MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Visualization version   GIF version

Theorem cantnfle 9134
Description: A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴o 𝑥) ·o (𝐹𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnfle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
cantnfle (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnfle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . 3 ((𝐹𝐶) = ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) = ((𝐴o 𝐶) ·o ∅))
21sseq1d 3998 . 2 ((𝐹𝐶) = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹)))
3 ovexd 7191 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ∈ V)
4 cantnfs.s . . . . . . . . . . 11 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . . . . 11 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . . . . 11 (𝜑𝐵 ∈ On)
7 cantnfcl.g . . . . . . . . . . 11 𝐺 = OrdIso( E , (𝐹 supp ∅))
8 cantnfcl.f . . . . . . . . . . 11 (𝜑𝐹𝑆)
94, 5, 6, 7, 8cantnfcl 9130 . . . . . . . . . 10 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simpld 497 . . . . . . . . 9 (𝜑 → E We (𝐹 supp ∅))
117oiiso 9001 . . . . . . . . 9 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
123, 10, 11syl2anc 586 . . . . . . . 8 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13 isof1o 7076 . . . . . . . 8 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1412, 13syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1514adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
16 f1ocnv 6627 . . . . . 6 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
17 f1of 6615 . . . . . 6 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
1815, 16, 173syl 18 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
19 cantnfle.c . . . . . . 7 (𝜑𝐶𝐵)
2019anim1i 616 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅))
214, 5, 6cantnfs 9129 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
228, 21mpbid 234 . . . . . . . . . 10 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
2322simpld 497 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2423adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹:𝐵𝐴)
2524ffnd 6515 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹 Fn 𝐵)
266adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐵 ∈ On)
27 0ex 5211 . . . . . . . 8 ∅ ∈ V
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ∅ ∈ V)
29 elsuppfn 7838 . . . . . . 7 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3025, 26, 28, 29syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3120, 30mpbird 259 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅))
3218, 31ffvelrnd 6852 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺𝐶) ∈ dom 𝐺)
339simprd 498 . . . . . 6 (𝜑 → dom 𝐺 ∈ ω)
3433adantr 483 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → dom 𝐺 ∈ ω)
35 eqimss 4023 . . . . . . . . . 10 (𝑥 = dom 𝐺𝑥 ⊆ dom 𝐺)
3635biantrurd 535 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥)))
37 eleq2 2901 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ dom 𝐺))
3836, 37bitr3d 283 . . . . . . . 8 (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝐺𝐶) ∈ dom 𝐺))
39 fveq2 6670 . . . . . . . . 9 (𝑥 = dom 𝐺 → (𝐻𝑥) = (𝐻‘dom 𝐺))
4039sseq2d 3999 . . . . . . . 8 (𝑥 = dom 𝐺 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
4138, 40imbi12d 347 . . . . . . 7 (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
4241imbi2d 343 . . . . . 6 (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))) ↔ ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))))
43 sseq1 3992 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
44 eleq2 2901 . . . . . . . . 9 (𝑥 = ∅ → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ ∅))
4543, 44anbi12d 632 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅)))
46 fveq2 6670 . . . . . . . . 9 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
4746sseq2d 3999 . . . . . . . 8 (𝑥 = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
4845, 47imbi12d 347 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))))
49 sseq1 3992 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺))
50 eleq2 2901 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ 𝑦))
5149, 50anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)))
52 fveq2 6670 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
5352sseq2d 3999 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
5451, 53imbi12d 347 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦))))
55 sseq1 3992 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺))
56 eleq2 2901 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ suc 𝑦))
5755, 56anbi12d 632 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦)))
58 fveq2 6670 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
5958sseq2d 3999 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
6057, 59imbi12d 347 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
61 noel 4296 . . . . . . . . . 10 ¬ (𝐺𝐶) ∈ ∅
6261pm2.21i 119 . . . . . . . . 9 ((𝐺𝐶) ∈ ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6362adantl 484 . . . . . . . 8 ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6463a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
65 fvex 6683 . . . . . . . . . . . 12 (𝐺𝐶) ∈ V
6665elsuc 6260 . . . . . . . . . . 11 ((𝐺𝐶) ∈ suc 𝑦 ↔ ((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦))
67 sssucid 6268 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ suc 𝑦
68 sstr 3975 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺)
6967, 68mpan 688 . . . . . . . . . . . . . . . 16 (suc 𝑦 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺)
7069ad2antrl 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺)
71 simprr 771 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (𝐺𝐶) ∈ 𝑦)
72 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
7370, 71, 72syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
74 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
7574cantnfvalf 9128 . . . . . . . . . . . . . . . . . . . 20 𝐻:ω⟶On
7675ffvelrni 6850 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝐻𝑦) ∈ On)
7776ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ∈ On)
785ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On)
796ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On)
80 suppssdm 7843 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 supp ∅) ⊆ dom 𝐹
8180, 23fssdm 6530 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
8281ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵)
83 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺)
84 sucidg 6269 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
8584ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦)
8683, 85sseldd 3968 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺)
877oif 8994 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺:dom 𝐺⟶(𝐹 supp ∅)
8887ffvelrni 6850 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
8986, 88syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ (𝐹 supp ∅))
9082, 89sseldd 3968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ 𝐵)
91 onelon 6216 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ (𝐺𝑦) ∈ 𝐵) → (𝐺𝑦) ∈ On)
9279, 90, 91syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ On)
93 oecl 8162 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐺𝑦) ∈ On) → (𝐴o (𝐺𝑦)) ∈ On)
9478, 92, 93syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴o (𝐺𝑦)) ∈ On)
9523ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵𝐴)
9695, 90ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ 𝐴)
97 onelon 6216 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ 𝐴) → (𝐹‘(𝐺𝑦)) ∈ On)
9878, 96, 97syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ On)
99 omcl 8161 . . . . . . . . . . . . . . . . . . 19 (((𝐴o (𝐺𝑦)) ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
10094, 98, 99syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
101 oaword2 8179 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑦) ∈ On ∧ ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
10277, 100, 101syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
1034, 5, 6, 7, 8, 74cantnfsuc 9133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
104103ad4ant13 749 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
105102, 104sseqtrrd 4008 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (𝐻‘suc 𝑦))
106 sstr 3975 . . . . . . . . . . . . . . . . 17 ((((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) ∧ (𝐻𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
107106expcom 416 . . . . . . . . . . . . . . . 16 ((𝐻𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
108105, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
109108adantrr 715 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
11073, 109syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
111110expr 459 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
112 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝐶) = 𝑦)
113112fveq2d 6674 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = (𝐺𝑦))
114 f1ocnvfv2 7034 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝐶)) = 𝐶)
11515, 31, 114syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺‘(𝐺𝐶)) = 𝐶)
116115ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = 𝐶)
117113, 116eqtr3d 2858 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝑦) = 𝐶)
118117oveq2d 7172 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐴o (𝐺𝑦)) = (𝐴o 𝐶))
119117fveq2d 6674 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐹‘(𝐺𝑦)) = (𝐹𝐶))
120118, 119oveq12d 7174 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) = ((𝐴o 𝐶) ·o (𝐹𝐶)))
121 oaword1 8178 . . . . . . . . . . . . . . . . . 18 ((((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On ∧ (𝐻𝑦) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
122100, 77, 121syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
123122adantrr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
124120, 123eqsstrrd 4006 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
125103ad4ant13 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
126124, 125sseqtrrd 4008 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
127126expr 459 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
128127a1dd 50 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
129111, 128jaod 855 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
13066, 129syl5bi 244 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
131130expimpd 456 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
132131com23 86 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
133132expcom 416 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))))
13448, 54, 60, 64, 133finds2 7610 . . . . . 6 (𝑥 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))))
13542, 134vtoclga 3574 . . . . 5 (dom 𝐺 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
13634, 135mpcom 38 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
13732, 136mpd 15 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))
1384, 5, 6, 7, 8, 74cantnfval 9131 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
139138adantr 483 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
140137, 139sseqtrrd 4008 . 2 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
141 onelon 6216 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
1426, 19, 141syl2anc 586 . . . . 5 (𝜑𝐶 ∈ On)
143 oecl 8162 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1445, 142, 143syl2anc 586 . . . 4 (𝜑 → (𝐴o 𝐶) ∈ On)
145 om0 8142 . . . 4 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146144, 145syl 17 . . 3 (𝜑 → ((𝐴o 𝐶) ·o ∅) = ∅)
147 0ss 4350 . . 3 ∅ ⊆ ((𝐴 CNF 𝐵)‘𝐹)
148146, 147eqsstrdi 4021 . 2 (𝜑 → ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
1492, 140, 148pm2.61ne 3102 1 (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  c0 4291   class class class wbr 5066   E cep 5464   We wwe 5513  ccnv 5554  dom cdm 5555  Oncon0 6191  suc csuc 6193   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355   Isom wiso 6356  (class class class)co 7156  cmpo 7158  ωcom 7580   supp csupp 7830  seqωcseqom 8083   +o coa 8099   ·o comu 8100  o coe 8101   finSupp cfsupp 8833  OrdIsocoi 8973   CNF ccnf 9124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seqom 8084  df-1o 8102  df-oadd 8106  df-omul 8107  df-oexp 8108  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-cnf 9125
This theorem is referenced by:  cantnflem3  9154
  Copyright terms: Public domain W3C validator