MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Visualization version   GIF version

Theorem cantnfle 9631
Description: A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴o 𝑥) ·o (𝐹𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnfle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
cantnfle (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnfle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . 3 ((𝐹𝐶) = ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) = ((𝐴o 𝐶) ·o ∅))
21sseq1d 3981 . 2 ((𝐹𝐶) = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹)))
3 ovexd 7425 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ∈ V)
4 cantnfs.s . . . . . . . . . . 11 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . . . . 11 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . . . . 11 (𝜑𝐵 ∈ On)
7 cantnfcl.g . . . . . . . . . . 11 𝐺 = OrdIso( E , (𝐹 supp ∅))
8 cantnfcl.f . . . . . . . . . . 11 (𝜑𝐹𝑆)
94, 5, 6, 7, 8cantnfcl 9627 . . . . . . . . . 10 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simpld 494 . . . . . . . . 9 (𝜑 → E We (𝐹 supp ∅))
117oiiso 9497 . . . . . . . . 9 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
123, 10, 11syl2anc 584 . . . . . . . 8 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13 isof1o 7301 . . . . . . . 8 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1412, 13syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
16 f1ocnv 6815 . . . . . 6 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
17 f1of 6803 . . . . . 6 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
1815, 16, 173syl 18 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
19 cantnfle.c . . . . . . 7 (𝜑𝐶𝐵)
2019anim1i 615 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅))
214, 5, 6cantnfs 9626 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
228, 21mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
2322simpld 494 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹:𝐵𝐴)
2524ffnd 6692 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹 Fn 𝐵)
266adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐵 ∈ On)
27 0ex 5265 . . . . . . . 8 ∅ ∈ V
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ∅ ∈ V)
29 elsuppfn 8152 . . . . . . 7 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3025, 26, 28, 29syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3120, 30mpbird 257 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅))
3218, 31ffvelcdmd 7060 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺𝐶) ∈ dom 𝐺)
339simprd 495 . . . . . 6 (𝜑 → dom 𝐺 ∈ ω)
3433adantr 480 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → dom 𝐺 ∈ ω)
35 eqimss 4008 . . . . . . . . . 10 (𝑥 = dom 𝐺𝑥 ⊆ dom 𝐺)
3635biantrurd 532 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥)))
37 eleq2 2818 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ dom 𝐺))
3836, 37bitr3d 281 . . . . . . . 8 (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝐺𝐶) ∈ dom 𝐺))
39 fveq2 6861 . . . . . . . . 9 (𝑥 = dom 𝐺 → (𝐻𝑥) = (𝐻‘dom 𝐺))
4039sseq2d 3982 . . . . . . . 8 (𝑥 = dom 𝐺 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
4138, 40imbi12d 344 . . . . . . 7 (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
4241imbi2d 340 . . . . . 6 (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))) ↔ ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))))
43 sseq1 3975 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
44 eleq2 2818 . . . . . . . . 9 (𝑥 = ∅ → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ ∅))
4543, 44anbi12d 632 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅)))
46 fveq2 6861 . . . . . . . . 9 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
4746sseq2d 3982 . . . . . . . 8 (𝑥 = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
4845, 47imbi12d 344 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))))
49 sseq1 3975 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺))
50 eleq2 2818 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ 𝑦))
5149, 50anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)))
52 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
5352sseq2d 3982 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
5451, 53imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦))))
55 sseq1 3975 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺))
56 eleq2 2818 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ suc 𝑦))
5755, 56anbi12d 632 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦)))
58 fveq2 6861 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
5958sseq2d 3982 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
6057, 59imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
61 noel 4304 . . . . . . . . . 10 ¬ (𝐺𝐶) ∈ ∅
6261pm2.21i 119 . . . . . . . . 9 ((𝐺𝐶) ∈ ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6362adantl 481 . . . . . . . 8 ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6463a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
65 fvex 6874 . . . . . . . . . . . 12 (𝐺𝐶) ∈ V
6665elsuc 6407 . . . . . . . . . . 11 ((𝐺𝐶) ∈ suc 𝑦 ↔ ((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦))
67 sssucid 6417 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ suc 𝑦
68 sstr 3958 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺)
6967, 68mpan 690 . . . . . . . . . . . . . . . 16 (suc 𝑦 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺)
7069ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺)
71 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (𝐺𝐶) ∈ 𝑦)
72 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
74 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
7574cantnfvalf 9625 . . . . . . . . . . . . . . . . . . . 20 𝐻:ω⟶On
7675ffvelcdmi 7058 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝐻𝑦) ∈ On)
7776ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ∈ On)
785ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On)
796ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On)
80 suppssdm 8159 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 supp ∅) ⊆ dom 𝐹
8180, 23fssdm 6710 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
8281ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵)
83 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺)
84 sucidg 6418 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
8584ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦)
8683, 85sseldd 3950 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺)
877oif 9490 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺:dom 𝐺⟶(𝐹 supp ∅)
8887ffvelcdmi 7058 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
8986, 88syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ (𝐹 supp ∅))
9082, 89sseldd 3950 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ 𝐵)
91 onelon 6360 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ (𝐺𝑦) ∈ 𝐵) → (𝐺𝑦) ∈ On)
9279, 90, 91syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ On)
93 oecl 8504 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐺𝑦) ∈ On) → (𝐴o (𝐺𝑦)) ∈ On)
9478, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴o (𝐺𝑦)) ∈ On)
9523ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵𝐴)
9695, 90ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ 𝐴)
97 onelon 6360 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ 𝐴) → (𝐹‘(𝐺𝑦)) ∈ On)
9878, 96, 97syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ On)
99 omcl 8503 . . . . . . . . . . . . . . . . . . 19 (((𝐴o (𝐺𝑦)) ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
10094, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
101 oaword2 8520 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑦) ∈ On ∧ ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
10277, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
1034, 5, 6, 7, 8, 74cantnfsuc 9630 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
104103ad4ant13 751 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
105102, 104sseqtrrd 3987 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (𝐻‘suc 𝑦))
106 sstr 3958 . . . . . . . . . . . . . . . . 17 ((((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) ∧ (𝐻𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
107106expcom 413 . . . . . . . . . . . . . . . 16 ((𝐻𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
108105, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
109108adantrr 717 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
11073, 109syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
111110expr 456 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
112 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝐶) = 𝑦)
113112fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = (𝐺𝑦))
114 f1ocnvfv2 7255 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝐶)) = 𝐶)
11515, 31, 114syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺‘(𝐺𝐶)) = 𝐶)
116115ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = 𝐶)
117113, 116eqtr3d 2767 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝑦) = 𝐶)
118117oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐴o (𝐺𝑦)) = (𝐴o 𝐶))
119117fveq2d 6865 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐹‘(𝐺𝑦)) = (𝐹𝐶))
120118, 119oveq12d 7408 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) = ((𝐴o 𝐶) ·o (𝐹𝐶)))
121 oaword1 8519 . . . . . . . . . . . . . . . . . 18 ((((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On ∧ (𝐻𝑦) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
122100, 77, 121syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
123122adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
124120, 123eqsstrrd 3985 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
125103ad4ant13 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
126124, 125sseqtrrd 3987 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
127126expr 456 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
128127a1dd 50 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
129111, 128jaod 859 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
13066, 129biimtrid 242 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
131130expimpd 453 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
132131com23 86 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
133132expcom 413 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))))
13448, 54, 60, 64, 133finds2 7877 . . . . . 6 (𝑥 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))))
13542, 134vtoclga 3546 . . . . 5 (dom 𝐺 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
13634, 135mpcom 38 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
13732, 136mpd 15 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))
1384, 5, 6, 7, 8, 74cantnfval 9628 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
139138adantr 480 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
140137, 139sseqtrrd 3987 . 2 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
141 onelon 6360 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
1426, 19, 141syl2anc 584 . . . . 5 (𝜑𝐶 ∈ On)
143 oecl 8504 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1445, 142, 143syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐶) ∈ On)
145 om0 8484 . . . 4 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146144, 145syl 17 . . 3 (𝜑 → ((𝐴o 𝐶) ·o ∅) = ∅)
147 0ss 4366 . . 3 ∅ ⊆ ((𝐴 CNF 𝐵)‘𝐹)
148146, 147eqsstrdi 3994 . 2 (𝜑 → ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
1492, 140, 148pm2.61ne 3011 1 (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110   E cep 5540   We wwe 5593  ccnv 5640  dom cdm 5641  Oncon0 6335  suc csuc 6337   Fn wfn 6509  wf 6510  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  (class class class)co 7390  cmpo 7392  ωcom 7845   supp csupp 8142  seqωcseqom 8418   +o coa 8434   ·o comu 8435  o coe 8436   finSupp cfsupp 9319  OrdIsocoi 9469   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-oadd 8441  df-omul 8442  df-oexp 8443  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-cnf 9622
This theorem is referenced by:  cantnflem3  9651
  Copyright terms: Public domain W3C validator