MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inatsk Structured version   Visualization version   GIF version

Theorem inatsk 10738
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
inatsk (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)

Proof of Theorem inatsk
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10650 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10648 . . . . . . . . . 10 (𝐴 ∈ Inaccw𝐴 ∈ On)
3 winalim 10655 . . . . . . . . . 10 (𝐴 ∈ Inaccw → Lim 𝐴)
4 r1lim 9732 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑦𝐴 (𝑅1𝑦))
52, 3, 4syl2anc 584 . . . . . . . . 9 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑦𝐴 (𝑅1𝑦))
65eleq2d 2815 . . . . . . . 8 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) ↔ 𝑥 𝑦𝐴 (𝑅1𝑦)))
7 eliun 4962 . . . . . . . 8 (𝑥 𝑦𝐴 (𝑅1𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦))
86, 7bitrdi 287 . . . . . . 7 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) ↔ ∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦)))
9 onelon 6360 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
102, 9sylan 580 . . . . . . . . . 10 ((𝐴 ∈ Inaccw𝑦𝐴) → 𝑦 ∈ On)
11 r1pw 9805 . . . . . . . . . 10 (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝑦)))
1210, 11syl 17 . . . . . . . . 9 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑥 ∈ (𝑅1𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝑦)))
13 limsuc 7828 . . . . . . . . . . . . 13 (Lim 𝐴 → (𝑦𝐴 ↔ suc 𝑦𝐴))
143, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw → (𝑦𝐴 ↔ suc 𝑦𝐴))
15 r1ord2 9741 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
162, 15syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
1714, 16sylbid 240 . . . . . . . . . . 11 (𝐴 ∈ Inaccw → (𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
1817imp 406 . . . . . . . . . 10 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴))
1918sseld 3948 . . . . . . . . 9 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝒫 𝑥 ∈ (𝑅1‘suc 𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2012, 19sylbid 240 . . . . . . . 8 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑥 ∈ (𝑅1𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2120rexlimdva 3135 . . . . . . 7 (𝐴 ∈ Inaccw → (∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
228, 21sylbid 240 . . . . . 6 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
231, 22syl 17 . . . . 5 (𝐴 ∈ Inacc → (𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2423imp 406 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
25 elssuni 4904 . . . . 5 (𝒫 𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 (𝑅1𝐴))
26 r1tr2 9737 . . . . 5 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2725, 26sstrdi 3962 . . . 4 (𝒫 𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ⊆ (𝑅1𝐴))
2824, 27jccil 522 . . 3 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ (𝑅1𝐴)) → (𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)))
2928ralrimiva 3126 . 2 (𝐴 ∈ Inacc → ∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)))
301, 2syl 17 . . . . . . . . 9 (𝐴 ∈ Inacc → 𝐴 ∈ On)
31 r1suc 9730 . . . . . . . . . 10 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
3231eleq2d 2815 . . . . . . . . 9 (𝐴 ∈ On → (𝑥 ∈ (𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑅1𝐴)))
3330, 32syl 17 . . . . . . . 8 (𝐴 ∈ Inacc → (𝑥 ∈ (𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑅1𝐴)))
34 rankr1ai 9758 . . . . . . . 8 (𝑥 ∈ (𝑅1‘suc 𝐴) → (rank‘𝑥) ∈ suc 𝐴)
3533, 34biimtrrdi 254 . . . . . . 7 (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫 (𝑅1𝐴) → (rank‘𝑥) ∈ suc 𝐴))
3635imp 406 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (rank‘𝑥) ∈ suc 𝐴)
37 fvex 6874 . . . . . . 7 (rank‘𝑥) ∈ V
3837elsuc 6407 . . . . . 6 ((rank‘𝑥) ∈ suc 𝐴 ↔ ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴))
3936, 38sylib 218 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴))
4039orcomd 871 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴))
41 fvex 6874 . . . . . . . 8 (𝑅1𝐴) ∈ V
42 elpwi 4573 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑅1𝐴) → 𝑥 ⊆ (𝑅1𝐴))
4342ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ⊆ (𝑅1𝐴))
44 ssdomg 8974 . . . . . . . 8 ((𝑅1𝐴) ∈ V → (𝑥 ⊆ (𝑅1𝐴) → 𝑥 ≼ (𝑅1𝐴)))
4541, 43, 44mpsyl 68 . . . . . . 7 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≼ (𝑅1𝐴))
46 rankcf 10737 . . . . . . . . . 10 ¬ 𝑥 ≺ (cf‘(rank‘𝑥))
47 fveq2 6861 . . . . . . . . . . . 12 ((rank‘𝑥) = 𝐴 → (cf‘(rank‘𝑥)) = (cf‘𝐴))
48 elina 10647 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
4948simp2bi 1146 . . . . . . . . . . . 12 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
5047, 49sylan9eqr 2787 . . . . . . . . . . 11 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (cf‘(rank‘𝑥)) = 𝐴)
5150breq2d 5122 . . . . . . . . . 10 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (𝑥 ≺ (cf‘(rank‘𝑥)) ↔ 𝑥𝐴))
5246, 51mtbii 326 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥𝐴)
53 inar1 10735 . . . . . . . . . . 11 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
54 sdomentr 9081 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
5554expcom 413 . . . . . . . . . . 11 ((𝑅1𝐴) ≈ 𝐴 → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5653, 55syl 17 . . . . . . . . . 10 (𝐴 ∈ Inacc → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5756adantr 480 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5852, 57mtod 198 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1𝐴))
5958adantlr 715 . . . . . . 7 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1𝐴))
60 bren2 8957 . . . . . . 7 (𝑥 ≈ (𝑅1𝐴) ↔ (𝑥 ≼ (𝑅1𝐴) ∧ ¬ 𝑥 ≺ (𝑅1𝐴)))
6145, 59, 60sylanbrc 583 . . . . . 6 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≈ (𝑅1𝐴))
6261ex 412 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) = 𝐴𝑥 ≈ (𝑅1𝐴)))
63 r1elwf 9756 . . . . . . . . 9 (𝑥 ∈ (𝑅1‘suc 𝐴) → 𝑥 (𝑅1 “ On))
6433, 63biimtrrdi 254 . . . . . . . 8 (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫 (𝑅1𝐴) → 𝑥 (𝑅1 “ On)))
6564imp 406 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
66 r1fnon 9727 . . . . . . . . . 10 𝑅1 Fn On
6766fndmi 6625 . . . . . . . . 9 dom 𝑅1 = On
6830, 67eleqtrrdi 2840 . . . . . . . 8 (𝐴 ∈ Inacc → 𝐴 ∈ dom 𝑅1)
6968adantr 480 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
70 rankr1ag 9762 . . . . . . 7 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
7165, 69, 70syl2anc 584 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
7271biimprd 248 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) ∈ 𝐴𝑥 ∈ (𝑅1𝐴)))
7362, 72orim12d 966 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴) → (𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴))))
7440, 73mpd 15 . . 3 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))
7574ralrimiva 3126 . 2 (𝐴 ∈ Inacc → ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))
76 eltsk2g 10711 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ Tarski ↔ (∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)) ∧ ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))))
7741, 76ax-mp 5 . 2 ((𝑅1𝐴) ∈ Tarski ↔ (∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)) ∧ ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴))))
7829, 75, 77sylanbrc 583 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   ciun 4958   class class class wbr 5110  dom cdm 5641  cima 5644  Oncon0 6335  Lim wlim 6336  suc csuc 6337  cfv 6514  cen 8918  cdom 8919  csdm 8920  𝑅1cr1 9722  rankcrnk 9723  cfccf 9897  Inaccwcwina 10642  Inacccina 10643  Tarskictsk 10708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-r1 9724  df-rank 9725  df-card 9899  df-cf 9901  df-acn 9902  df-ac 10076  df-wina 10644  df-ina 10645  df-tsk 10709
This theorem is referenced by:  r1omtsk  10739  r1tskina  10742  grutsk  10782  inagrud  44292
  Copyright terms: Public domain W3C validator