MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inatsk Structured version   Visualization version   GIF version

Theorem inatsk 10773
Description: (𝑅1β€˜π΄) for 𝐴 a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
inatsk (𝐴 ∈ Inacc β†’ (𝑅1β€˜π΄) ∈ Tarski)

Proof of Theorem inatsk
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10685 . . . . . 6 (𝐴 ∈ Inacc β†’ 𝐴 ∈ Inaccw)
2 winaon 10683 . . . . . . . . . 10 (𝐴 ∈ Inaccw β†’ 𝐴 ∈ On)
3 winalim 10690 . . . . . . . . . 10 (𝐴 ∈ Inaccw β†’ Lim 𝐴)
4 r1lim 9767 . . . . . . . . . 10 ((𝐴 ∈ On ∧ Lim 𝐴) β†’ (𝑅1β€˜π΄) = βˆͺ 𝑦 ∈ 𝐴 (𝑅1β€˜π‘¦))
52, 3, 4syl2anc 585 . . . . . . . . 9 (𝐴 ∈ Inaccw β†’ (𝑅1β€˜π΄) = βˆͺ 𝑦 ∈ 𝐴 (𝑅1β€˜π‘¦))
65eleq2d 2820 . . . . . . . 8 (𝐴 ∈ Inaccw β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ π‘₯ ∈ βˆͺ 𝑦 ∈ 𝐴 (𝑅1β€˜π‘¦)))
7 eliun 5002 . . . . . . . 8 (π‘₯ ∈ βˆͺ 𝑦 ∈ 𝐴 (𝑅1β€˜π‘¦) ↔ βˆƒπ‘¦ ∈ 𝐴 π‘₯ ∈ (𝑅1β€˜π‘¦))
86, 7bitrdi 287 . . . . . . 7 (𝐴 ∈ Inaccw β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ βˆƒπ‘¦ ∈ 𝐴 π‘₯ ∈ (𝑅1β€˜π‘¦)))
9 onelon 6390 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) β†’ 𝑦 ∈ On)
102, 9sylan 581 . . . . . . . . . 10 ((𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴) β†’ 𝑦 ∈ On)
11 r1pw 9840 . . . . . . . . . 10 (𝑦 ∈ On β†’ (π‘₯ ∈ (𝑅1β€˜π‘¦) ↔ 𝒫 π‘₯ ∈ (𝑅1β€˜suc 𝑦)))
1210, 11syl 17 . . . . . . . . 9 ((𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ ∈ (𝑅1β€˜π‘¦) ↔ 𝒫 π‘₯ ∈ (𝑅1β€˜suc 𝑦)))
13 limsuc 7838 . . . . . . . . . . . . 13 (Lim 𝐴 β†’ (𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴))
143, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw β†’ (𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴))
15 r1ord2 9776 . . . . . . . . . . . . 13 (𝐴 ∈ On β†’ (suc 𝑦 ∈ 𝐴 β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π΄)))
162, 15syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Inaccw β†’ (suc 𝑦 ∈ 𝐴 β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π΄)))
1714, 16sylbid 239 . . . . . . . . . . 11 (𝐴 ∈ Inaccw β†’ (𝑦 ∈ 𝐴 β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π΄)))
1817imp 408 . . . . . . . . . 10 ((𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴) β†’ (𝑅1β€˜suc 𝑦) βŠ† (𝑅1β€˜π΄))
1918sseld 3982 . . . . . . . . 9 ((𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴) β†’ (𝒫 π‘₯ ∈ (𝑅1β€˜suc 𝑦) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
2012, 19sylbid 239 . . . . . . . 8 ((𝐴 ∈ Inaccw ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ ∈ (𝑅1β€˜π‘¦) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
2120rexlimdva 3156 . . . . . . 7 (𝐴 ∈ Inaccw β†’ (βˆƒπ‘¦ ∈ 𝐴 π‘₯ ∈ (𝑅1β€˜π‘¦) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
228, 21sylbid 239 . . . . . 6 (𝐴 ∈ Inaccw β†’ (π‘₯ ∈ (𝑅1β€˜π΄) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
231, 22syl 17 . . . . 5 (𝐴 ∈ Inacc β†’ (π‘₯ ∈ (𝑅1β€˜π΄) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
2423imp 408 . . . 4 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄))
25 elssuni 4942 . . . . 5 (𝒫 π‘₯ ∈ (𝑅1β€˜π΄) β†’ 𝒫 π‘₯ βŠ† βˆͺ (𝑅1β€˜π΄))
26 r1tr2 9772 . . . . 5 βˆͺ (𝑅1β€˜π΄) βŠ† (𝑅1β€˜π΄)
2725, 26sstrdi 3995 . . . 4 (𝒫 π‘₯ ∈ (𝑅1β€˜π΄) β†’ 𝒫 π‘₯ βŠ† (𝑅1β€˜π΄))
2824, 27jccil 524 . . 3 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ (𝑅1β€˜π΄)) β†’ (𝒫 π‘₯ βŠ† (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
2928ralrimiva 3147 . 2 (𝐴 ∈ Inacc β†’ βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(𝒫 π‘₯ βŠ† (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)))
301, 2syl 17 . . . . . . . . 9 (𝐴 ∈ Inacc β†’ 𝐴 ∈ On)
31 r1suc 9765 . . . . . . . . . 10 (𝐴 ∈ On β†’ (𝑅1β€˜suc 𝐴) = 𝒫 (𝑅1β€˜π΄))
3231eleq2d 2820 . . . . . . . . 9 (𝐴 ∈ On β†’ (π‘₯ ∈ (𝑅1β€˜suc 𝐴) ↔ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)))
3330, 32syl 17 . . . . . . . 8 (𝐴 ∈ Inacc β†’ (π‘₯ ∈ (𝑅1β€˜suc 𝐴) ↔ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)))
34 rankr1ai 9793 . . . . . . . 8 (π‘₯ ∈ (𝑅1β€˜suc 𝐴) β†’ (rankβ€˜π‘₯) ∈ suc 𝐴)
3533, 34syl6bir 254 . . . . . . 7 (𝐴 ∈ Inacc β†’ (π‘₯ ∈ 𝒫 (𝑅1β€˜π΄) β†’ (rankβ€˜π‘₯) ∈ suc 𝐴))
3635imp 408 . . . . . 6 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ (rankβ€˜π‘₯) ∈ suc 𝐴)
37 fvex 6905 . . . . . . 7 (rankβ€˜π‘₯) ∈ V
3837elsuc 6435 . . . . . 6 ((rankβ€˜π‘₯) ∈ suc 𝐴 ↔ ((rankβ€˜π‘₯) ∈ 𝐴 ∨ (rankβ€˜π‘₯) = 𝐴))
3936, 38sylib 217 . . . . 5 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ ((rankβ€˜π‘₯) ∈ 𝐴 ∨ (rankβ€˜π‘₯) = 𝐴))
4039orcomd 870 . . . 4 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ ((rankβ€˜π‘₯) = 𝐴 ∨ (rankβ€˜π‘₯) ∈ 𝐴))
41 fvex 6905 . . . . . . . 8 (𝑅1β€˜π΄) ∈ V
42 elpwi 4610 . . . . . . . . 9 (π‘₯ ∈ 𝒫 (𝑅1β€˜π΄) β†’ π‘₯ βŠ† (𝑅1β€˜π΄))
4342ad2antlr 726 . . . . . . . 8 (((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) ∧ (rankβ€˜π‘₯) = 𝐴) β†’ π‘₯ βŠ† (𝑅1β€˜π΄))
44 ssdomg 8996 . . . . . . . 8 ((𝑅1β€˜π΄) ∈ V β†’ (π‘₯ βŠ† (𝑅1β€˜π΄) β†’ π‘₯ β‰Ό (𝑅1β€˜π΄)))
4541, 43, 44mpsyl 68 . . . . . . 7 (((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) ∧ (rankβ€˜π‘₯) = 𝐴) β†’ π‘₯ β‰Ό (𝑅1β€˜π΄))
46 rankcf 10772 . . . . . . . . . 10 Β¬ π‘₯ β‰Ί (cfβ€˜(rankβ€˜π‘₯))
47 fveq2 6892 . . . . . . . . . . . 12 ((rankβ€˜π‘₯) = 𝐴 β†’ (cfβ€˜(rankβ€˜π‘₯)) = (cfβ€˜π΄))
48 elina 10682 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc ↔ (𝐴 β‰  βˆ… ∧ (cfβ€˜π΄) = 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 𝒫 π‘₯ β‰Ί 𝐴))
4948simp2bi 1147 . . . . . . . . . . . 12 (𝐴 ∈ Inacc β†’ (cfβ€˜π΄) = 𝐴)
5047, 49sylan9eqr 2795 . . . . . . . . . . 11 ((𝐴 ∈ Inacc ∧ (rankβ€˜π‘₯) = 𝐴) β†’ (cfβ€˜(rankβ€˜π‘₯)) = 𝐴)
5150breq2d 5161 . . . . . . . . . 10 ((𝐴 ∈ Inacc ∧ (rankβ€˜π‘₯) = 𝐴) β†’ (π‘₯ β‰Ί (cfβ€˜(rankβ€˜π‘₯)) ↔ π‘₯ β‰Ί 𝐴))
5246, 51mtbii 326 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rankβ€˜π‘₯) = 𝐴) β†’ Β¬ π‘₯ β‰Ί 𝐴)
53 inar1 10770 . . . . . . . . . . 11 (𝐴 ∈ Inacc β†’ (𝑅1β€˜π΄) β‰ˆ 𝐴)
54 sdomentr 9111 . . . . . . . . . . . 12 ((π‘₯ β‰Ί (𝑅1β€˜π΄) ∧ (𝑅1β€˜π΄) β‰ˆ 𝐴) β†’ π‘₯ β‰Ί 𝐴)
5554expcom 415 . . . . . . . . . . 11 ((𝑅1β€˜π΄) β‰ˆ 𝐴 β†’ (π‘₯ β‰Ί (𝑅1β€˜π΄) β†’ π‘₯ β‰Ί 𝐴))
5653, 55syl 17 . . . . . . . . . 10 (𝐴 ∈ Inacc β†’ (π‘₯ β‰Ί (𝑅1β€˜π΄) β†’ π‘₯ β‰Ί 𝐴))
5756adantr 482 . . . . . . . . 9 ((𝐴 ∈ Inacc ∧ (rankβ€˜π‘₯) = 𝐴) β†’ (π‘₯ β‰Ί (𝑅1β€˜π΄) β†’ π‘₯ β‰Ί 𝐴))
5852, 57mtod 197 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ (rankβ€˜π‘₯) = 𝐴) β†’ Β¬ π‘₯ β‰Ί (𝑅1β€˜π΄))
5958adantlr 714 . . . . . . 7 (((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) ∧ (rankβ€˜π‘₯) = 𝐴) β†’ Β¬ π‘₯ β‰Ί (𝑅1β€˜π΄))
60 bren2 8979 . . . . . . 7 (π‘₯ β‰ˆ (𝑅1β€˜π΄) ↔ (π‘₯ β‰Ό (𝑅1β€˜π΄) ∧ Β¬ π‘₯ β‰Ί (𝑅1β€˜π΄)))
6145, 59, 60sylanbrc 584 . . . . . 6 (((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) ∧ (rankβ€˜π‘₯) = 𝐴) β†’ π‘₯ β‰ˆ (𝑅1β€˜π΄))
6261ex 414 . . . . 5 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ ((rankβ€˜π‘₯) = 𝐴 β†’ π‘₯ β‰ˆ (𝑅1β€˜π΄)))
63 r1elwf 9791 . . . . . . . . 9 (π‘₯ ∈ (𝑅1β€˜suc 𝐴) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
6433, 63syl6bir 254 . . . . . . . 8 (𝐴 ∈ Inacc β†’ (π‘₯ ∈ 𝒫 (𝑅1β€˜π΄) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On)))
6564imp 408 . . . . . . 7 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ π‘₯ ∈ βˆͺ (𝑅1 β€œ On))
66 r1fnon 9762 . . . . . . . . . 10 𝑅1 Fn On
6766fndmi 6654 . . . . . . . . 9 dom 𝑅1 = On
6830, 67eleqtrrdi 2845 . . . . . . . 8 (𝐴 ∈ Inacc β†’ 𝐴 ∈ dom 𝑅1)
6968adantr 482 . . . . . . 7 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ 𝐴 ∈ dom 𝑅1)
70 rankr1ag 9797 . . . . . . 7 ((π‘₯ ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐴 ∈ dom 𝑅1) β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜π‘₯) ∈ 𝐴))
7165, 69, 70syl2anc 585 . . . . . 6 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ (π‘₯ ∈ (𝑅1β€˜π΄) ↔ (rankβ€˜π‘₯) ∈ 𝐴))
7271biimprd 247 . . . . 5 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ ((rankβ€˜π‘₯) ∈ 𝐴 β†’ π‘₯ ∈ (𝑅1β€˜π΄)))
7362, 72orim12d 964 . . . 4 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ (((rankβ€˜π‘₯) = 𝐴 ∨ (rankβ€˜π‘₯) ∈ 𝐴) β†’ (π‘₯ β‰ˆ (𝑅1β€˜π΄) ∨ π‘₯ ∈ (𝑅1β€˜π΄))))
7440, 73mpd 15 . . 3 ((𝐴 ∈ Inacc ∧ π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)) β†’ (π‘₯ β‰ˆ (𝑅1β€˜π΄) ∨ π‘₯ ∈ (𝑅1β€˜π΄)))
7574ralrimiva 3147 . 2 (𝐴 ∈ Inacc β†’ βˆ€π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)(π‘₯ β‰ˆ (𝑅1β€˜π΄) ∨ π‘₯ ∈ (𝑅1β€˜π΄)))
76 eltsk2g 10746 . . 3 ((𝑅1β€˜π΄) ∈ V β†’ ((𝑅1β€˜π΄) ∈ Tarski ↔ (βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(𝒫 π‘₯ βŠ† (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)) ∧ βˆ€π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)(π‘₯ β‰ˆ (𝑅1β€˜π΄) ∨ π‘₯ ∈ (𝑅1β€˜π΄)))))
7741, 76ax-mp 5 . 2 ((𝑅1β€˜π΄) ∈ Tarski ↔ (βˆ€π‘₯ ∈ (𝑅1β€˜π΄)(𝒫 π‘₯ βŠ† (𝑅1β€˜π΄) ∧ 𝒫 π‘₯ ∈ (𝑅1β€˜π΄)) ∧ βˆ€π‘₯ ∈ 𝒫 (𝑅1β€˜π΄)(π‘₯ β‰ˆ (𝑅1β€˜π΄) ∨ π‘₯ ∈ (𝑅1β€˜π΄))))
7829, 75, 77sylanbrc 584 1 (𝐴 ∈ Inacc β†’ (𝑅1β€˜π΄) ∈ Tarski)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3949  βˆ…c0 4323  π’« cpw 4603  βˆͺ cuni 4909  βˆͺ ciun 4998   class class class wbr 5149  dom cdm 5677   β€œ cima 5680  Oncon0 6365  Lim wlim 6366  suc csuc 6367  β€˜cfv 6544   β‰ˆ cen 8936   β‰Ό cdom 8937   β‰Ί csdm 8938  π‘…1cr1 9757  rankcrnk 9758  cfccf 9932  Inaccwcwina 10677  Inacccina 10678  Tarskictsk 10743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-oi 9505  df-r1 9759  df-rank 9760  df-card 9934  df-cf 9936  df-acn 9937  df-ac 10111  df-wina 10679  df-ina 10680  df-tsk 10744
This theorem is referenced by:  r1omtsk  10774  r1tskina  10777  grutsk  10817  inagrud  43103
  Copyright terms: Public domain W3C validator