MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nogesgn1ores Structured version   Visualization version   GIF version

Theorem nogesgn1ores 27022
Description: Given 𝐴 greater than or equal to 𝐵, equal to 𝐵 up to 𝑋, and 𝐴(𝑋) = 1o, then (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋). (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nogesgn1ores (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))

Proof of Theorem nogesgn1ores
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmres 5959 . . . 4 dom (𝐴 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐴)
2 simp11 1203 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝐴 No )
3 nodmord 27001 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
42, 3syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Ord dom 𝐴)
5 ndmfv 6877 . . . . . . . . . 10 𝑋 ∈ dom 𝐴 → (𝐴𝑋) = ∅)
6 1n0 8434 . . . . . . . . . . . . 13 1o ≠ ∅
76necomi 2998 . . . . . . . . . . . 12 ∅ ≠ 1o
8 neeq1 3006 . . . . . . . . . . . 12 ((𝐴𝑋) = ∅ → ((𝐴𝑋) ≠ 1o ↔ ∅ ≠ 1o))
97, 8mpbiri 257 . . . . . . . . . . 11 ((𝐴𝑋) = ∅ → (𝐴𝑋) ≠ 1o)
109neneqd 2948 . . . . . . . . . 10 ((𝐴𝑋) = ∅ → ¬ (𝐴𝑋) = 1o)
115, 10syl 17 . . . . . . . . 9 𝑋 ∈ dom 𝐴 → ¬ (𝐴𝑋) = 1o)
1211con4i 114 . . . . . . . 8 ((𝐴𝑋) = 1o𝑋 ∈ dom 𝐴)
1312adantl 482 . . . . . . 7 (((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) → 𝑋 ∈ dom 𝐴)
14133ad2ant2 1134 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝑋 ∈ dom 𝐴)
15 ordsucss 7753 . . . . . 6 (Ord dom 𝐴 → (𝑋 ∈ dom 𝐴 → suc 𝑋 ⊆ dom 𝐴))
164, 14, 15sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → suc 𝑋 ⊆ dom 𝐴)
17 df-ss 3927 . . . . 5 (suc 𝑋 ⊆ dom 𝐴 ↔ (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
1816, 17sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (suc 𝑋 ∩ dom 𝐴) = suc 𝑋)
191, 18eqtrid 2788 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → dom (𝐴 ↾ suc 𝑋) = suc 𝑋)
20 dmres 5959 . . . 4 dom (𝐵 ↾ suc 𝑋) = (suc 𝑋 ∩ dom 𝐵)
21 simp12 1204 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝐵 No )
22 nodmord 27001 . . . . . . 7 (𝐵 No → Ord dom 𝐵)
2321, 22syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Ord dom 𝐵)
24 nogesgn1o 27021 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐵𝑋) = 1o)
25 ndmfv 6877 . . . . . . . . 9 𝑋 ∈ dom 𝐵 → (𝐵𝑋) = ∅)
26 neeq1 3006 . . . . . . . . . . 11 ((𝐵𝑋) = ∅ → ((𝐵𝑋) ≠ 1o ↔ ∅ ≠ 1o))
277, 26mpbiri 257 . . . . . . . . . 10 ((𝐵𝑋) = ∅ → (𝐵𝑋) ≠ 1o)
2827neneqd 2948 . . . . . . . . 9 ((𝐵𝑋) = ∅ → ¬ (𝐵𝑋) = 1o)
2925, 28syl 17 . . . . . . . 8 𝑋 ∈ dom 𝐵 → ¬ (𝐵𝑋) = 1o)
3029con4i 114 . . . . . . 7 ((𝐵𝑋) = 1o𝑋 ∈ dom 𝐵)
3124, 30syl 17 . . . . . 6 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → 𝑋 ∈ dom 𝐵)
32 ordsucss 7753 . . . . . 6 (Ord dom 𝐵 → (𝑋 ∈ dom 𝐵 → suc 𝑋 ⊆ dom 𝐵))
3323, 31, 32sylc 65 . . . . 5 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → suc 𝑋 ⊆ dom 𝐵)
34 df-ss 3927 . . . . 5 (suc 𝑋 ⊆ dom 𝐵 ↔ (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3533, 34sylib 217 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (suc 𝑋 ∩ dom 𝐵) = suc 𝑋)
3620, 35eqtrid 2788 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → dom (𝐵 ↾ suc 𝑋) = suc 𝑋)
3719, 36eqtr4d 2779 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋))
3819eleq2d 2823 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) ↔ 𝑥 ∈ suc 𝑋))
39 vex 3449 . . . . . . . . 9 𝑥 ∈ V
4039elsuc 6387 . . . . . . . 8 (𝑥 ∈ suc 𝑋 ↔ (𝑥𝑋𝑥 = 𝑋))
41 simpl2l 1226 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → (𝐴𝑋) = (𝐵𝑋))
4241fveq1d 6844 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = ((𝐵𝑋)‘𝑥))
43 simpr 485 . . . . . . . . . . . 12 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → 𝑥𝑋)
4443fvresd 6862 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → ((𝐴𝑋)‘𝑥) = (𝐴𝑥))
4543fvresd 6862 . . . . . . . . . . 11 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → ((𝐵𝑋)‘𝑥) = (𝐵𝑥))
4642, 44, 453eqtr3d 2784 . . . . . . . . . 10 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥𝑋) → (𝐴𝑥) = (𝐵𝑥))
4746ex 413 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥𝑋 → (𝐴𝑥) = (𝐵𝑥)))
48 simp2r 1200 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴𝑋) = 1o)
4948, 24eqtr4d 2779 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴𝑋) = (𝐵𝑋))
50 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
51 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
5250, 51eqeq12d 2752 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐴𝑥) = (𝐵𝑥) ↔ (𝐴𝑋) = (𝐵𝑋)))
5349, 52syl5ibrcom 246 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 = 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5447, 53jaod 857 . . . . . . . 8 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → ((𝑥𝑋𝑥 = 𝑋) → (𝐴𝑥) = (𝐵𝑥)))
5540, 54biimtrid 241 . . . . . . 7 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ suc 𝑋 → (𝐴𝑥) = (𝐵𝑥)))
5655imp 407 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → (𝐴𝑥) = (𝐵𝑥))
57 simpr 485 . . . . . . 7 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → 𝑥 ∈ suc 𝑋)
5857fvresd 6862 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = (𝐴𝑥))
5957fvresd 6862 . . . . . 6 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → ((𝐵 ↾ suc 𝑋)‘𝑥) = (𝐵𝑥))
6056, 58, 593eqtr4d 2786 . . . . 5 ((((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) ∧ 𝑥 ∈ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
6160ex 413 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ suc 𝑋 → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6238, 61sylbid 239 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝑥 ∈ dom (𝐴 ↾ suc 𝑋) → ((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥)))
6362ralrimiv 3142 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))
64 nofun 26997 . . . . 5 (𝐴 No → Fun 𝐴)
652, 64syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun 𝐴)
6665funresd 6544 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun (𝐴 ↾ suc 𝑋))
67 nofun 26997 . . . . 5 (𝐵 No → Fun 𝐵)
6821, 67syl 17 . . . 4 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun 𝐵)
6968funresd 6544 . . 3 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → Fun (𝐵 ↾ suc 𝑋))
70 eqfunfv 6987 . . 3 ((Fun (𝐴 ↾ suc 𝑋) ∧ Fun (𝐵 ↾ suc 𝑋)) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7166, 69, 70syl2anc 584 . 2 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → ((𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋) ↔ (dom (𝐴 ↾ suc 𝑋) = dom (𝐵 ↾ suc 𝑋) ∧ ∀𝑥 ∈ dom (𝐴 ↾ suc 𝑋)((𝐴 ↾ suc 𝑋)‘𝑥) = ((𝐵 ↾ suc 𝑋)‘𝑥))))
7237, 63, 71mpbir2and 711 1 (((𝐴 No 𝐵 No 𝑋 ∈ On) ∧ ((𝐴𝑋) = (𝐵𝑋) ∧ (𝐴𝑋) = 1o) ∧ ¬ 𝐴 <s 𝐵) → (𝐴 ↾ suc 𝑋) = (𝐵 ↾ suc 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  cin 3909  wss 3910  c0 4282   class class class wbr 5105  dom cdm 5633  cres 5635  Ord word 6316  Oncon0 6317  suc csuc 6319  Fun wfun 6490  cfv 6496  1oc1o 8405   No csur 26988   <s cslt 26989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992
This theorem is referenced by:  noinfbnd1lem3  27073
  Copyright terms: Public domain W3C validator