MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Visualization version   GIF version

Theorem cantnfle 9607
Description: A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴o 𝑥) ·o (𝐹𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnfle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
cantnfle (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnfle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7365 . . 3 ((𝐹𝐶) = ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) = ((𝐴o 𝐶) ·o ∅))
21sseq1d 3975 . 2 ((𝐹𝐶) = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹)))
3 ovexd 7392 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ∈ V)
4 cantnfs.s . . . . . . . . . . 11 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . . . . 11 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . . . . 11 (𝜑𝐵 ∈ On)
7 cantnfcl.g . . . . . . . . . . 11 𝐺 = OrdIso( E , (𝐹 supp ∅))
8 cantnfcl.f . . . . . . . . . . 11 (𝜑𝐹𝑆)
94, 5, 6, 7, 8cantnfcl 9603 . . . . . . . . . 10 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simpld 495 . . . . . . . . 9 (𝜑 → E We (𝐹 supp ∅))
117oiiso 9473 . . . . . . . . 9 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
123, 10, 11syl2anc 584 . . . . . . . 8 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13 isof1o 7268 . . . . . . . 8 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1412, 13syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1514adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
16 f1ocnv 6796 . . . . . 6 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
17 f1of 6784 . . . . . 6 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
1815, 16, 173syl 18 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
19 cantnfle.c . . . . . . 7 (𝜑𝐶𝐵)
2019anim1i 615 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅))
214, 5, 6cantnfs 9602 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
228, 21mpbid 231 . . . . . . . . . 10 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
2322simpld 495 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2423adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹:𝐵𝐴)
2524ffnd 6669 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹 Fn 𝐵)
266adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐵 ∈ On)
27 0ex 5264 . . . . . . . 8 ∅ ∈ V
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ∅ ∈ V)
29 elsuppfn 8102 . . . . . . 7 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3025, 26, 28, 29syl3anc 1371 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3120, 30mpbird 256 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅))
3218, 31ffvelcdmd 7036 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺𝐶) ∈ dom 𝐺)
339simprd 496 . . . . . 6 (𝜑 → dom 𝐺 ∈ ω)
3433adantr 481 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → dom 𝐺 ∈ ω)
35 eqimss 4000 . . . . . . . . . 10 (𝑥 = dom 𝐺𝑥 ⊆ dom 𝐺)
3635biantrurd 533 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥)))
37 eleq2 2826 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ dom 𝐺))
3836, 37bitr3d 280 . . . . . . . 8 (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝐺𝐶) ∈ dom 𝐺))
39 fveq2 6842 . . . . . . . . 9 (𝑥 = dom 𝐺 → (𝐻𝑥) = (𝐻‘dom 𝐺))
4039sseq2d 3976 . . . . . . . 8 (𝑥 = dom 𝐺 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
4138, 40imbi12d 344 . . . . . . 7 (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
4241imbi2d 340 . . . . . 6 (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))) ↔ ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))))
43 sseq1 3969 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
44 eleq2 2826 . . . . . . . . 9 (𝑥 = ∅ → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ ∅))
4543, 44anbi12d 631 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅)))
46 fveq2 6842 . . . . . . . . 9 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
4746sseq2d 3976 . . . . . . . 8 (𝑥 = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
4845, 47imbi12d 344 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))))
49 sseq1 3969 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺))
50 eleq2 2826 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ 𝑦))
5149, 50anbi12d 631 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)))
52 fveq2 6842 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
5352sseq2d 3976 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
5451, 53imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦))))
55 sseq1 3969 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺))
56 eleq2 2826 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ suc 𝑦))
5755, 56anbi12d 631 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦)))
58 fveq2 6842 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
5958sseq2d 3976 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
6057, 59imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
61 noel 4290 . . . . . . . . . 10 ¬ (𝐺𝐶) ∈ ∅
6261pm2.21i 119 . . . . . . . . 9 ((𝐺𝐶) ∈ ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6362adantl 482 . . . . . . . 8 ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6463a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
65 fvex 6855 . . . . . . . . . . . 12 (𝐺𝐶) ∈ V
6665elsuc 6387 . . . . . . . . . . 11 ((𝐺𝐶) ∈ suc 𝑦 ↔ ((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦))
67 sssucid 6397 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ suc 𝑦
68 sstr 3952 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺)
6967, 68mpan 688 . . . . . . . . . . . . . . . 16 (suc 𝑦 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺)
7069ad2antrl 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺)
71 simprr 771 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (𝐺𝐶) ∈ 𝑦)
72 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
74 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
7574cantnfvalf 9601 . . . . . . . . . . . . . . . . . . . 20 𝐻:ω⟶On
7675ffvelcdmi 7034 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝐻𝑦) ∈ On)
7776ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ∈ On)
785ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On)
796ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On)
80 suppssdm 8108 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 supp ∅) ⊆ dom 𝐹
8180, 23fssdm 6688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
8281ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵)
83 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺)
84 sucidg 6398 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
8584ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦)
8683, 85sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺)
877oif 9466 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺:dom 𝐺⟶(𝐹 supp ∅)
8887ffvelcdmi 7034 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
8986, 88syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ (𝐹 supp ∅))
9082, 89sseldd 3945 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ 𝐵)
91 onelon 6342 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ (𝐺𝑦) ∈ 𝐵) → (𝐺𝑦) ∈ On)
9279, 90, 91syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ On)
93 oecl 8483 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐺𝑦) ∈ On) → (𝐴o (𝐺𝑦)) ∈ On)
9478, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴o (𝐺𝑦)) ∈ On)
9523ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵𝐴)
9695, 90ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ 𝐴)
97 onelon 6342 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ 𝐴) → (𝐹‘(𝐺𝑦)) ∈ On)
9878, 96, 97syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ On)
99 omcl 8482 . . . . . . . . . . . . . . . . . . 19 (((𝐴o (𝐺𝑦)) ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
10094, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
101 oaword2 8500 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑦) ∈ On ∧ ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
10277, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
1034, 5, 6, 7, 8, 74cantnfsuc 9606 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
104103ad4ant13 749 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
105102, 104sseqtrrd 3985 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (𝐻‘suc 𝑦))
106 sstr 3952 . . . . . . . . . . . . . . . . 17 ((((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) ∧ (𝐻𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
107106expcom 414 . . . . . . . . . . . . . . . 16 ((𝐻𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
108105, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
109108adantrr 715 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
11073, 109syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
111110expr 457 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
112 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝐶) = 𝑦)
113112fveq2d 6846 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = (𝐺𝑦))
114 f1ocnvfv2 7223 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝐶)) = 𝐶)
11515, 31, 114syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺‘(𝐺𝐶)) = 𝐶)
116115ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = 𝐶)
117113, 116eqtr3d 2778 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝑦) = 𝐶)
118117oveq2d 7373 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐴o (𝐺𝑦)) = (𝐴o 𝐶))
119117fveq2d 6846 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐹‘(𝐺𝑦)) = (𝐹𝐶))
120118, 119oveq12d 7375 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) = ((𝐴o 𝐶) ·o (𝐹𝐶)))
121 oaword1 8499 . . . . . . . . . . . . . . . . . 18 ((((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On ∧ (𝐻𝑦) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
122100, 77, 121syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
123122adantrr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
124120, 123eqsstrrd 3983 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
125103ad4ant13 749 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
126124, 125sseqtrrd 3985 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
127126expr 457 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
128127a1dd 50 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
129111, 128jaod 857 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
13066, 129biimtrid 241 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
131130expimpd 454 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
132131com23 86 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
133132expcom 414 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))))
13448, 54, 60, 64, 133finds2 7837 . . . . . 6 (𝑥 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))))
13542, 134vtoclga 3534 . . . . 5 (dom 𝐺 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
13634, 135mpcom 38 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
13732, 136mpd 15 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))
1384, 5, 6, 7, 8, 74cantnfval 9604 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
139138adantr 481 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
140137, 139sseqtrrd 3985 . 2 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
141 onelon 6342 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
1426, 19, 141syl2anc 584 . . . . 5 (𝜑𝐶 ∈ On)
143 oecl 8483 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1445, 142, 143syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐶) ∈ On)
145 om0 8463 . . . 4 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146144, 145syl 17 . . 3 (𝜑 → ((𝐴o 𝐶) ·o ∅) = ∅)
147 0ss 4356 . . 3 ∅ ⊆ ((𝐴 CNF 𝐵)‘𝐹)
148146, 147eqsstrdi 3998 . 2 (𝜑 → ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
1492, 140, 148pm2.61ne 3030 1 (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105   E cep 5536   We wwe 5587  ccnv 5632  dom cdm 5633  Oncon0 6317  suc csuc 6319   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496   Isom wiso 6497  (class class class)co 7357  cmpo 7359  ωcom 7802   supp csupp 8092  seqωcseqom 8393   +o coa 8409   ·o comu 8410  o coe 8411   finSupp cfsupp 9305  OrdIsocoi 9445   CNF ccnf 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-oadd 8416  df-omul 8417  df-oexp 8418  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-cnf 9598
This theorem is referenced by:  cantnflem3  9627
  Copyright terms: Public domain W3C validator