MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inatsk Structured version   Visualization version   GIF version

Theorem inatsk 10731
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
inatsk (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)

Proof of Theorem inatsk
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10643 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10641 . . . . . . . . . 10 (𝐴 ∈ Inaccw𝐴 ∈ On)
3 winalim 10648 . . . . . . . . . 10 (𝐴 ∈ Inaccw → Lim 𝐴)
4 r1lim 9725 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑦𝐴 (𝑅1𝑦))
52, 3, 4syl2anc 584 . . . . . . . . 9 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑦𝐴 (𝑅1𝑦))
65eleq2d 2814 . . . . . . . 8 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) ↔ 𝑥 𝑦𝐴 (𝑅1𝑦)))
7 eliun 4959 . . . . . . . 8 (𝑥 𝑦𝐴 (𝑅1𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦))
86, 7bitrdi 287 . . . . . . 7 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) ↔ ∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦)))
9 onelon 6357 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
102, 9sylan 580 . . . . . . . . . 10 ((𝐴 ∈ Inaccw𝑦𝐴) → 𝑦 ∈ On)
11 r1pw 9798 . . . . . . . . . 10 (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝑦)))
1210, 11syl 17 . . . . . . . . 9 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑥 ∈ (𝑅1𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝑦)))
13 limsuc 7825 . . . . . . . . . . . . 13 (Lim 𝐴 → (𝑦𝐴 ↔ suc 𝑦𝐴))
143, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw → (𝑦𝐴 ↔ suc 𝑦𝐴))
15 r1ord2 9734 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
162, 15syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
1714, 16sylbid 240 . . . . . . . . . . 11 (𝐴 ∈ Inaccw → (𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
1817imp 406 . . . . . . . . . 10 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴))
1918sseld 3945 . . . . . . . . 9 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝒫 𝑥 ∈ (𝑅1‘suc 𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2012, 19sylbid 240 . . . . . . . 8 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑥 ∈ (𝑅1𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2120rexlimdva 3134 . . . . . . 7 (𝐴 ∈ Inaccw → (∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
228, 21sylbid 240 . . . . . 6 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
231, 22syl 17 . . . . 5 (𝐴 ∈ Inacc → (𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2423imp 406 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
25 elssuni 4901 . . . . 5 (𝒫 𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 (𝑅1𝐴))
26 r1tr2 9730 . . . . 5 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2725, 26sstrdi 3959 . . . 4 (𝒫 𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ⊆ (𝑅1𝐴))
2824, 27jccil 522 . . 3 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ (𝑅1𝐴)) → (𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)))
2928ralrimiva 3125 . 2 (𝐴 ∈ Inacc → ∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)))
301, 2syl 17 . . . . . . . . 9 (𝐴 ∈ Inacc → 𝐴 ∈ On)
31 r1suc 9723 . . . . . . . . . 10 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
3231eleq2d 2814 . . . . . . . . 9 (𝐴 ∈ On → (𝑥 ∈ (𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑅1𝐴)))
3330, 32syl 17 . . . . . . . 8 (𝐴 ∈ Inacc → (𝑥 ∈ (𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑅1𝐴)))
34 rankr1ai 9751 . . . . . . . 8 (𝑥 ∈ (𝑅1‘suc 𝐴) → (rank‘𝑥) ∈ suc 𝐴)
3533, 34biimtrrdi 254 . . . . . . 7 (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫 (𝑅1𝐴) → (rank‘𝑥) ∈ suc 𝐴))
3635imp 406 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (rank‘𝑥) ∈ suc 𝐴)
37 fvex 6871 . . . . . . 7 (rank‘𝑥) ∈ V
3837elsuc 6404 . . . . . 6 ((rank‘𝑥) ∈ suc 𝐴 ↔ ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴))
3936, 38sylib 218 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴))
4039orcomd 871 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴))
41 fvex 6871 . . . . . . . 8 (𝑅1𝐴) ∈ V
42 elpwi 4570 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑅1𝐴) → 𝑥 ⊆ (𝑅1𝐴))
4342ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ⊆ (𝑅1𝐴))
44 ssdomg 8971 . . . . . . . 8 ((𝑅1𝐴) ∈ V → (𝑥 ⊆ (𝑅1𝐴) → 𝑥 ≼ (𝑅1𝐴)))
4541, 43, 44mpsyl 68 . . . . . . 7 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≼ (𝑅1𝐴))
46 rankcf 10730 . . . . . . . . . 10 ¬ 𝑥 ≺ (cf‘(rank‘𝑥))
47 fveq2 6858 . . . . . . . . . . . 12 ((rank‘𝑥) = 𝐴 → (cf‘(rank‘𝑥)) = (cf‘𝐴))
48 elina 10640 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
4948simp2bi 1146 . . . . . . . . . . . 12 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
5047, 49sylan9eqr 2786 . . . . . . . . . . 11 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (cf‘(rank‘𝑥)) = 𝐴)
5150breq2d 5119 . . . . . . . . . 10 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (𝑥 ≺ (cf‘(rank‘𝑥)) ↔ 𝑥𝐴))
5246, 51mtbii 326 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥𝐴)
53 inar1 10728 . . . . . . . . . . 11 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
54 sdomentr 9075 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
5554expcom 413 . . . . . . . . . . 11 ((𝑅1𝐴) ≈ 𝐴 → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5653, 55syl 17 . . . . . . . . . 10 (𝐴 ∈ Inacc → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5756adantr 480 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5852, 57mtod 198 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1𝐴))
5958adantlr 715 . . . . . . 7 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1𝐴))
60 bren2 8954 . . . . . . 7 (𝑥 ≈ (𝑅1𝐴) ↔ (𝑥 ≼ (𝑅1𝐴) ∧ ¬ 𝑥 ≺ (𝑅1𝐴)))
6145, 59, 60sylanbrc 583 . . . . . 6 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≈ (𝑅1𝐴))
6261ex 412 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) = 𝐴𝑥 ≈ (𝑅1𝐴)))
63 r1elwf 9749 . . . . . . . . 9 (𝑥 ∈ (𝑅1‘suc 𝐴) → 𝑥 (𝑅1 “ On))
6433, 63biimtrrdi 254 . . . . . . . 8 (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫 (𝑅1𝐴) → 𝑥 (𝑅1 “ On)))
6564imp 406 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
66 r1fnon 9720 . . . . . . . . . 10 𝑅1 Fn On
6766fndmi 6622 . . . . . . . . 9 dom 𝑅1 = On
6830, 67eleqtrrdi 2839 . . . . . . . 8 (𝐴 ∈ Inacc → 𝐴 ∈ dom 𝑅1)
6968adantr 480 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
70 rankr1ag 9755 . . . . . . 7 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
7165, 69, 70syl2anc 584 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
7271biimprd 248 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) ∈ 𝐴𝑥 ∈ (𝑅1𝐴)))
7362, 72orim12d 966 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴) → (𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴))))
7440, 73mpd 15 . . 3 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))
7574ralrimiva 3125 . 2 (𝐴 ∈ Inacc → ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))
76 eltsk2g 10704 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ Tarski ↔ (∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)) ∧ ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))))
7741, 76ax-mp 5 . 2 ((𝑅1𝐴) ∈ Tarski ↔ (∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)) ∧ ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴))))
7829, 75, 77sylanbrc 583 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   ciun 4955   class class class wbr 5107  dom cdm 5638  cima 5641  Oncon0 6332  Lim wlim 6333  suc csuc 6334  cfv 6511  cen 8915  cdom 8916  csdm 8917  𝑅1cr1 9715  rankcrnk 9716  cfccf 9890  Inaccwcwina 10635  Inacccina 10636  Tarskictsk 10701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-r1 9717  df-rank 9718  df-card 9892  df-cf 9894  df-acn 9895  df-ac 10069  df-wina 10637  df-ina 10638  df-tsk 10702
This theorem is referenced by:  r1omtsk  10732  r1tskina  10735  grutsk  10775  inagrud  44285
  Copyright terms: Public domain W3C validator