MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nogesgn1ores Structured version   Visualization version   GIF version

Theorem nogesgn1ores 27166
Description: Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nogesgn1ores (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))

Proof of Theorem nogesgn1ores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmres 6001 . . . 4 dom (𝐴 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐴)
2 simp11 1203 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝐴 No )
3 nodmord 27145 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
42, 3syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Ord dom 𝐴)
5 ndmfv 6923 . . . . . . . . . 10 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
6 1n0 8484 . . . . . . . . . . . . 13 1o ≠ ∅
76necomi 2995 . . . . . . . . . . . 12 ∅ ≠ 1o
8 neeq1 3003 . . . . . . . . . . . 12 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ≠ 1o ↔ ∅ ≠ 1o))
97, 8mpbiri 257 . . . . . . . . . . 11 ((𝐴𝑋) = ∅ → (𝐴𝑋) ≠ 1o)
109neneqd 2945 . . . . . . . . . 10 ((𝐴𝑋) = ∅ → ¬ (𝐴𝑋) = 1o)
115, 10syl 17 . . . . . . . . 9 𝑋 ∈ dom 𝐴 → ¬ (𝐴𝑋) = 1o)
1211con4i 114 . . . . . . . 8 ((𝐴𝑋) = 1o𝑋 ∈ dom 𝐴)
1312adantl 482 . . . . . . 7 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) → 𝑋 ∈ dom 𝐴)
14133ad2ant2 1134 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝑋 ∈ dom 𝐴)
15 ordsucss 7802 . . . . . 6 (Ord dom 𝐴 → (𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴))
164, 14, 15sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → suc 𝑋 ⊆ dom 𝐴)
17 df-ss 3964 . . . . 5 (suc 𝑋 ⊆ dom 𝐴 ↔ (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
1816, 17sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
191, 18eqtrid 2784 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → dom (𝐴 ↾ suc 𝑋) = suc 𝑋)
20 dmres 6001 . . . 4 dom (𝐵 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐵)
21 simp12 1204 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝐵 No )
22 nodmord 27145 . . . . . . 7 (𝐵 No → Ord dom 𝐵)
2321, 22syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Ord dom 𝐵)
24 nogesgn1o 27165 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐵𝑋) = 1o)
25 ndmfv 6923 . . . . . . . . 9 𝑋 ∈ dom 𝐵 → (𝐵𝑋) = ∅)
26 neeq1 3003 . . . . . . . . . . 11 ((𝐵𝑋) = ∅ → ((𝐵𝑋) ≠ 1o ↔ ∅ ≠ 1o))
277, 26mpbiri 257 . . . . . . . . . 10 ((𝐵𝑋) = ∅ → (𝐵𝑋) ≠ 1o)
2827neneqd 2945 . . . . . . . . 9 ((𝐵𝑋) = ∅ → ¬ (𝐵𝑋) = 1o)
2925, 28syl 17 . . . . . . . 8 𝑋 ∈ dom 𝐵 → ¬ (𝐵𝑋) = 1o)
3029con4i 114 . . . . . . 7 ((𝐵𝑋) = 1o𝑋 ∈ dom 𝐵)
3124, 30syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝑋 ∈ dom 𝐵)
32 ordsucss 7802 . . . . . 6 (Ord dom 𝐵 → (𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵))
3323, 31, 32sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → suc 𝑋 ⊆ dom 𝐵)
34 df-ss 3964 . . . . 5 (suc 𝑋 ⊆ dom 𝐵 ↔ (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3533, 34sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3620, 35eqtrid 2784 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → dom (𝐵 ↾ suc 𝑋) = suc 𝑋)
3719, 36eqtr4d 2775 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋))
3819eleq2d 2819 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) ↔ 𝑥 ∈ suc 𝑋))
39 vex 3478 . . . . . . . . 9 𝑥 ∈ V
4039elsuc 6431 . . . . . . . 8 (𝑥 ∈ suc 𝑋 ↔ (𝑥𝑋𝑥 = 𝑋))
41 simpl2l 1226 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → (𝐴𝑋) = (𝐵𝑋))
4241fveq1d 6890 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
43 simpr 485 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → 𝑥𝑋)
4443fvresd 6908 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
4543fvresd 6908 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
4642, 44, 453eqtr3d 2780 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → (𝐴𝑥) = (𝐵𝑥))
4746ex 413 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥𝑋 → (𝐴𝑥) = (𝐵𝑥)))
48 simp2r 1200 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴𝑋) = 1o)
4948, 24eqtr4d 2775 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴𝑋) = (𝐵𝑋))
50 fveq2 6888 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
51 fveq2 6888 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
5250, 51eqeq12d 2748 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐴𝑋) = (𝐵𝑋)))
5349, 52syl5ibrcom 246 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 = 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5447, 53jaod 857 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → ((𝑥𝑋𝑥 = 𝑋) → (𝐴𝑥) = (𝐵𝑥)))
5540, 54biimtrid 241 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ suc 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5655imp 407 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → (𝐴𝑥) = (𝐵𝑥))
57 simpr 485 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → 𝑥 ∈ suc 𝑋)
5857fvresd 6908 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = (𝐴𝑥))
5957fvresd 6908 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → ((𝐵 ↾ suc 𝑋)‘𝑥) = (𝐵𝑥))
6056, 58, 593eqtr4d 2782 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
6160ex 413 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ suc 𝑋 → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6238, 61sylbid 239 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6362ralrimiv 3145 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
64 nofun 27141 . . . . 5 (𝐴 No → Fun 𝐴)
652, 64syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun 𝐴)
6665funresd 6588 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun (𝐴 ↾ suc 𝑋))
67 nofun 27141 . . . . 5 (𝐵 No → Fun 𝐵)
6821, 67syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun 𝐵)
6968funresd 6588 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun (𝐵 ↾ suc 𝑋))
70 eqfunfv 7034 . . 3 ((Fun (𝐴 ↾ suc 𝑋) ∧ Fun (𝐵 ↾ suc 𝑋)) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7166, 69, 70syl2anc 584 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7237, 63, 71mpbir2and 711 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  cin 3946  wss 3947  c0 4321   class class class wbr 5147  dom cdm 5675  cres 5677  Ord word 6360  Oncon0 6361  suc csuc 6363  Fun wfun 6534  cfv 6540  1oc1o 8455   No csur 27132   <s cslt 27133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1o 8462  df-2o 8463  df-no 27135  df-slt 27136
This theorem is referenced by:  noinfbnd1lem3  27217
  Copyright terms: Public domain W3C validator