| Step | Hyp | Ref
| Expression |
| 1 | | inawina 10730 |
. . . . . 6
⊢ (𝐴 ∈ Inacc → 𝐴 ∈
Inaccw) |
| 2 | | winaon 10728 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Inaccw →
𝐴 ∈
On) |
| 3 | | winalim 10735 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Inaccw →
Lim 𝐴) |
| 4 | | r1lim 9812 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ Lim 𝐴) →
(𝑅1‘𝐴) = ∪
𝑦 ∈ 𝐴 (𝑅1‘𝑦)) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝐴 ∈ Inaccw →
(𝑅1‘𝐴) = ∪
𝑦 ∈ 𝐴 (𝑅1‘𝑦)) |
| 6 | 5 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝐴 ∈ Inaccw →
(𝑥 ∈
(𝑅1‘𝐴) ↔ 𝑥 ∈ ∪
𝑦 ∈ 𝐴 (𝑅1‘𝑦))) |
| 7 | | eliun 4995 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 (𝑅1‘𝑦) ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ (𝑅1‘𝑦)) |
| 8 | 6, 7 | bitrdi 287 |
. . . . . . 7
⊢ (𝐴 ∈ Inaccw →
(𝑥 ∈
(𝑅1‘𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ (𝑅1‘𝑦))) |
| 9 | | onelon 6409 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
| 10 | 2, 9 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Inaccw ∧
𝑦 ∈ 𝐴) → 𝑦 ∈ On) |
| 11 | | r1pw 9885 |
. . . . . . . . . 10
⊢ (𝑦 ∈ On → (𝑥 ∈
(𝑅1‘𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc
𝑦))) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Inaccw ∧
𝑦 ∈ 𝐴) → (𝑥 ∈ (𝑅1‘𝑦) ↔ 𝒫 𝑥 ∈
(𝑅1‘suc 𝑦))) |
| 13 | | limsuc 7870 |
. . . . . . . . . . . . 13
⊢ (Lim
𝐴 → (𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
| 14 | 3, 13 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Inaccw →
(𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
| 15 | | r1ord2 9821 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (suc 𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ⊆
(𝑅1‘𝐴))) |
| 16 | 2, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Inaccw →
(suc 𝑦 ∈ 𝐴 →
(𝑅1‘suc 𝑦) ⊆ (𝑅1‘𝐴))) |
| 17 | 14, 16 | sylbid 240 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Inaccw →
(𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ⊆
(𝑅1‘𝐴))) |
| 18 | 17 | imp 406 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Inaccw ∧
𝑦 ∈ 𝐴) → (𝑅1‘suc
𝑦) ⊆
(𝑅1‘𝐴)) |
| 19 | 18 | sseld 3982 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Inaccw ∧
𝑦 ∈ 𝐴) → (𝒫 𝑥 ∈ (𝑅1‘suc
𝑦) → 𝒫 𝑥 ∈
(𝑅1‘𝐴))) |
| 20 | 12, 19 | sylbid 240 |
. . . . . . . 8
⊢ ((𝐴 ∈ Inaccw ∧
𝑦 ∈ 𝐴) → (𝑥 ∈ (𝑅1‘𝑦) → 𝒫 𝑥 ∈
(𝑅1‘𝐴))) |
| 21 | 20 | rexlimdva 3155 |
. . . . . . 7
⊢ (𝐴 ∈ Inaccw →
(∃𝑦 ∈ 𝐴 𝑥 ∈ (𝑅1‘𝑦) → 𝒫 𝑥 ∈
(𝑅1‘𝐴))) |
| 22 | 8, 21 | sylbid 240 |
. . . . . 6
⊢ (𝐴 ∈ Inaccw →
(𝑥 ∈
(𝑅1‘𝐴) → 𝒫 𝑥 ∈ (𝑅1‘𝐴))) |
| 23 | 1, 22 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ Inacc → (𝑥 ∈
(𝑅1‘𝐴) → 𝒫 𝑥 ∈ (𝑅1‘𝐴))) |
| 24 | 23 | imp 406 |
. . . 4
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈
(𝑅1‘𝐴)) → 𝒫 𝑥 ∈ (𝑅1‘𝐴)) |
| 25 | | elssuni 4937 |
. . . . 5
⊢
(𝒫 𝑥 ∈
(𝑅1‘𝐴) → 𝒫 𝑥 ⊆ ∪
(𝑅1‘𝐴)) |
| 26 | | r1tr2 9817 |
. . . . 5
⊢ ∪ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) |
| 27 | 25, 26 | sstrdi 3996 |
. . . 4
⊢
(𝒫 𝑥 ∈
(𝑅1‘𝐴) → 𝒫 𝑥 ⊆ (𝑅1‘𝐴)) |
| 28 | 24, 27 | jccil 522 |
. . 3
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈
(𝑅1‘𝐴)) → (𝒫 𝑥 ⊆ (𝑅1‘𝐴) ∧ 𝒫 𝑥 ∈
(𝑅1‘𝐴))) |
| 29 | 28 | ralrimiva 3146 |
. 2
⊢ (𝐴 ∈ Inacc →
∀𝑥 ∈
(𝑅1‘𝐴)(𝒫 𝑥 ⊆ (𝑅1‘𝐴) ∧ 𝒫 𝑥 ∈
(𝑅1‘𝐴))) |
| 30 | 1, 2 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ Inacc → 𝐴 ∈ On) |
| 31 | | r1suc 9810 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On →
(𝑅1‘suc 𝐴) = 𝒫
(𝑅1‘𝐴)) |
| 32 | 31 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → (𝑥 ∈
(𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫
(𝑅1‘𝐴))) |
| 33 | 30, 32 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ Inacc → (𝑥 ∈
(𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫
(𝑅1‘𝐴))) |
| 34 | | rankr1ai 9838 |
. . . . . . . 8
⊢ (𝑥 ∈
(𝑅1‘suc 𝐴) → (rank‘𝑥) ∈ suc 𝐴) |
| 35 | 33, 34 | biimtrrdi 254 |
. . . . . . 7
⊢ (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫
(𝑅1‘𝐴) → (rank‘𝑥) ∈ suc 𝐴)) |
| 36 | 35 | imp 406 |
. . . . . 6
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → (rank‘𝑥) ∈ suc 𝐴) |
| 37 | | fvex 6919 |
. . . . . . 7
⊢
(rank‘𝑥)
∈ V |
| 38 | 37 | elsuc 6454 |
. . . . . 6
⊢
((rank‘𝑥)
∈ suc 𝐴 ↔
((rank‘𝑥) ∈
𝐴 ∨ (rank‘𝑥) = 𝐴)) |
| 39 | 36, 38 | sylib 218 |
. . . . 5
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴)) |
| 40 | 39 | orcomd 872 |
. . . 4
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → ((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴)) |
| 41 | | fvex 6919 |
. . . . . . . 8
⊢
(𝑅1‘𝐴) ∈ V |
| 42 | | elpwi 4607 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫
(𝑅1‘𝐴) → 𝑥 ⊆ (𝑅1‘𝐴)) |
| 43 | 42 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ⊆ (𝑅1‘𝐴)) |
| 44 | | ssdomg 9040 |
. . . . . . . 8
⊢
((𝑅1‘𝐴) ∈ V → (𝑥 ⊆ (𝑅1‘𝐴) → 𝑥 ≼ (𝑅1‘𝐴))) |
| 45 | 41, 43, 44 | mpsyl 68 |
. . . . . . 7
⊢ (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≼ (𝑅1‘𝐴)) |
| 46 | | rankcf 10817 |
. . . . . . . . . 10
⊢ ¬
𝑥 ≺
(cf‘(rank‘𝑥)) |
| 47 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢
((rank‘𝑥) =
𝐴 →
(cf‘(rank‘𝑥)) =
(cf‘𝐴)) |
| 48 | | elina 10727 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧
(cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
| 49 | 48 | simp2bi 1147 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Inacc →
(cf‘𝐴) = 𝐴) |
| 50 | 47, 49 | sylan9eqr 2799 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Inacc ∧
(rank‘𝑥) = 𝐴) →
(cf‘(rank‘𝑥)) =
𝐴) |
| 51 | 50 | breq2d 5155 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Inacc ∧
(rank‘𝑥) = 𝐴) → (𝑥 ≺ (cf‘(rank‘𝑥)) ↔ 𝑥 ≺ 𝐴)) |
| 52 | 46, 51 | mtbii 326 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Inacc ∧
(rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ 𝐴) |
| 53 | | inar1 10815 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) ≈ 𝐴) |
| 54 | | sdomentr 9151 |
. . . . . . . . . . . 12
⊢ ((𝑥 ≺
(𝑅1‘𝐴) ∧ (𝑅1‘𝐴) ≈ 𝐴) → 𝑥 ≺ 𝐴) |
| 55 | 54 | expcom 413 |
. . . . . . . . . . 11
⊢
((𝑅1‘𝐴) ≈ 𝐴 → (𝑥 ≺ (𝑅1‘𝐴) → 𝑥 ≺ 𝐴)) |
| 56 | 53, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Inacc → (𝑥 ≺
(𝑅1‘𝐴) → 𝑥 ≺ 𝐴)) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Inacc ∧
(rank‘𝑥) = 𝐴) → (𝑥 ≺ (𝑅1‘𝐴) → 𝑥 ≺ 𝐴)) |
| 58 | 52, 57 | mtod 198 |
. . . . . . . 8
⊢ ((𝐴 ∈ Inacc ∧
(rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺
(𝑅1‘𝐴)) |
| 59 | 58 | adantlr 715 |
. . . . . . 7
⊢ (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1‘𝐴)) |
| 60 | | bren2 9023 |
. . . . . . 7
⊢ (𝑥 ≈
(𝑅1‘𝐴) ↔ (𝑥 ≼ (𝑅1‘𝐴) ∧ ¬ 𝑥 ≺ (𝑅1‘𝐴))) |
| 61 | 45, 59, 60 | sylanbrc 583 |
. . . . . 6
⊢ (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≈ (𝑅1‘𝐴)) |
| 62 | 61 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → ((rank‘𝑥) = 𝐴 → 𝑥 ≈ (𝑅1‘𝐴))) |
| 63 | | r1elwf 9836 |
. . . . . . . . 9
⊢ (𝑥 ∈
(𝑅1‘suc 𝐴) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
| 64 | 33, 63 | biimtrrdi 254 |
. . . . . . . 8
⊢ (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫
(𝑅1‘𝐴) → 𝑥 ∈ ∪
(𝑅1 “ On))) |
| 65 | 64 | imp 406 |
. . . . . . 7
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
| 66 | | r1fnon 9807 |
. . . . . . . . . 10
⊢
𝑅1 Fn On |
| 67 | 66 | fndmi 6672 |
. . . . . . . . 9
⊢ dom
𝑅1 = On |
| 68 | 30, 67 | eleqtrrdi 2852 |
. . . . . . . 8
⊢ (𝐴 ∈ Inacc → 𝐴 ∈ dom
𝑅1) |
| 69 | 68 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → 𝐴 ∈ dom
𝑅1) |
| 70 | | rankr1ag 9842 |
. . . . . . 7
⊢ ((𝑥 ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom
𝑅1) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
| 71 | 65, 69, 70 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → (𝑥 ∈ (𝑅1‘𝐴) ↔ (rank‘𝑥) ∈ 𝐴)) |
| 72 | 71 | biimprd 248 |
. . . . 5
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → ((rank‘𝑥) ∈ 𝐴 → 𝑥 ∈ (𝑅1‘𝐴))) |
| 73 | 62, 72 | orim12d 967 |
. . . 4
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → (((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴) → (𝑥 ≈ (𝑅1‘𝐴) ∨ 𝑥 ∈ (𝑅1‘𝐴)))) |
| 74 | 40, 73 | mpd 15 |
. . 3
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫
(𝑅1‘𝐴)) → (𝑥 ≈ (𝑅1‘𝐴) ∨ 𝑥 ∈ (𝑅1‘𝐴))) |
| 75 | 74 | ralrimiva 3146 |
. 2
⊢ (𝐴 ∈ Inacc →
∀𝑥 ∈ 𝒫
(𝑅1‘𝐴)(𝑥 ≈ (𝑅1‘𝐴) ∨ 𝑥 ∈ (𝑅1‘𝐴))) |
| 76 | | eltsk2g 10791 |
. . 3
⊢
((𝑅1‘𝐴) ∈ V →
((𝑅1‘𝐴) ∈ Tarski ↔ (∀𝑥 ∈
(𝑅1‘𝐴)(𝒫 𝑥 ⊆ (𝑅1‘𝐴) ∧ 𝒫 𝑥 ∈
(𝑅1‘𝐴)) ∧ ∀𝑥 ∈ 𝒫
(𝑅1‘𝐴)(𝑥 ≈ (𝑅1‘𝐴) ∨ 𝑥 ∈ (𝑅1‘𝐴))))) |
| 77 | 41, 76 | ax-mp 5 |
. 2
⊢
((𝑅1‘𝐴) ∈ Tarski ↔ (∀𝑥 ∈
(𝑅1‘𝐴)(𝒫 𝑥 ⊆ (𝑅1‘𝐴) ∧ 𝒫 𝑥 ∈
(𝑅1‘𝐴)) ∧ ∀𝑥 ∈ 𝒫
(𝑅1‘𝐴)(𝑥 ≈ (𝑅1‘𝐴) ∨ 𝑥 ∈ (𝑅1‘𝐴)))) |
| 78 | 29, 75, 77 | sylanbrc 583 |
1
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) ∈ Tarski) |