Proof of Theorem infxpenlem
Step | Hyp | Ref
| Expression |
1 | | sseq2 3948 |
. . . 4
⊢ (𝑎 = 𝑚 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝑚)) |
2 | | xpeq12 5615 |
. . . . . 6
⊢ ((𝑎 = 𝑚 ∧ 𝑎 = 𝑚) → (𝑎 × 𝑎) = (𝑚 × 𝑚)) |
3 | 2 | anidms 567 |
. . . . 5
⊢ (𝑎 = 𝑚 → (𝑎 × 𝑎) = (𝑚 × 𝑚)) |
4 | | id 22 |
. . . . 5
⊢ (𝑎 = 𝑚 → 𝑎 = 𝑚) |
5 | 3, 4 | breq12d 5088 |
. . . 4
⊢ (𝑎 = 𝑚 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝑚 × 𝑚) ≈ 𝑚)) |
6 | 1, 5 | imbi12d 345 |
. . 3
⊢ (𝑎 = 𝑚 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))) |
7 | | sseq2 3948 |
. . . 4
⊢ (𝑎 = 𝐴 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝐴)) |
8 | | xpeq12 5615 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑎 = 𝐴) → (𝑎 × 𝑎) = (𝐴 × 𝐴)) |
9 | 8 | anidms 567 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 × 𝑎) = (𝐴 × 𝐴)) |
10 | | id 22 |
. . . . 5
⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) |
11 | 9, 10 | breq12d 5088 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝐴 × 𝐴) ≈ 𝐴)) |
12 | 7, 11 | imbi12d 345 |
. . 3
⊢ (𝑎 = 𝐴 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴))) |
13 | | infxpen.2 |
. . . . . . . 8
⊢ (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎))) |
14 | | vex 3437 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
15 | 14, 14 | xpex 7612 |
. . . . . . . . . . . 12
⊢ (𝑎 × 𝑎) ∈ V |
16 | | simpll 764 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → 𝑎 ∈ On) |
17 | 13, 16 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑎 ∈ On) |
18 | | onss 7643 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ On → 𝑎 ⊆ On) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑎 ⊆ On) |
20 | | xpss12 5605 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ⊆ On ∧ 𝑎 ⊆ On) → (𝑎 × 𝑎) ⊆ (On × On)) |
21 | 19, 19, 20 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑎 × 𝑎) ⊆ (On × On)) |
22 | | leweon.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧
((1st ‘𝑥)
∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥) ∈
(2nd ‘𝑦))))} |
23 | | r0weon.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑅 = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∨
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∧ 𝑧𝐿𝑤)))} |
24 | 22, 23 | r0weon 9777 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 We (On × On) ∧ 𝑅 Se (On ×
On)) |
25 | 24 | simpli 484 |
. . . . . . . . . . . . . . 15
⊢ 𝑅 We (On ×
On) |
26 | | wess 5577 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 × 𝑎) ⊆ (On × On) → (𝑅 We (On × On) → 𝑅 We (𝑎 × 𝑎))) |
27 | 21, 25, 26 | mpisyl 21 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 We (𝑎 × 𝑎)) |
28 | | weinxp 5672 |
. . . . . . . . . . . . . 14
⊢ (𝑅 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)) |
29 | 27, 28 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)) |
30 | | infxpen.1 |
. . . . . . . . . . . . . 14
⊢ 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) |
31 | | weeq1 5578 |
. . . . . . . . . . . . . 14
⊢ (𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) → (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)) |
33 | 29, 32 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 We (𝑎 × 𝑎)) |
34 | | infxpen.4 |
. . . . . . . . . . . . 13
⊢ 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎)) |
35 | 34 | oiiso 9305 |
. . . . . . . . . . . 12
⊢ (((𝑎 × 𝑎) ∈ V ∧ 𝑄 We (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎))) |
36 | 15, 33, 35 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎))) |
37 | | isof1o 7203 |
. . . . . . . . . . 11
⊢ (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:dom 𝐽–1-1-onto→(𝑎 × 𝑎)) |
38 | | f1ocnv 6737 |
. . . . . . . . . . 11
⊢ (𝐽:dom 𝐽–1-1-onto→(𝑎 × 𝑎) → ◡𝐽:(𝑎 × 𝑎)–1-1-onto→dom
𝐽) |
39 | | f1of1 6724 |
. . . . . . . . . . 11
⊢ (◡𝐽:(𝑎 × 𝑎)–1-1-onto→dom
𝐽 → ◡𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽) |
40 | 36, 37, 38, 39 | 4syl 19 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽) |
41 | | f1f1orn 6736 |
. . . . . . . . . 10
⊢ (◡𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽 → ◡𝐽:(𝑎 × 𝑎)–1-1-onto→ran
◡𝐽) |
42 | 15 | f1oen 8770 |
. . . . . . . . . 10
⊢ (◡𝐽:(𝑎 × 𝑎)–1-1-onto→ran
◡𝐽 → (𝑎 × 𝑎) ≈ ran ◡𝐽) |
43 | 40, 41, 42 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 × 𝑎) ≈ ran ◡𝐽) |
44 | | f1ofn 6726 |
. . . . . . . . . . 11
⊢ (◡𝐽:(𝑎 × 𝑎)–1-1-onto→dom
𝐽 → ◡𝐽 Fn (𝑎 × 𝑎)) |
45 | 36, 37, 38, 44 | 4syl 19 |
. . . . . . . . . 10
⊢ (𝜑 → ◡𝐽 Fn (𝑎 × 𝑎)) |
46 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎))) |
47 | 37, 38, 39 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → ◡𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽) |
48 | | cnvimass 5992 |
. . . . . . . . . . . . . . . . . . 19
⊢ (◡𝑄 “ {𝑤}) ⊆ dom 𝑄 |
49 | | inss2 4164 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) |
50 | 30, 49 | eqsstri 3956 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) |
51 | | dmss 5814 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) → dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎))) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)) |
53 | | dmxpid 5842 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
((𝑎 × 𝑎) × (𝑎 × 𝑎)) = (𝑎 × 𝑎) |
54 | 52, 53 | sseqtri 3958 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom 𝑄 ⊆ (𝑎 × 𝑎) |
55 | 48, 54 | sstri 3931 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎) |
56 | | f1ores 6739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽 ∧ (◡𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)) → (◡𝐽 ↾ (◡𝑄 “ {𝑤})):(◡𝑄 “ {𝑤})–1-1-onto→(◡𝐽 “ (◡𝑄 “ {𝑤}))) |
57 | 47, 55, 56 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → (◡𝐽 ↾ (◡𝑄 “ {𝑤})):(◡𝑄 “ {𝑤})–1-1-onto→(◡𝐽 “ (◡𝑄 “ {𝑤}))) |
58 | 15, 15 | xpex 7612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) ∈ V |
59 | 58 | inex2 5243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ∈ V |
60 | 30, 59 | eqeltri 2836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑄 ∈ V |
61 | 60 | cnvex 7781 |
. . . . . . . . . . . . . . . . . . 19
⊢ ◡𝑄 ∈ V |
62 | 61 | imaex 7772 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑄 “ {𝑤}) ∈ V |
63 | 62 | f1oen 8770 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐽 ↾ (◡𝑄 “ {𝑤})):(◡𝑄 “ {𝑤})–1-1-onto→(◡𝐽 “ (◡𝑄 “ {𝑤})) → (◡𝑄 “ {𝑤}) ≈ (◡𝐽 “ (◡𝑄 “ {𝑤}))) |
64 | 46, 57, 63 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝑄 “ {𝑤}) ≈ (◡𝐽 “ (◡𝑄 “ {𝑤}))) |
65 | | sseqin2 4150 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎) ↔ ((𝑎 × 𝑎) ∩ (◡𝑄 “ {𝑤})) = (◡𝑄 “ {𝑤})) |
66 | 55, 65 | mpbi 229 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 × 𝑎) ∩ (◡𝑄 “ {𝑤})) = (◡𝑄 “ {𝑤}) |
67 | 66 | imaeq2i 5970 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐽 “ ((𝑎 × 𝑎) ∩ (◡𝑄 “ {𝑤}))) = (◡𝐽 “ (◡𝑄 “ {𝑤})) |
68 | | isocnv 7210 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → ◡𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽)) |
69 | 46, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ◡𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽)) |
70 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → 𝑤 ∈ (𝑎 × 𝑎)) |
71 | | isoini 7218 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽) ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽 “ ((𝑎 × 𝑎) ∩ (◡𝑄 “ {𝑤}))) = (dom 𝐽 ∩ (◡ E “ {(◡𝐽‘𝑤)}))) |
72 | 69, 70, 71 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽 “ ((𝑎 × 𝑎) ∩ (◡𝑄 “ {𝑤}))) = (dom 𝐽 ∩ (◡ E “ {(◡𝐽‘𝑤)}))) |
73 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝐽‘𝑤) ∈ V |
74 | 73 | epini 6007 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡ E “ {(◡𝐽‘𝑤)}) = (◡𝐽‘𝑤) |
75 | 74 | ineq2i 4144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (dom
𝐽 ∩ (◡ E “ {(◡𝐽‘𝑤)})) = (dom 𝐽 ∩ (◡𝐽‘𝑤)) |
76 | 34 | oicl 9297 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ Ord dom
𝐽 |
77 | | f1of 6725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐽:(𝑎 × 𝑎)–1-1-onto→dom
𝐽 → ◡𝐽:(𝑎 × 𝑎)⟶dom 𝐽) |
78 | 36, 37, 38, 77 | 4syl 19 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝐽:(𝑎 × 𝑎)⟶dom 𝐽) |
79 | 78 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ∈ dom 𝐽) |
80 | | ordelss 6286 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((Ord dom
𝐽 ∧ (◡𝐽‘𝑤) ∈ dom 𝐽) → (◡𝐽‘𝑤) ⊆ dom 𝐽) |
81 | 76, 79, 80 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ⊆ dom 𝐽) |
82 | | sseqin2 4150 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((◡𝐽‘𝑤) ⊆ dom 𝐽 ↔ (dom 𝐽 ∩ (◡𝐽‘𝑤)) = (◡𝐽‘𝑤)) |
83 | 81, 82 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ (◡𝐽‘𝑤)) = (◡𝐽‘𝑤)) |
84 | 75, 83 | eqtrid 2791 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ (◡ E “ {(◡𝐽‘𝑤)})) = (◡𝐽‘𝑤)) |
85 | 72, 84 | eqtrd 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽 “ ((𝑎 × 𝑎) ∩ (◡𝑄 “ {𝑤}))) = (◡𝐽‘𝑤)) |
86 | 67, 85 | eqtr3id 2793 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽 “ (◡𝑄 “ {𝑤})) = (◡𝐽‘𝑤)) |
87 | 64, 86 | breqtrd 5101 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝑄 “ {𝑤}) ≈ (◡𝐽‘𝑤)) |
88 | 87 | ensymd 8800 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ≈ (◡𝑄 “ {𝑤})) |
89 | | infxpen.3 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑀 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) |
90 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1st ‘𝑤) ∈ V |
91 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘𝑤) ∈ V |
92 | 90, 91 | unex 7605 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∈ V |
93 | 89, 92 | eqeltri 2836 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑀 ∈ V |
94 | 93 | sucex 7665 |
. . . . . . . . . . . . . . . . 17
⊢ suc 𝑀 ∈ V |
95 | 94, 94 | xpex 7612 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑀 × suc 𝑀) ∈ V |
96 | | xpss 5606 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 × 𝑎) ⊆ (V × V) |
97 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → 𝑧 ∈ (◡𝑄 “ {𝑤})) |
98 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑧 ∈ V |
99 | 98 | eliniseg 6005 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ V → (𝑧 ∈ (◡𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤)) |
100 | 99 | elv 3439 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ (◡𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤) |
101 | 97, 100 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → 𝑧𝑄𝑤) |
102 | 30 | breqi 5081 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧𝑄𝑤 ↔ 𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤) |
103 | | brin 5127 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤 ↔ (𝑧𝑅𝑤 ∧ 𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤)) |
104 | 102, 103 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧𝑄𝑤 ↔ (𝑧𝑅𝑤 ∧ 𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤)) |
105 | 104 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧𝑄𝑤 → 𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤) |
106 | | brxp 5637 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤 ↔ (𝑧 ∈ (𝑎 × 𝑎) ∧ 𝑤 ∈ (𝑎 × 𝑎))) |
107 | 106 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤 → 𝑧 ∈ (𝑎 × 𝑎)) |
108 | 101, 105,
107 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → 𝑧 ∈ (𝑎 × 𝑎)) |
109 | 96, 108 | sselid 3920 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → 𝑧 ∈ (V × V)) |
110 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ On) |
111 | 110 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → 𝑎 ∈ On) |
112 | | xp1st 7872 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ (𝑎 × 𝑎) → (1st ‘𝑧) ∈ 𝑎) |
113 | | onelon 6295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ On ∧ (1st
‘𝑧) ∈ 𝑎) → (1st
‘𝑧) ∈
On) |
114 | 112, 113 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (1st ‘𝑧) ∈ On) |
115 | 111, 108,
114 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → (1st ‘𝑧) ∈ On) |
116 | | eloni 6280 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 ∈ On → Ord 𝑎) |
117 | | elxp7 7875 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑤 ∈ (𝑎 × 𝑎) ↔ (𝑤 ∈ (V × V) ∧ ((1st
‘𝑤) ∈ 𝑎 ∧ (2nd
‘𝑤) ∈ 𝑎))) |
118 | 117 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ∈ (𝑎 × 𝑎) → ((1st ‘𝑤) ∈ 𝑎 ∧ (2nd ‘𝑤) ∈ 𝑎)) |
119 | | ordunel 7683 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Ord
𝑎 ∧ (1st
‘𝑤) ∈ 𝑎 ∧ (2nd
‘𝑤) ∈ 𝑎) → ((1st
‘𝑤) ∪
(2nd ‘𝑤))
∈ 𝑎) |
120 | 119 | 3expib 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (Ord
𝑎 → (((1st
‘𝑤) ∈ 𝑎 ∧ (2nd
‘𝑤) ∈ 𝑎) → ((1st
‘𝑤) ∪
(2nd ‘𝑤))
∈ 𝑎)) |
121 | 116, 118,
120 | syl2im 40 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 ∈ On → (𝑤 ∈ (𝑎 × 𝑎) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ 𝑎)) |
122 | 110, 70, 121 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∈ 𝑎) |
123 | 89, 122 | eqeltrid 2844 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → 𝑀 ∈ 𝑎) |
124 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) |
125 | 13, 124 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) |
126 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ω ⊆ 𝑎) |
127 | 13, 126 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ω ⊆ 𝑎) |
128 | | iscard 9742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((card‘𝑎) =
𝑎 ↔ (𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) |
129 | | cardlim 9739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (ω
⊆ (card‘𝑎)
↔ Lim (card‘𝑎)) |
130 | | sseq2 3948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((card‘𝑎) =
𝑎 → (ω ⊆
(card‘𝑎) ↔
ω ⊆ 𝑎)) |
131 | | limeq 6282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((card‘𝑎) =
𝑎 → (Lim
(card‘𝑎) ↔ Lim
𝑎)) |
132 | 130, 131 | bibi12d 346 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((card‘𝑎) =
𝑎 → ((ω ⊆
(card‘𝑎) ↔ Lim
(card‘𝑎)) ↔
(ω ⊆ 𝑎 ↔
Lim 𝑎))) |
133 | 129, 132 | mpbii 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((card‘𝑎) =
𝑎 → (ω ⊆
𝑎 ↔ Lim 𝑎)) |
134 | 128, 133 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) → (ω ⊆ 𝑎 ↔ Lim 𝑎)) |
135 | 134 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) ∧ ω ⊆ 𝑎) → Lim 𝑎) |
136 | 17, 125, 127, 135 | syl21anc 835 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → Lim 𝑎) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → Lim 𝑎) |
138 | | limsuc 7705 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Lim
𝑎 → (𝑀 ∈ 𝑎 ↔ suc 𝑀 ∈ 𝑎)) |
139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (𝑀 ∈ 𝑎 ↔ suc 𝑀 ∈ 𝑎)) |
140 | 123, 139 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ∈ 𝑎) |
141 | | onelon 6295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ On ∧ suc 𝑀 ∈ 𝑎) → suc 𝑀 ∈ On) |
142 | 17, 140, 141 | syl2an2r 682 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ∈ On) |
143 | 142 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → suc 𝑀 ∈ On) |
144 | | ssun1 4107 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(1st ‘𝑧) ⊆ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) |
145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → (1st ‘𝑧) ⊆ ((1st
‘𝑧) ∪
(2nd ‘𝑧))) |
146 | 104 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧𝑄𝑤 → 𝑧𝑅𝑤) |
147 | | df-br 5076 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧𝑅𝑤 ↔ 〈𝑧, 𝑤〉 ∈ 𝑅) |
148 | 23 | eleq2i 2831 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(〈𝑧, 𝑤〉 ∈ 𝑅 ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∨
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∧ 𝑧𝐿𝑤)))}) |
149 | | opabidw 5438 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(〈𝑧, 𝑤〉 ∈ {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∨
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∧ 𝑧𝐿𝑤)))} ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∨
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∧ 𝑧𝐿𝑤)))) |
150 | 147, 148,
149 | 3bitri 297 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧𝑅𝑤 ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∨
(((1st ‘𝑧)
∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) ∧ 𝑧𝐿𝑤)))) |
151 | 150 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧𝑅𝑤 → (((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈
((1st ‘𝑤)
∪ (2nd ‘𝑤)) ∨ (((1st ‘𝑧) ∪ (2nd
‘𝑧)) =
((1st ‘𝑤)
∪ (2nd ‘𝑤)) ∧ 𝑧𝐿𝑤))) |
152 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st
‘𝑤) ∪
(2nd ‘𝑤))
∧ 𝑧𝐿𝑤) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) =
((1st ‘𝑤)
∪ (2nd ‘𝑤))) |
153 | 152 | orim2i 908 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st
‘𝑤) ∪
(2nd ‘𝑤))
∨ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st
‘𝑤) ∪
(2nd ‘𝑤))
∧ 𝑧𝐿𝑤)) → (((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈
((1st ‘𝑤)
∪ (2nd ‘𝑤)) ∨ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) =
((1st ‘𝑤)
∪ (2nd ‘𝑤)))) |
154 | 151, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧𝑅𝑤 → (((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈
((1st ‘𝑤)
∪ (2nd ‘𝑤)) ∨ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) =
((1st ‘𝑤)
∪ (2nd ‘𝑤)))) |
155 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(1st ‘𝑧) ∈ V |
156 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(2nd ‘𝑧) ∈ V |
157 | 155, 156 | unex 7605 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ V |
158 | 157 | elsuc 6339 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ suc ((1st
‘𝑤) ∪
(2nd ‘𝑤))
↔ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st
‘𝑤) ∪
(2nd ‘𝑤))
∨ ((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st
‘𝑤) ∪
(2nd ‘𝑤)))) |
159 | 154, 158 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧𝑅𝑤 → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc
((1st ‘𝑤)
∪ (2nd ‘𝑤))) |
160 | | suceq 6335 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 = ((1st ‘𝑤) ∪ (2nd
‘𝑤)) → suc 𝑀 = suc ((1st
‘𝑤) ∪
(2nd ‘𝑤))) |
161 | 89, 160 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ suc 𝑀 = suc ((1st
‘𝑤) ∪
(2nd ‘𝑤)) |
162 | 159, 161 | eleqtrrdi 2851 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧𝑅𝑤 → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc 𝑀) |
163 | 101, 146,
162 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc 𝑀) |
164 | | ontr2 6317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((1st
‘𝑧) ⊆
((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∧ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc 𝑀) → (1st
‘𝑧) ∈ suc 𝑀)) |
165 | 164 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((1st ‘𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((1st
‘𝑧) ⊆
((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∧ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc 𝑀)) → (1st
‘𝑧) ∈ suc 𝑀) |
166 | 115, 143,
145, 163, 165 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → (1st ‘𝑧) ∈ suc 𝑀) |
167 | | xp2nd 7873 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ (𝑎 × 𝑎) → (2nd ‘𝑧) ∈ 𝑎) |
168 | | onelon 6295 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ On ∧ (2nd
‘𝑧) ∈ 𝑎) → (2nd
‘𝑧) ∈
On) |
169 | 167, 168 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (2nd ‘𝑧) ∈ On) |
170 | 111, 108,
169 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → (2nd ‘𝑧) ∈ On) |
171 | | ssun2 4108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2nd ‘𝑧) ⊆ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) |
172 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → (2nd ‘𝑧) ⊆ ((1st
‘𝑧) ∪
(2nd ‘𝑧))) |
173 | | ontr2 6317 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((2nd ‘𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((2nd
‘𝑧) ⊆
((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∧ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc 𝑀) → (2nd
‘𝑧) ∈ suc 𝑀)) |
174 | 173 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((2nd ‘𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((2nd
‘𝑧) ⊆
((1st ‘𝑧)
∪ (2nd ‘𝑧)) ∧ ((1st ‘𝑧) ∪ (2nd
‘𝑧)) ∈ suc 𝑀)) → (2nd
‘𝑧) ∈ suc 𝑀) |
175 | 170, 143,
172, 163, 174 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → (2nd ‘𝑧) ∈ suc 𝑀) |
176 | | elxp7 7875 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (suc 𝑀 × suc 𝑀) ↔ (𝑧 ∈ (V × V) ∧ ((1st
‘𝑧) ∈ suc 𝑀 ∧ (2nd
‘𝑧) ∈ suc 𝑀))) |
177 | 176 | biimpri 227 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ (V × V) ∧
((1st ‘𝑧)
∈ suc 𝑀 ∧
(2nd ‘𝑧)
∈ suc 𝑀)) → 𝑧 ∈ (suc 𝑀 × suc 𝑀)) |
178 | 109, 166,
175, 177 | syl12anc 834 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (◡𝑄 “ {𝑤})) → 𝑧 ∈ (suc 𝑀 × suc 𝑀)) |
179 | 178 | 3expia 1120 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (𝑧 ∈ (◡𝑄 “ {𝑤}) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))) |
180 | 179 | ssrdv 3928 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀)) |
181 | | ssdomg 8795 |
. . . . . . . . . . . . . . . 16
⊢ ((suc
𝑀 × suc 𝑀) ∈ V → ((◡𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀) → (◡𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀))) |
182 | 95, 180, 181 | mpsyl 68 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀)) |
183 | 127 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ω ⊆ 𝑎) |
184 | | nnfi 8959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑀 ∈ ω → suc
𝑀 ∈
Fin) |
185 | | xpfi 9094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((suc
𝑀 ∈ Fin ∧ suc
𝑀 ∈ Fin) → (suc
𝑀 × suc 𝑀) ∈ Fin) |
186 | 185 | anidms 567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑀 ∈ Fin → (suc
𝑀 × suc 𝑀) ∈ Fin) |
187 | | isfinite 9419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((suc
𝑀 × suc 𝑀) ∈ Fin ↔ (suc 𝑀 × suc 𝑀) ≺ ω) |
188 | 186, 187 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑀 ∈ Fin → (suc
𝑀 × suc 𝑀) ≺
ω) |
189 | 184, 188 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (suc
𝑀 ∈ ω →
(suc 𝑀 × suc 𝑀) ≺
ω) |
190 | | ssdomg 8795 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ V → (ω
⊆ 𝑎 → ω
≼ 𝑎)) |
191 | 190 | elv 3439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ω
⊆ 𝑎 → ω
≼ 𝑎) |
192 | | sdomdomtr 8906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((suc
𝑀 × suc 𝑀) ≺ ω ∧ ω
≼ 𝑎) → (suc
𝑀 × suc 𝑀) ≺ 𝑎) |
193 | 189, 191,
192 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((suc
𝑀 ∈ ω ∧
ω ⊆ 𝑎) →
(suc 𝑀 × suc 𝑀) ≺ 𝑎) |
194 | 193 | expcom 414 |
. . . . . . . . . . . . . . . . 17
⊢ (ω
⊆ 𝑎 → (suc 𝑀 ∈ ω → (suc
𝑀 × suc 𝑀) ≺ 𝑎)) |
195 | 183, 194 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎)) |
196 | | breq1 5078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = suc 𝑀 → (𝑚 ≺ 𝑎 ↔ suc 𝑀 ≺ 𝑎)) |
197 | 125 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) |
198 | 196, 197,
140 | rspcdva 3563 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ≺ 𝑎) |
199 | | omelon 9413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ω
∈ On |
200 | | ontri1 6304 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ω
∈ On ∧ suc 𝑀
∈ On) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω)) |
201 | 199, 142,
200 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈
ω)) |
202 | | sseq2 3948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = suc 𝑀 → (ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀)) |
203 | | xpeq12 5615 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = suc 𝑀 ∧ 𝑚 = suc 𝑀) → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀)) |
204 | 203 | anidms 567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = suc 𝑀 → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀)) |
205 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = suc 𝑀 → 𝑚 = suc 𝑀) |
206 | 204, 205 | breq12d 5088 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = suc 𝑀 → ((𝑚 × 𝑚) ≈ 𝑚 ↔ (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)) |
207 | 202, 206 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = suc 𝑀 → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ↔ (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))) |
208 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) |
209 | 13, 208 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) |
210 | 209 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) |
211 | 207, 210,
140 | rspcdva 3563 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)) |
212 | 201, 211 | sylbird 259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)) |
213 | | ensdomtr 8909 |
. . . . . . . . . . . . . . . . . 18
⊢ (((suc
𝑀 × suc 𝑀) ≈ suc 𝑀 ∧ suc 𝑀 ≺ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎) |
214 | 213 | expcom 414 |
. . . . . . . . . . . . . . . . 17
⊢ (suc
𝑀 ≺ 𝑎 → ((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≺ 𝑎)) |
215 | 198, 212,
214 | sylsyld 61 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎)) |
216 | 195, 215 | pm2.61d 179 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 × suc 𝑀) ≺ 𝑎) |
217 | | domsdomtr 8908 |
. . . . . . . . . . . . . . 15
⊢ (((◡𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀) ∧ (suc 𝑀 × suc 𝑀) ≺ 𝑎) → (◡𝑄 “ {𝑤}) ≺ 𝑎) |
218 | 182, 216,
217 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝑄 “ {𝑤}) ≺ 𝑎) |
219 | | ensdomtr 8909 |
. . . . . . . . . . . . . 14
⊢ (((◡𝐽‘𝑤) ≈ (◡𝑄 “ {𝑤}) ∧ (◡𝑄 “ {𝑤}) ≺ 𝑎) → (◡𝐽‘𝑤) ≺ 𝑎) |
220 | 88, 218, 219 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ≺ 𝑎) |
221 | | ordelon 6294 |
. . . . . . . . . . . . . . 15
⊢ ((Ord dom
𝐽 ∧ (◡𝐽‘𝑤) ∈ dom 𝐽) → (◡𝐽‘𝑤) ∈ On) |
222 | 76, 79, 221 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ∈ On) |
223 | | onenon 9716 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ On → 𝑎 ∈ dom
card) |
224 | 110, 223 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ dom card) |
225 | | cardsdomel 9741 |
. . . . . . . . . . . . . 14
⊢ (((◡𝐽‘𝑤) ∈ On ∧ 𝑎 ∈ dom card) → ((◡𝐽‘𝑤) ≺ 𝑎 ↔ (◡𝐽‘𝑤) ∈ (card‘𝑎))) |
226 | 222, 224,
225 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ((◡𝐽‘𝑤) ≺ 𝑎 ↔ (◡𝐽‘𝑤) ∈ (card‘𝑎))) |
227 | 220, 226 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ∈ (card‘𝑎)) |
228 | | eleq2 2828 |
. . . . . . . . . . . . . 14
⊢
((card‘𝑎) =
𝑎 → ((◡𝐽‘𝑤) ∈ (card‘𝑎) ↔ (◡𝐽‘𝑤) ∈ 𝑎)) |
229 | 128, 228 | sylbir 234 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) → ((◡𝐽‘𝑤) ∈ (card‘𝑎) ↔ (◡𝐽‘𝑤) ∈ 𝑎)) |
230 | 17, 197, 229 | syl2an2r 682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → ((◡𝐽‘𝑤) ∈ (card‘𝑎) ↔ (◡𝐽‘𝑤) ∈ 𝑎)) |
231 | 227, 230 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (◡𝐽‘𝑤) ∈ 𝑎) |
232 | 231 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑤 ∈ (𝑎 × 𝑎)(◡𝐽‘𝑤) ∈ 𝑎) |
233 | | fnfvrnss 7003 |
. . . . . . . . . . 11
⊢ ((◡𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(◡𝐽‘𝑤) ∈ 𝑎) → ran ◡𝐽 ⊆ 𝑎) |
234 | | ssdomg 8795 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ V → (ran ◡𝐽 ⊆ 𝑎 → ran ◡𝐽 ≼ 𝑎)) |
235 | 14, 233, 234 | mpsyl 68 |
. . . . . . . . . 10
⊢ ((◡𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(◡𝐽‘𝑤) ∈ 𝑎) → ran ◡𝐽 ≼ 𝑎) |
236 | 45, 232, 235 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ran ◡𝐽 ≼ 𝑎) |
237 | | endomtr 8807 |
. . . . . . . . 9
⊢ (((𝑎 × 𝑎) ≈ ran ◡𝐽 ∧ ran ◡𝐽 ≼ 𝑎) → (𝑎 × 𝑎) ≼ 𝑎) |
238 | 43, 236, 237 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 × 𝑎) ≼ 𝑎) |
239 | 13, 238 | sylbir 234 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → (𝑎 × 𝑎) ≼ 𝑎) |
240 | | df1o2 8313 |
. . . . . . . . . . . 12
⊢
1o = {∅} |
241 | | 1onn 8479 |
. . . . . . . . . . . 12
⊢
1o ∈ ω |
242 | 240, 241 | eqeltrri 2837 |
. . . . . . . . . . 11
⊢ {∅}
∈ ω |
243 | | nnsdom 9421 |
. . . . . . . . . . 11
⊢
({∅} ∈ ω → {∅} ≺
ω) |
244 | | sdomdom 8777 |
. . . . . . . . . . 11
⊢
({∅} ≺ ω → {∅} ≼
ω) |
245 | 242, 243,
244 | mp2b 10 |
. . . . . . . . . 10
⊢ {∅}
≼ ω |
246 | | domtr 8802 |
. . . . . . . . . 10
⊢
(({∅} ≼ ω ∧ ω ≼ 𝑎) → {∅} ≼ 𝑎) |
247 | 245, 191,
246 | sylancr 587 |
. . . . . . . . 9
⊢ (ω
⊆ 𝑎 → {∅}
≼ 𝑎) |
248 | | 0ex 5232 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
249 | 14, 248 | xpsnen 8851 |
. . . . . . . . . . 11
⊢ (𝑎 × {∅}) ≈
𝑎 |
250 | 249 | ensymi 8799 |
. . . . . . . . . 10
⊢ 𝑎 ≈ (𝑎 × {∅}) |
251 | 14 | xpdom2 8863 |
. . . . . . . . . 10
⊢
({∅} ≼ 𝑎
→ (𝑎 ×
{∅}) ≼ (𝑎
× 𝑎)) |
252 | | endomtr 8807 |
. . . . . . . . . 10
⊢ ((𝑎 ≈ (𝑎 × {∅}) ∧ (𝑎 × {∅}) ≼ (𝑎 × 𝑎)) → 𝑎 ≼ (𝑎 × 𝑎)) |
253 | 250, 251,
252 | sylancr 587 |
. . . . . . . . 9
⊢
({∅} ≼ 𝑎
→ 𝑎 ≼ (𝑎 × 𝑎)) |
254 | 247, 253 | syl 17 |
. . . . . . . 8
⊢ (ω
⊆ 𝑎 → 𝑎 ≼ (𝑎 × 𝑎)) |
255 | 254 | ad2antrl 725 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → 𝑎 ≼ (𝑎 × 𝑎)) |
256 | | sbth 8889 |
. . . . . . 7
⊢ (((𝑎 × 𝑎) ≼ 𝑎 ∧ 𝑎 ≼ (𝑎 × 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎) |
257 | 239, 255,
256 | syl2anc 584 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎) |
258 | 257 | expr 457 |
. . . . 5
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎)) |
259 | | simplr 766 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) |
260 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → 𝑎 ∈ On) |
261 | | simprr 770 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) |
262 | | rexnal 3170 |
. . . . . . . . . 10
⊢
(∃𝑚 ∈
𝑎 ¬ 𝑚 ≺ 𝑎 ↔ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎) |
263 | | onelss 6312 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ On → (𝑚 ∈ 𝑎 → 𝑚 ⊆ 𝑎)) |
264 | | ssdomg 8795 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ On → (𝑚 ⊆ 𝑎 → 𝑚 ≼ 𝑎)) |
265 | 263, 264 | syld 47 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ On → (𝑚 ∈ 𝑎 → 𝑚 ≼ 𝑎)) |
266 | | bren2 8780 |
. . . . . . . . . . . . 13
⊢ (𝑚 ≈ 𝑎 ↔ (𝑚 ≼ 𝑎 ∧ ¬ 𝑚 ≺ 𝑎)) |
267 | 266 | simplbi2 501 |
. . . . . . . . . . . 12
⊢ (𝑚 ≼ 𝑎 → (¬ 𝑚 ≺ 𝑎 → 𝑚 ≈ 𝑎)) |
268 | 265, 267 | syl6 35 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ On → (𝑚 ∈ 𝑎 → (¬ 𝑚 ≺ 𝑎 → 𝑚 ≈ 𝑎))) |
269 | 268 | reximdvai 3201 |
. . . . . . . . . 10
⊢ (𝑎 ∈ On → (∃𝑚 ∈ 𝑎 ¬ 𝑚 ≺ 𝑎 → ∃𝑚 ∈ 𝑎 𝑚 ≈ 𝑎)) |
270 | 262, 269 | syl5bir 242 |
. . . . . . . . 9
⊢ (𝑎 ∈ On → (¬
∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → ∃𝑚 ∈ 𝑎 𝑚 ≈ 𝑎)) |
271 | 260, 261,
270 | sylc 65 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ∃𝑚 ∈ 𝑎 𝑚 ≈ 𝑎) |
272 | | r19.29 3185 |
. . . . . . . 8
⊢
((∀𝑚 ∈
𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ ∃𝑚 ∈ 𝑎 𝑚 ≈ 𝑎) → ∃𝑚 ∈ 𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎)) |
273 | 259, 271,
272 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ∃𝑚 ∈ 𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎)) |
274 | | simprl 768 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → ω ⊆ 𝑎) |
275 | | onelon 6295 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ On ∧ 𝑚 ∈ 𝑎) → 𝑚 ∈ On) |
276 | | ensym 8798 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ≈ 𝑎 → 𝑎 ≈ 𝑚) |
277 | | domentr 8808 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ω
≼ 𝑎 ∧ 𝑎 ≈ 𝑚) → ω ≼ 𝑚) |
278 | 191, 276,
277 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((ω
⊆ 𝑎 ∧ 𝑚 ≈ 𝑎) → ω ≼ 𝑚) |
279 | | domnsym 8895 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ω
≼ 𝑚 → ¬
𝑚 ≺
ω) |
280 | | nnsdom 9421 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ω → 𝑚 ≺
ω) |
281 | 279, 280 | nsyl 140 |
. . . . . . . . . . . . . . . . . 18
⊢ (ω
≼ 𝑚 → ¬
𝑚 ∈
ω) |
282 | | ontri1 6304 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ω
∈ On ∧ 𝑚 ∈
On) → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω)) |
283 | 199, 282 | mpan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ On → (ω
⊆ 𝑚 ↔ ¬
𝑚 ∈
ω)) |
284 | 281, 283 | syl5ibr 245 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ On → (ω
≼ 𝑚 → ω
⊆ 𝑚)) |
285 | 275, 278,
284 | syl2im 40 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ 𝑚 ∈ 𝑎) → ((ω ⊆ 𝑎 ∧ 𝑚 ≈ 𝑎) → ω ⊆ 𝑚)) |
286 | 285 | expd 416 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑚 ∈ 𝑎) → (ω ⊆ 𝑎 → (𝑚 ≈ 𝑎 → ω ⊆ 𝑚))) |
287 | 286 | impcom 408 |
. . . . . . . . . . . . . 14
⊢ ((ω
⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚 ∈ 𝑎)) → (𝑚 ≈ 𝑎 → ω ⊆ 𝑚)) |
288 | 287 | imim1d 82 |
. . . . . . . . . . . . 13
⊢ ((ω
⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚 ∈ 𝑎)) → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (𝑚 ≈ 𝑎 → (𝑚 × 𝑚) ≈ 𝑚))) |
289 | 288 | imp32 419 |
. . . . . . . . . . . 12
⊢
(((ω ⊆ 𝑎
∧ (𝑎 ∈ On ∧
𝑚 ∈ 𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎)) → (𝑚 × 𝑚) ≈ 𝑚) |
290 | | entr 8801 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 × 𝑚) ≈ 𝑚 ∧ 𝑚 ≈ 𝑎) → (𝑚 × 𝑚) ≈ 𝑎) |
291 | 290 | ancoms 459 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ≈ 𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑚 × 𝑚) ≈ 𝑎) |
292 | | xpen 8936 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ≈ 𝑚 ∧ 𝑎 ≈ 𝑚) → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚)) |
293 | 292 | anidms 567 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ≈ 𝑚 → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚)) |
294 | | entr 8801 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 × 𝑎) ≈ (𝑚 × 𝑚) ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎) |
295 | 293, 294 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ≈ 𝑚 ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎) |
296 | 276, 291,
295 | syl2an2r 682 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ≈ 𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑎 × 𝑎) ≈ 𝑎) |
297 | 296 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑚 ≈ 𝑎 → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎)) |
298 | 297 | ad2antll 726 |
. . . . . . . . . . . 12
⊢
(((ω ⊆ 𝑎
∧ (𝑎 ∈ On ∧
𝑚 ∈ 𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎)) → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎)) |
299 | 289, 298 | mpd 15 |
. . . . . . . . . . 11
⊢
(((ω ⊆ 𝑎
∧ (𝑎 ∈ On ∧
𝑚 ∈ 𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎) |
300 | 299 | ex 413 |
. . . . . . . . . 10
⊢ ((ω
⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚 ∈ 𝑎)) → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)) |
301 | 300 | expr 457 |
. . . . . . . . 9
⊢ ((ω
⊆ 𝑎 ∧ 𝑎 ∈ On) → (𝑚 ∈ 𝑎 → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎))) |
302 | 301 | rexlimdv 3213 |
. . . . . . . 8
⊢ ((ω
⊆ 𝑎 ∧ 𝑎 ∈ On) → (∃𝑚 ∈ 𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)) |
303 | 274, 260,
302 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → (∃𝑚 ∈ 𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚 ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)) |
304 | 273, 303 | mpd 15 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎) |
305 | 304 | expr 457 |
. . . . 5
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (¬ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎)) |
306 | 258, 305 | pm2.61d 179 |
. . . 4
⊢ (((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎) |
307 | 306 | exp31 420 |
. . 3
⊢ (𝑎 ∈ On → (∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎))) |
308 | 6, 12, 307 | tfis3 7713 |
. 2
⊢ (𝐴 ∈ On → (ω
⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴)) |
309 | 308 | imp 407 |
1
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |