . . . . . . . . . . . . . . . 16 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
2524simpli 487 . . . . . . . . . . . . . . 15 𝑅 We (On × On)
26 wess 5506 . . . . . . . . . . . . . . 15 ((𝑎 × 𝑎) ⊆ (On × On) → (𝑅 We (On × On) → 𝑅 We (𝑎 × 𝑎)))
2721, 25, 26mpisyl 21 . . . . . . . . . . . . . 14 (𝜑𝑅 We (𝑎 × 𝑎))
28 weinxp 5600 . . . . . . . . . . . . . 14 (𝑅 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
2927, 28sylib 221 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
30 infxpen.1 . . . . . . . . . . . . . 14 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
31 weeq1 5507 . . . . . . . . . . . . . 14 (𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) → (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
3329, 32sylibr 237 . . . . . . . . . . . 12 (𝜑𝑄 We (𝑎 × 𝑎))
34 infxpen.4 . . . . . . . . . . . . 13 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
3534oiiso 8985 . . . . . . . . . . . 12 (((𝑎 × 𝑎) ∈ V ∧ 𝑄 We (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
3615, 33, 35sylancr 590 . . . . . . . . . . 11 (𝜑𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
37 isof1o 7055 . . . . . . . . . . 11 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎))
38 f1ocnv 6602 . . . . . . . . . . 11 (𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎) → 𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽)
39 f1of1 6589 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
4036, 37, 38, 394syl 19 . . . . . . . . . 10 (𝜑𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
41 f1f1orn 6601 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽)
4215f1oen 8513 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽 → (𝑎 × 𝑎) ≈ ran 𝐽)
4340, 41, 423syl 18 . . . . . . . . 9 (𝜑 → (𝑎 × 𝑎) ≈ ran 𝐽)
44 f1ofn 6591 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽 Fn (𝑎 × 𝑎))
4536, 37, 38, 444syl 19 . . . . . . . . . 10 (𝜑𝐽 Fn (𝑎 × 𝑎))
4636adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
4737, 38, 393syl 18 . . . . . . . . . . . . . . . . . 18 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
48 cnvimass 5916 . . . . . . . . . . . . . . . . . . 19 (𝑄 “ {𝑤}) ⊆ dom 𝑄
49 inss2 4156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
5030, 49eqsstri 3949 . . . . . . . . . . . . . . . . . . . . 21 𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
51 dmss 5735 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) → dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎))
53 dmxpid 5764 . . . . . . . . . . . . . . . . . . . 20 dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)) = (𝑎 × 𝑎)
5452, 53sseqtri 3951 . . . . . . . . . . . . . . . . . . 19 dom 𝑄 ⊆ (𝑎 × 𝑎)
5548, 54sstri 3924 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)
56 f1ores 6604 . . . . . . . . . . . . . . . . . 18 ((𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽 ∧ (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5747, 55, 56sylancl 589 . . . . . . . . . . . . . . . . 17 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5815, 15xpex 7456 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 × 𝑎) × (𝑎 × 𝑎)) ∈ V
5958inex2 5186 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ∈ V
6030, 59eqeltri 2886 . . . . . . . . . . . . . . . . . . . 20 𝑄 ∈ V
6160cnvex 7612 . . . . . . . . . . . . . . . . . . 19 𝑄 ∈ V
6261imaex 7603 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ∈ V
6362f1oen 8513 . . . . . . . . . . . . . . . . 17 ((𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
6446, 57, 633syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
65 sseqin2 4142 . . . . . . . . . . . . . . . . . . 19 ((𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎) ↔ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤}))
6655, 65mpbi 233 . . . . . . . . . . . . . . . . . 18 ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤})
6766imaeq2i 5894 . . . . . . . . . . . . . . . . 17 (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽 “ (𝑄 “ {𝑤}))
68 isocnv 7062 . . . . . . . . . . . . . . . . . . . 20 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
70 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑤 ∈ (𝑎 × 𝑎))
71 isoini 7070 . . . . . . . . . . . . . . . . . . 19 ((𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽) ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
7269, 70, 71syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
73 fvex 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝑤) ∈ V
7473epini 5926 . . . . . . . . . . . . . . . . . . . 20 ( E “ {(𝐽𝑤)}) = (𝐽𝑤)
7574ineq2i 4136 . . . . . . . . . . . . . . . . . . 19 (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (dom 𝐽 ∩ (𝐽𝑤))
7634oicl 8977 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐽
77 f1of 6590 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7836, 37, 38, 774syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7978ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ dom 𝐽)
80 ordelss 6175 . . . . . . . . . . . . . . . . . . . . 21 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ⊆ dom 𝐽)
8176, 79, 80sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ⊆ dom 𝐽)
82 sseqin2 4142 . . . . . . . . . . . . . . . . . . . 20 ((𝐽𝑤) ⊆ dom 𝐽 ↔ (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8381, 82sylib 221 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8475, 83syl5eq 2845 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (𝐽𝑤))
8572, 84eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽𝑤))
8667, 85syl5eqr 2847 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ (𝑄 “ {𝑤})) = (𝐽𝑤))
8764, 86breqtrd 5056 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽𝑤))
8887ensymd 8543 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≈ (𝑄 “ {𝑤}))
89 infxpen.3 . . . . . . . . . . . . . . . . . . 19 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
90 fvex 6658 . . . . . . . . . . . . . . . . . . . 20 (1st𝑤) ∈ V
91 fvex 6658 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑤) ∈ V
9290, 91unex 7449 . . . . . . . . . . . . . . . . . . 19 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
9389, 92eqeltri 2886 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ V
9493sucex 7506 . . . . . . . . . . . . . . . . 17 suc 𝑀 ∈ V
9594, 94xpex 7456 . . . . . . . . . . . . . . . 16 (suc 𝑀 × suc 𝑀) ∈ V
96 xpss 5535 . . . . . . . . . . . . . . . . . . . 20 (𝑎 × 𝑎) ⊆ (V × V)
97 simp3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑄 “ {𝑤}))
98 vex 3444 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ V
9998eliniseg 5925 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ V → (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤))
10099elv 3446 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤)
10197, 100sylib 221 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧𝑄𝑤)
10230breqi 5036 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑄𝑤𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤)
103 brin 5082 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
104102, 103bitri 278 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑄𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
105104simprbi 500 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤)
106 brxp 5565 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤 ↔ (𝑧 ∈ (𝑎 × 𝑎) ∧ 𝑤 ∈ (𝑎 × 𝑎)))
107106simplbi 501 . . . . . . . . . . . . . . . . . . . . 21 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤𝑧 ∈ (𝑎 × 𝑎))
108101, 105, 1073syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑎 × 𝑎))
10996, 108sseldi 3913 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (V × V))
11017adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ On)
1111103adant3 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑎 ∈ On)
112 xp1st 7703 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (1st𝑧) ∈ 𝑎)
113 onelon 6184 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (1st𝑧) ∈ 𝑎) → (1st𝑧) ∈ On)
114112, 113sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (1st𝑧) ∈ On)
115111, 108, 114syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ On)
116 eloni 6169 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ On → Ord 𝑎)
117 elxp7 7706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ (𝑎 × 𝑎) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎)))
118117simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎))
119 ordunel 7522 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑎 ∧ (1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
1201193expib 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑎 → (((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
121116, 118, 120syl2im 40 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ On → (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
122110, 70, 121sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
12389, 122eqeltrid 2894 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑀𝑎)
124 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 𝑚𝑎)
12513, 124sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑎 𝑚𝑎)
126 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
12713, 126sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ω ⊆ 𝑎)
128 iscard 9388 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 ↔ (𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎))
129 cardlim 9385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎))
130 sseq2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (ω ⊆ (card‘𝑎) ↔ ω ⊆ 𝑎))
131 limeq 6171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (Lim (card‘𝑎) ↔ Lim 𝑎))
132130, 131bibi12d 349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((card‘𝑎) = 𝑎 → ((ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎)) ↔ (ω ⊆ 𝑎 ↔ Lim 𝑎)))
133129, 132mpbii 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 → (ω ⊆ 𝑎 ↔ Lim 𝑎))
134128, 133sylbir 238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → (ω ⊆ 𝑎 ↔ Lim 𝑎))
135134biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) ∧ ω ⊆ 𝑎) → Lim 𝑎)
13617, 125, 127, 135syl21anc 836 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Lim 𝑎)
137136adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → Lim 𝑎)
138 limsuc 7544 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑎 → (𝑀𝑎 ↔ suc 𝑀𝑎))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑀𝑎 ↔ suc 𝑀𝑎))
140123, 139mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
141 onelon 6184 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ suc 𝑀𝑎) → suc 𝑀 ∈ On)
14217, 140, 141syl2an2r 684 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ∈ On)
1431423adant3 1129 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → suc 𝑀 ∈ On)
144 ssun1 4099 . . . . . . . . . . . . . . . . . . . . 21 (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
145144a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
146104simplbi 501 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧𝑅𝑤)
147 df-br 5031 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑅)
14823eleq2i 2881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))})
149 opabidw 5377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))} ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
150147, 148, 1493bitri 300 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑅𝑤 ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
151150simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
152 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤) → ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)))
153152orim2i 908 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)) → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
154151, 153syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
155 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1st𝑧) ∈ V
156 fvex 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd𝑧) ∈ V
157155, 156unex 7449 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
158157elsuc 6228 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
159154, 158sylibr 237 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)))
160 suceq 6224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = ((1st𝑤) ∪ (2nd𝑤)) → suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤)))
16189, 160ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤))
162159, 161eleqtrrdi 2901 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
163101, 146, 1623syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
164 ontr2 6206 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (1st𝑧) ∈ suc 𝑀))
165164imp 410 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (1st𝑧) ∈ suc 𝑀)
166115, 143, 145, 163, 165syl22anc 837 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ suc 𝑀)
167 xp2nd 7704 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (2nd𝑧) ∈ 𝑎)
168 onelon 6184 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (2nd𝑧) ∈ 𝑎) → (2nd𝑧) ∈ On)
169167, 168sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (2nd𝑧) ∈ On)
170111, 108, 169syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ On)
171 ssun2 4100 . . . . . . . . . . . . . . . . . . . . 21 (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
172171a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
173 ontr2 6206 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (2nd𝑧) ∈ suc 𝑀))
174173imp 410 . . . . . . . . . . . . . . . . . . . 20 ((((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (2nd𝑧) ∈ suc 𝑀)
175170, 143, 172, 163, 174syl22anc 837 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ suc 𝑀)
176 elxp7 7706 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (suc 𝑀 × suc 𝑀) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)))
177176biimpri 231 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
178109, 166, 175, 177syl12anc 835 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
1791783expia 1118 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑧 ∈ (𝑄 “ {𝑤}) → 𝑧 ∈ (suc 𝑀 × suc 𝑀)))
180179ssrdv 3921 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀))
181 ssdomg 8538 . . . . . . . . . . . . . . . 16 ((suc 𝑀 × suc 𝑀) ∈ V → ((𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀)))
18295, 180, 181mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀))
183127adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ω ⊆ 𝑎)
184 nnfi 8696 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
185 xpfi 8773 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑀 ∈ Fin ∧ suc 𝑀 ∈ Fin) → (suc 𝑀 × suc 𝑀) ∈ Fin)
186185anidms 570 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ∈ Fin)
187 isfinite 9099 . . . . . . . . . . . . . . . . . . . . 21 ((suc 𝑀 × suc 𝑀) ∈ Fin ↔ (suc 𝑀 × suc 𝑀) ≺ ω)
188186, 187sylib 221 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ≺ ω)
189184, 188syl 17 . . . . . . . . . . . . . . . . . . 19 (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ ω)
190 ssdomg 8538 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (ω ⊆ 𝑎 → ω ≼ 𝑎))
191190elv 3446 . . . . . . . . . . . . . . . . . . 19 (ω ⊆ 𝑎 → ω ≼ 𝑎)
192 sdomdomtr 8634 . . . . . . . . . . . . . . . . . . 19 (((suc 𝑀 × suc 𝑀) ≺ ω ∧ ω ≼ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
193189, 191, 192syl2an 598 . . . . . . . . . . . . . . . . . 18 ((suc 𝑀 ∈ ω ∧ ω ⊆ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
194193expcom 417 . . . . . . . . . . . . . . . . 17 (ω ⊆ 𝑎 → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
195183, 194syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
196 breq1 5033 . . . . . . . . . . . . . . . . . 18 (𝑚 = suc 𝑀 → (𝑚𝑎 ↔ suc 𝑀𝑎))
197125adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 𝑚𝑎)
198196, 197, 140rspcdva 3573 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
199 omelon 9093 . . . . . . . . . . . . . . . . . . 19 ω ∈ On
200 ontri1 6193 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ suc 𝑀 ∈ On) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
201199, 142, 200sylancr 590 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
202 sseq2 3941 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → (ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀))
203 xpeq12 5544 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = suc 𝑀𝑚 = suc 𝑀) → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
204203anidms 570 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀 → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
205 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀𝑚 = suc 𝑀)
206204, 205breq12d 5043 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → ((𝑚 × 𝑚) ≈ 𝑚 ↔ (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
207202, 206imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑚 = suc 𝑀 → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ↔ (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)))
208 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
20913, 208sylbi 220 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
210209adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
211207, 210, 140rspcdva 3573 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
212201, 211sylbird 263 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
213 ensdomtr 8637 . . . . . . . . . . . . . . . . . 18 (((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 ∧ suc 𝑀𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
214213expcom 417 . . . . . . . . . . . . . . . . 17 (suc 𝑀𝑎 → ((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
215198, 212, 214sylsyld 61 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
216195, 215pm2.61d 182 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
217 domsdomtr 8636 . . . . . . . . . . . . . . 15 (((𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀) ∧ (suc 𝑀 × suc 𝑀) ≺ 𝑎) → (𝑄 “ {𝑤}) ≺ 𝑎)
218182, 216, 217syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≺ 𝑎)
219 ensdomtr 8637 . . . . . . . . . . . . . 14 (((𝐽𝑤) ≈ (𝑄 “ {𝑤}) ∧ (𝑄 “ {𝑤}) ≺ 𝑎) → (𝐽𝑤) ≺ 𝑎)
22088, 218, 219syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≺ 𝑎)
221 ordelon 6183 . . . . . . . . . . . . . . 15 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ∈ On)
22276, 79, 221sylancr 590 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ On)
223 onenon 9362 . . . . . . . . . . . . . . 15 (𝑎 ∈ On → 𝑎 ∈ dom card)
224110, 223syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ dom card)
225 cardsdomel 9387 . . . . . . . . . . . . . 14 (((𝐽𝑤) ∈ On ∧ 𝑎 ∈ dom card) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
226222, 224, 225syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
227220, 226mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ (card‘𝑎))
228 eleq2 2878 . . . . . . . . . . . . . 14 ((card‘𝑎) = 𝑎 → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
229128, 228sylbir 238 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
23017, 197, 229syl2an2r 684 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
231227, 230mpbid 235 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ 𝑎)
232231ralrimiva 3149 . . . . . . . . . 10 (𝜑 → ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎)
233 fnfvrnss 6861 . . . . . . . . . . 11 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
234 ssdomg 8538 . . . . . . . . . . 11 (𝑎 ∈ V → (ran 𝐽𝑎 → ran 𝐽𝑎))
23514, 233, 234mpsyl 68 . . . . . . . . . 10 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
23645, 232, 235syl2anc 587 . . . . . . . . 9 (𝜑 → ran 𝐽𝑎)
237 endomtr 8550 . . . . . . . . 9 (((𝑎 × 𝑎) ≈ ran 𝐽 ∧ ran 𝐽𝑎) → (𝑎 × 𝑎) ≼ 𝑎)
23843, 236, 237syl2anc 587 . . . . . . . 8 (𝜑 → (𝑎 × 𝑎) ≼ 𝑎)
23913, 238sylbir 238 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≼ 𝑎)
240 df1o2 8099 . . . . . . . . . . . 12 1o = {∅}
241 1onn 8248 . . . . . . . . . . . 12 1o ∈ ω
242240, 241eqeltrri 2887 . . . . . . . . . . 11 {∅} ∈ ω
243 nnsdom 9101 . . . . . . . . . . 11 ({∅} ∈ ω → {∅} ≺ ω)
244 sdomdom 8520 . . . . . . . . . . 11 ({∅} ≺ ω → {∅} ≼ ω)
245242, 243, 244mp2b 10 . . . . . . . . . 10 {∅} ≼ ω
246 domtr 8545 . . . . . . . . . 10 (({∅} ≼ ω ∧ ω ≼ 𝑎) → {∅} ≼ 𝑎)
247245, 191, 246sylancr 590 . . . . . . . . 9 (ω ⊆ 𝑎 → {∅} ≼ 𝑎)
248 0ex 5175 . . . . . . . . . . . 12 ∅ ∈ V
24914, 248xpsnen 8584 . . . . . . . . . . 11 (𝑎 × {∅}) ≈ 𝑎
250249ensymi 8542 . . . . . . . . . 10 𝑎 ≈ (𝑎 × {∅})
25114xpdom2 8595 . . . . . . . . . 10 ({∅} ≼ 𝑎 → (𝑎 × {∅}) ≼ (𝑎 × 𝑎))
252 endomtr 8550 . . . . . . . . . 10 ((𝑎 ≈ (𝑎 × {∅}) ∧ (𝑎 × {∅}) ≼ (𝑎 × 𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
253250, 251, 252sylancr 590 . . . . . . . . 9 ({∅} ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎))
254247, 253syl 17 . . . . . . . 8 (ω ⊆ 𝑎𝑎 ≼ (𝑎 × 𝑎))
255254ad2antrl 727 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
256 sbth 8621 . . . . . . 7 (((𝑎 × 𝑎) ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
257239, 255, 256syl2anc 587 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
258257expr 460 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
259 simplr 768 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
260 simpll 766 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
261 simprr 772 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ¬ ∀𝑚𝑎 𝑚𝑎)
262 rexnal 3201 . . . . . . . . . 10 (∃𝑚𝑎 ¬ 𝑚𝑎 ↔ ¬ ∀𝑚𝑎 𝑚𝑎)
263 onelss 6201 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
264 ssdomg 8538 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
265263, 264syld 47 . . . . . . . . . . . 12 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
266 bren2 8523 . . . . . . . . . . . . 13 (𝑚𝑎 ↔ (𝑚𝑎 ∧ ¬ 𝑚𝑎))
267266simplbi2 504 . . . . . . . . . . . 12 (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎))
268265, 267syl6 35 . . . . . . . . . . 11 (𝑎 ∈ On → (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎)))
269268reximdvai 3231 . . . . . . . . . 10 (𝑎 ∈ On → (∃𝑚𝑎 ¬ 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
270262, 269syl5bir 246 . . . . . . . . 9 (𝑎 ∈ On → (¬ ∀𝑚𝑎 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
271260, 261, 270sylc 65 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 𝑚𝑎)
272 r19.29 3216 . . . . . . . 8 ((∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ ∃𝑚𝑎 𝑚𝑎) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
273259, 271, 272syl2anc 587 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
274 simprl 770 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
275 onelon 6184 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ On ∧ 𝑚𝑎) → 𝑚 ∈ On)
276 ensym 8541 . . . . . . . . . . . . . . . . . 18 (𝑚𝑎𝑎𝑚)
277 domentr 8551 . . . . . . . . . . . . . . . . . 18 ((ω ≼ 𝑎𝑎𝑚) → ω ≼ 𝑚)
278191, 276, 277syl2an 598 . . . . . . . . . . . . . . . . 17 ((ω ⊆ 𝑎𝑚𝑎) → ω ≼ 𝑚)
279 domnsym 8627 . . . . . . . . . . . . . . . . . . 19 (ω ≼ 𝑚 → ¬ 𝑚 ≺ ω)
280 nnsdom 9101 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ω → 𝑚 ≺ ω)
281279, 280nsyl 142 . . . . . . . . . . . . . . . . . 18 (ω ≼ 𝑚 → ¬ 𝑚 ∈ ω)
282 ontri1 6193 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ 𝑚 ∈ On) → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
283199, 282mpan 689 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
284281, 283syl5ibr 249 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ On → (ω ≼ 𝑚 → ω ⊆ 𝑚))
285275, 278, 284syl2im 40 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ 𝑚𝑎) → ((ω ⊆ 𝑎𝑚𝑎) → ω ⊆ 𝑚))
286285expd 419 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑚𝑎) → (ω ⊆ 𝑎 → (𝑚𝑎 → ω ⊆ 𝑚)))
287286impcom 411 . . . . . . . . . . . . . 14 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (𝑚𝑎 → ω ⊆ 𝑚))
288287imim1d 82 . . . . . . . . . . . . 13 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (𝑚𝑎 → (𝑚 × 𝑚) ≈ 𝑚)))
289288imp32 422 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑚 × 𝑚) ≈ 𝑚)
290 entr 8544 . . . . . . . . . . . . . . . 16 (((𝑚 × 𝑚) ≈ 𝑚𝑚𝑎) → (𝑚 × 𝑚) ≈ 𝑎)
291290ancoms 462 . . . . . . . . . . . . . . 15 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑚 × 𝑚) ≈ 𝑎)
292 xpen 8664 . . . . . . . . . . . . . . . . 17 ((𝑎𝑚𝑎𝑚) → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
293292anidms 570 . . . . . . . . . . . . . . . 16 (𝑎𝑚 → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
294 entr 8544 . . . . . . . . . . . . . . . 16 (((𝑎 × 𝑎) ≈ (𝑚 × 𝑚) ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
295293, 294sylan 583 . . . . . . . . . . . . . . 15 ((𝑎𝑚 ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
296276, 291, 295syl2an2r 684 . . . . . . . . . . . . . 14 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑎 × 𝑎) ≈ 𝑎)
297296ex 416 . . . . . . . . . . . . 13 (𝑚𝑎 → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
298297ad2antll 728 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
299289, 298mpd 15 . . . . . . . . . . 11 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
300299ex 416 . . . . . . . . . 10 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
301300expr 460 . . . . . . . . 9 ((ω ⊆ 𝑎𝑎 ∈ On) → (𝑚𝑎 → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎)))
302301rexlimdv 3242 . . . . . . . 8 ((ω ⊆ 𝑎𝑎 ∈ On) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
303274, 260, 302syl2anc 587 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
304273, 303mpd 15 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
305304expr 460 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (¬ ∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
306258, 305pm2.61d 182 . . . 4 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
307306exp31 423 . . 3 (𝑎 ∈ On → (∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎)))
3086, 12, 307tfis3 7552 . 2 (𝐴 ∈ On → (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴))
309308imp 410 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cop 4531   class class class wbr 5030  {copab 5092   E cep 5429   Se wse 5476   We wwe 5477   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324   Isom wiso 6325  ωcom 7560  1st c1st 7669  2nd c2nd 7670  1oc1o 8078  cen 8489  cdom 8490  csdm 8491  Fincfn 8492  OrdIsocoi 8957  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-card 9352
This theorem is referenced by:  infxpen  9425
  Copyright terms: Public domain W3C validator