MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inatsk Structured version   Visualization version   GIF version

Theorem inatsk 10189
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
inatsk (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)

Proof of Theorem inatsk
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10101 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10099 . . . . . . . . . 10 (𝐴 ∈ Inaccw𝐴 ∈ On)
3 winalim 10106 . . . . . . . . . 10 (𝐴 ∈ Inaccw → Lim 𝐴)
4 r1lim 9185 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑦𝐴 (𝑅1𝑦))
52, 3, 4syl2anc 587 . . . . . . . . 9 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑦𝐴 (𝑅1𝑦))
65eleq2d 2875 . . . . . . . 8 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) ↔ 𝑥 𝑦𝐴 (𝑅1𝑦)))
7 eliun 4885 . . . . . . . 8 (𝑥 𝑦𝐴 (𝑅1𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦))
86, 7syl6bb 290 . . . . . . 7 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) ↔ ∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦)))
9 onelon 6184 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
102, 9sylan 583 . . . . . . . . . 10 ((𝐴 ∈ Inaccw𝑦𝐴) → 𝑦 ∈ On)
11 r1pw 9258 . . . . . . . . . 10 (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝑦)))
1210, 11syl 17 . . . . . . . . 9 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑥 ∈ (𝑅1𝑦) ↔ 𝒫 𝑥 ∈ (𝑅1‘suc 𝑦)))
13 limsuc 7544 . . . . . . . . . . . . 13 (Lim 𝐴 → (𝑦𝐴 ↔ suc 𝑦𝐴))
143, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw → (𝑦𝐴 ↔ suc 𝑦𝐴))
15 r1ord2 9194 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
162, 15syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
1714, 16sylbid 243 . . . . . . . . . . 11 (𝐴 ∈ Inaccw → (𝑦𝐴 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴)))
1817imp 410 . . . . . . . . . 10 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝐴))
1918sseld 3914 . . . . . . . . 9 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝒫 𝑥 ∈ (𝑅1‘suc 𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2012, 19sylbid 243 . . . . . . . 8 ((𝐴 ∈ Inaccw𝑦𝐴) → (𝑥 ∈ (𝑅1𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2120rexlimdva 3243 . . . . . . 7 (𝐴 ∈ Inaccw → (∃𝑦𝐴 𝑥 ∈ (𝑅1𝑦) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
228, 21sylbid 243 . . . . . 6 (𝐴 ∈ Inaccw → (𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
231, 22syl 17 . . . . 5 (𝐴 ∈ Inacc → (𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ∈ (𝑅1𝐴)))
2423imp 410 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
25 elssuni 4830 . . . . 5 (𝒫 𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 (𝑅1𝐴))
26 r1tr2 9190 . . . . 5 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2725, 26sstrdi 3927 . . . 4 (𝒫 𝑥 ∈ (𝑅1𝐴) → 𝒫 𝑥 ⊆ (𝑅1𝐴))
2824, 27jccil 526 . . 3 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ (𝑅1𝐴)) → (𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)))
2928ralrimiva 3149 . 2 (𝐴 ∈ Inacc → ∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)))
301, 2syl 17 . . . . . . . . 9 (𝐴 ∈ Inacc → 𝐴 ∈ On)
31 r1suc 9183 . . . . . . . . . 10 (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
3231eleq2d 2875 . . . . . . . . 9 (𝐴 ∈ On → (𝑥 ∈ (𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑅1𝐴)))
3330, 32syl 17 . . . . . . . 8 (𝐴 ∈ Inacc → (𝑥 ∈ (𝑅1‘suc 𝐴) ↔ 𝑥 ∈ 𝒫 (𝑅1𝐴)))
34 rankr1ai 9211 . . . . . . . 8 (𝑥 ∈ (𝑅1‘suc 𝐴) → (rank‘𝑥) ∈ suc 𝐴)
3533, 34syl6bir 257 . . . . . . 7 (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫 (𝑅1𝐴) → (rank‘𝑥) ∈ suc 𝐴))
3635imp 410 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (rank‘𝑥) ∈ suc 𝐴)
37 fvex 6658 . . . . . . 7 (rank‘𝑥) ∈ V
3837elsuc 6228 . . . . . 6 ((rank‘𝑥) ∈ suc 𝐴 ↔ ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴))
3936, 38sylib 221 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) ∈ 𝐴 ∨ (rank‘𝑥) = 𝐴))
4039orcomd 868 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴))
41 fvex 6658 . . . . . . . 8 (𝑅1𝐴) ∈ V
42 elpwi 4506 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑅1𝐴) → 𝑥 ⊆ (𝑅1𝐴))
4342ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ⊆ (𝑅1𝐴))
44 ssdomg 8538 . . . . . . . 8 ((𝑅1𝐴) ∈ V → (𝑥 ⊆ (𝑅1𝐴) → 𝑥 ≼ (𝑅1𝐴)))
4541, 43, 44mpsyl 68 . . . . . . 7 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≼ (𝑅1𝐴))
46 rankcf 10188 . . . . . . . . . 10 ¬ 𝑥 ≺ (cf‘(rank‘𝑥))
47 fveq2 6645 . . . . . . . . . . . 12 ((rank‘𝑥) = 𝐴 → (cf‘(rank‘𝑥)) = (cf‘𝐴))
48 elina 10098 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
4948simp2bi 1143 . . . . . . . . . . . 12 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
5047, 49sylan9eqr 2855 . . . . . . . . . . 11 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (cf‘(rank‘𝑥)) = 𝐴)
5150breq2d 5042 . . . . . . . . . 10 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (𝑥 ≺ (cf‘(rank‘𝑥)) ↔ 𝑥𝐴))
5246, 51mtbii 329 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥𝐴)
53 inar1 10186 . . . . . . . . . . 11 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
54 sdomentr 8635 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
5554expcom 417 . . . . . . . . . . 11 ((𝑅1𝐴) ≈ 𝐴 → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5653, 55syl 17 . . . . . . . . . 10 (𝐴 ∈ Inacc → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5756adantr 484 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → (𝑥 ≺ (𝑅1𝐴) → 𝑥𝐴))
5852, 57mtod 201 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1𝐴))
5958adantlr 714 . . . . . . 7 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → ¬ 𝑥 ≺ (𝑅1𝐴))
60 bren2 8523 . . . . . . 7 (𝑥 ≈ (𝑅1𝐴) ↔ (𝑥 ≼ (𝑅1𝐴) ∧ ¬ 𝑥 ≺ (𝑅1𝐴)))
6145, 59, 60sylanbrc 586 . . . . . 6 (((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) ∧ (rank‘𝑥) = 𝐴) → 𝑥 ≈ (𝑅1𝐴))
6261ex 416 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) = 𝐴𝑥 ≈ (𝑅1𝐴)))
63 r1elwf 9209 . . . . . . . . 9 (𝑥 ∈ (𝑅1‘suc 𝐴) → 𝑥 (𝑅1 “ On))
6433, 63syl6bir 257 . . . . . . . 8 (𝐴 ∈ Inacc → (𝑥 ∈ 𝒫 (𝑅1𝐴) → 𝑥 (𝑅1 “ On)))
6564imp 410 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
66 r1fnon 9180 . . . . . . . . . 10 𝑅1 Fn On
6766fndmi 6426 . . . . . . . . 9 dom 𝑅1 = On
6830, 67eleqtrrdi 2901 . . . . . . . 8 (𝐴 ∈ Inacc → 𝐴 ∈ dom 𝑅1)
6968adantr 484 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
70 rankr1ag 9215 . . . . . . 7 ((𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
7165, 69, 70syl2anc 587 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (𝑥 ∈ (𝑅1𝐴) ↔ (rank‘𝑥) ∈ 𝐴))
7271biimprd 251 . . . . 5 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → ((rank‘𝑥) ∈ 𝐴𝑥 ∈ (𝑅1𝐴)))
7362, 72orim12d 962 . . . 4 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (((rank‘𝑥) = 𝐴 ∨ (rank‘𝑥) ∈ 𝐴) → (𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴))))
7440, 73mpd 15 . . 3 ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝒫 (𝑅1𝐴)) → (𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))
7574ralrimiva 3149 . 2 (𝐴 ∈ Inacc → ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))
76 eltsk2g 10162 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ Tarski ↔ (∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)) ∧ ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴)))))
7741, 76ax-mp 5 . 2 ((𝑅1𝐴) ∈ Tarski ↔ (∀𝑥 ∈ (𝑅1𝐴)(𝒫 𝑥 ⊆ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴)) ∧ ∀𝑥 ∈ 𝒫 (𝑅1𝐴)(𝑥 ≈ (𝑅1𝐴) ∨ 𝑥 ∈ (𝑅1𝐴))))
7829, 75, 77sylanbrc 586 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800   ciun 4881   class class class wbr 5030  dom cdm 5519  cima 5522  Oncon0 6159  Lim wlim 6160  suc csuc 6161  cfv 6324  cen 8489  cdom 8490  csdm 8491  𝑅1cr1 9175  rankcrnk 9176  cfccf 9350  Inaccwcwina 10093  Inacccina 10094  Tarskictsk 10159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-r1 9177  df-rank 9178  df-card 9352  df-cf 9354  df-acn 9355  df-ac 9527  df-wina 10095  df-ina 10096  df-tsk 10160
This theorem is referenced by:  r1omtsk  10190  r1tskina  10193  grutsk  10233  inagrud  41004
  Copyright terms: Public domain W3C validator