Step | Hyp | Ref
| Expression |
1 | | oveq2 7283 |
. . 3
⊢ ((𝐹‘𝐶) = ∅ → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) = ((𝐴 ↑o 𝐶) ·o
∅)) |
2 | 1 | sseq1d 3952 |
. 2
⊢ ((𝐹‘𝐶) = ∅ → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴 ↑o 𝐶) ·o ∅) ⊆
((𝐴 CNF 𝐵)‘𝐹))) |
3 | | ovexd 7310 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp ∅) ∈ V) |
4 | | cantnfs.s |
. . . . . . . . . . 11
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
5 | | cantnfs.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ On) |
6 | | cantnfs.b |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ On) |
7 | | cantnfcl.g |
. . . . . . . . . . 11
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
8 | | cantnfcl.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
9 | 4, 5, 6, 7, 8 | cantnfcl 9425 |
. . . . . . . . . 10
⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) |
10 | 9 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → E We (𝐹 supp ∅)) |
11 | 7 | oiiso 9296 |
. . . . . . . . 9
⊢ (((𝐹 supp ∅) ∈ V ∧ E
We (𝐹 supp ∅)) →
𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
12 | 3, 10, 11 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅))) |
13 | | isof1o 7194 |
. . . . . . . 8
⊢ (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅)) |
14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅)) |
15 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → 𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅)) |
16 | | f1ocnv 6728 |
. . . . . 6
⊢ (𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅) → ◡𝐺:(𝐹 supp ∅)–1-1-onto→dom
𝐺) |
17 | | f1of 6716 |
. . . . . 6
⊢ (◡𝐺:(𝐹 supp ∅)–1-1-onto→dom
𝐺 → ◡𝐺:(𝐹 supp ∅)⟶dom 𝐺) |
18 | 15, 16, 17 | 3syl 18 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ◡𝐺:(𝐹 supp ∅)⟶dom 𝐺) |
19 | | cantnfle.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
20 | 19 | anim1i 615 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → (𝐶 ∈ 𝐵 ∧ (𝐹‘𝐶) ≠ ∅)) |
21 | 4, 5, 6 | cantnfs 9424 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
22 | 8, 21 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
23 | 22 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
24 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → 𝐹:𝐵⟶𝐴) |
25 | 24 | ffnd 6601 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → 𝐹 Fn 𝐵) |
26 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → 𝐵 ∈ On) |
27 | | 0ex 5231 |
. . . . . . . 8
⊢ ∅
∈ V |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ∅ ∈
V) |
29 | | elsuppfn 7987 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
(𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶 ∈ 𝐵 ∧ (𝐹‘𝐶) ≠ ∅))) |
30 | 25, 26, 28, 29 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶 ∈ 𝐵 ∧ (𝐹‘𝐶) ≠ ∅))) |
31 | 20, 30 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅)) |
32 | 18, 31 | ffvelrnd 6962 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → (◡𝐺‘𝐶) ∈ dom 𝐺) |
33 | 9 | simprd 496 |
. . . . . 6
⊢ (𝜑 → dom 𝐺 ∈ ω) |
34 | 33 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → dom 𝐺 ∈ ω) |
35 | | eqimss 3977 |
. . . . . . . . . 10
⊢ (𝑥 = dom 𝐺 → 𝑥 ⊆ dom 𝐺) |
36 | 35 | biantrurd 533 |
. . . . . . . . 9
⊢ (𝑥 = dom 𝐺 → ((◡𝐺‘𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥))) |
37 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = dom 𝐺 → ((◡𝐺‘𝐶) ∈ 𝑥 ↔ (◡𝐺‘𝐶) ∈ dom 𝐺)) |
38 | 36, 37 | bitr3d 280 |
. . . . . . . 8
⊢ (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) ↔ (◡𝐺‘𝐶) ∈ dom 𝐺)) |
39 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = dom 𝐺 → (𝐻‘𝑥) = (𝐻‘dom 𝐺)) |
40 | 39 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑥 = dom 𝐺 → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥) ↔ ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘dom 𝐺))) |
41 | 38, 40 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥)) ↔ ((◡𝐺‘𝐶) ∈ dom 𝐺 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘dom 𝐺)))) |
42 | 41 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥))) ↔ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((◡𝐺‘𝐶) ∈ dom 𝐺 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘dom 𝐺))))) |
43 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺)) |
44 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ((◡𝐺‘𝐶) ∈ 𝑥 ↔ (◡𝐺‘𝐶) ∈ ∅)) |
45 | 43, 44 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ ∅))) |
46 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝐻‘𝑥) = (𝐻‘∅)) |
47 | 46 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥) ↔ ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘∅))) |
48 | 45, 47 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ ∅) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘∅)))) |
49 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ 𝑦 ⊆ dom 𝐺)) |
50 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((◡𝐺‘𝐶) ∈ 𝑥 ↔ (◡𝐺‘𝐶) ∈ 𝑦)) |
51 | 49, 50 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦))) |
52 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐻‘𝑥) = (𝐻‘𝑦)) |
53 | 52 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥) ↔ ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦))) |
54 | 51, 53 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)))) |
55 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺)) |
56 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → ((◡𝐺‘𝐶) ∈ 𝑥 ↔ (◡𝐺‘𝐶) ∈ suc 𝑦)) |
57 | 55, 56 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ suc 𝑦))) |
58 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝐻‘𝑥) = (𝐻‘suc 𝑦)) |
59 | 58 | sseq2d 3953 |
. . . . . . . 8
⊢ (𝑥 = suc 𝑦 → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥) ↔ ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))) |
60 | 57, 59 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ suc 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
61 | | noel 4264 |
. . . . . . . . . 10
⊢ ¬
(◡𝐺‘𝐶) ∈ ∅ |
62 | 61 | pm2.21i 119 |
. . . . . . . . 9
⊢ ((◡𝐺‘𝐶) ∈ ∅ → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘∅)) |
63 | 62 | adantl 482 |
. . . . . . . 8
⊢ ((∅
⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ ∅) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘∅)) |
64 | 63 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((∅ ⊆ dom
𝐺 ∧ (◡𝐺‘𝐶) ∈ ∅) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘∅))) |
65 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (◡𝐺‘𝐶) ∈ V |
66 | 65 | elsuc 6335 |
. . . . . . . . . . 11
⊢ ((◡𝐺‘𝐶) ∈ suc 𝑦 ↔ ((◡𝐺‘𝐶) ∈ 𝑦 ∨ (◡𝐺‘𝐶) = 𝑦)) |
67 | | sssucid 6343 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ⊆ suc 𝑦 |
68 | | sstr 3929 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺) |
69 | 67, 68 | mpan 687 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑦 ⊆ dom 𝐺 → 𝑦 ⊆ dom 𝐺) |
70 | 69 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺) |
71 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦)) → (◡𝐺‘𝐶) ∈ 𝑦) |
72 | | pm2.27 42 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦))) |
73 | 70, 71, 72 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦))) |
74 | | cantnfval.h |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
75 | 74 | cantnfvalf 9423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐻:ω⟶On |
76 | 75 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ω → (𝐻‘𝑦) ∈ On) |
77 | 76 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘𝑦) ∈ On) |
78 | 5 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On) |
79 | 6 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On) |
80 | | suppssdm 7993 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹 supp ∅) ⊆ dom 𝐹 |
81 | 80, 23 | fssdm 6620 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐵) |
82 | 81 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵) |
83 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺) |
84 | | sucidg 6344 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦) |
85 | 84 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦) |
86 | 83, 85 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺) |
87 | 7 | oif 9289 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝐺:dom 𝐺⟶(𝐹 supp ∅) |
88 | 87 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ dom 𝐺 → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) |
89 | 86, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺‘𝑦) ∈ (𝐹 supp ∅)) |
90 | 82, 89 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺‘𝑦) ∈ 𝐵) |
91 | | onelon 6291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 ∈ On ∧ (𝐺‘𝑦) ∈ 𝐵) → (𝐺‘𝑦) ∈ On) |
92 | 79, 90, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺‘𝑦) ∈ On) |
93 | | oecl 8367 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ (𝐺‘𝑦) ∈ On) → (𝐴 ↑o (𝐺‘𝑦)) ∈ On) |
94 | 78, 92, 93 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴 ↑o (𝐺‘𝑦)) ∈ On) |
95 | 23 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵⟶𝐴) |
96 | 95, 90 | ffvelrnd 6962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺‘𝑦)) ∈ 𝐴) |
97 | | onelon 6291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝐺‘𝑦)) ∈ 𝐴) → (𝐹‘(𝐺‘𝑦)) ∈ On) |
98 | 78, 96, 97 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺‘𝑦)) ∈ On) |
99 | | omcl 8366 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ↑o (𝐺‘𝑦)) ∈ On ∧ (𝐹‘(𝐺‘𝑦)) ∈ On) → ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ On) |
100 | 94, 98, 99 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ On) |
101 | | oaword2 8384 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐻‘𝑦) ∈ On ∧ ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ On) → (𝐻‘𝑦) ⊆ (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
102 | 77, 100, 101 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘𝑦) ⊆ (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
103 | 4, 5, 6, 7, 8, 74 | cantnfsuc 9428 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
104 | 103 | ad4ant13 748 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
105 | 102, 104 | sseqtrrd 3962 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘𝑦) ⊆ (𝐻‘suc 𝑦)) |
106 | | sstr 3929 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦) ∧ (𝐻‘𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)) |
107 | 106 | expcom 414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻‘𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))) |
108 | 105, 107 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))) |
109 | 108 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦)) → (((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))) |
110 | 73, 109 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))) |
111 | 110 | expr 457 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((◡𝐺‘𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
112 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (◡𝐺‘𝐶) = 𝑦) |
113 | 112 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (𝐺‘(◡𝐺‘𝐶)) = (𝐺‘𝑦)) |
114 | | f1ocnvfv2 7149 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺:dom 𝐺–1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(◡𝐺‘𝐶)) = 𝐶) |
115 | 15, 31, 114 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → (𝐺‘(◡𝐺‘𝐶)) = 𝐶) |
116 | 115 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (𝐺‘(◡𝐺‘𝐶)) = 𝐶) |
117 | 113, 116 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (𝐺‘𝑦) = 𝐶) |
118 | 117 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (𝐴 ↑o (𝐺‘𝑦)) = (𝐴 ↑o 𝐶)) |
119 | 117 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (𝐹‘(𝐺‘𝑦)) = (𝐹‘𝐶)) |
120 | 118, 119 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) = ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶))) |
121 | | oaword1 8383 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ∈ On ∧ (𝐻‘𝑦) ∈ On) → ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ⊆ (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
122 | 100, 77, 121 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ⊆ (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
123 | 122 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → ((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) ⊆ (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
124 | 120, 123 | eqsstrrd 3960 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
125 | 103 | ad4ant13 748 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴 ↑o (𝐺‘𝑦)) ·o (𝐹‘(𝐺‘𝑦))) +o (𝐻‘𝑦))) |
126 | 124, 125 | sseqtrrd 3962 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) = 𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)) |
127 | 126 | expr 457 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((◡𝐺‘𝐶) = 𝑦 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))) |
128 | 127 | a1dd 50 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((◡𝐺‘𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
129 | 111, 128 | jaod 856 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((◡𝐺‘𝐶) ∈ 𝑦 ∨ (◡𝐺‘𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
130 | 66, 129 | syl5bi 241 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((◡𝐺‘𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
131 | 130 | expimpd 454 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
132 | 131 | com23 86 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ suc 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦)))) |
133 | 132 | expcom 414 |
. . . . . . 7
⊢ (𝑦 ∈ ω → ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ suc 𝑦) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘suc 𝑦))))) |
134 | 48, 54, 60, 64, 133 | finds2 7747 |
. . . . . 6
⊢ (𝑥 ∈ ω → ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (◡𝐺‘𝐶) ∈ 𝑥) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘𝑥)))) |
135 | 42, 134 | vtoclga 3513 |
. . . . 5
⊢ (dom
𝐺 ∈ ω →
((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((◡𝐺‘𝐶) ∈ dom 𝐺 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘dom 𝐺)))) |
136 | 34, 135 | mpcom 38 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((◡𝐺‘𝐶) ∈ dom 𝐺 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘dom 𝐺))) |
137 | 32, 136 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ (𝐻‘dom 𝐺)) |
138 | 4, 5, 6, 7, 8, 74 | cantnfval 9426 |
. . . 4
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺)) |
139 | 138 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺)) |
140 | 137, 139 | sseqtrrd 3962 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝐶) ≠ ∅) → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹)) |
141 | | onelon 6291 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ On) |
142 | 6, 19, 141 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ On) |
143 | | oecl 8367 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o 𝐶) ∈ On) |
144 | 5, 142, 143 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐴 ↑o 𝐶) ∈ On) |
145 | | om0 8347 |
. . . 4
⊢ ((𝐴 ↑o 𝐶) ∈ On → ((𝐴 ↑o 𝐶) ·o ∅)
= ∅) |
146 | 144, 145 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐴 ↑o 𝐶) ·o ∅) =
∅) |
147 | | 0ss 4330 |
. . 3
⊢ ∅
⊆ ((𝐴 CNF 𝐵)‘𝐹) |
148 | 146, 147 | eqsstrdi 3975 |
. 2
⊢ (𝜑 → ((𝐴 ↑o 𝐶) ·o ∅) ⊆
((𝐴 CNF 𝐵)‘𝐹)) |
149 | 2, 140, 148 | pm2.61ne 3030 |
1
⊢ (𝜑 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹)) |