MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfle Structured version   Visualization version   GIF version

Theorem cantnfle 9586
Description: A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴o 𝑥) ·o (𝐹𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
cantnfle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
cantnfle (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Distinct variable groups:   𝑧,𝑘,𝐵   𝑧,𝐶   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑘)   𝐻(𝑧,𝑘)

Proof of Theorem cantnfle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . 3 ((𝐹𝐶) = ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) = ((𝐴o 𝐶) ·o ∅))
21sseq1d 3969 . 2 ((𝐹𝐶) = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹) ↔ ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹)))
3 ovexd 7388 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ∈ V)
4 cantnfs.s . . . . . . . . . . 11 𝑆 = dom (𝐴 CNF 𝐵)
5 cantnfs.a . . . . . . . . . . 11 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . . . . . . . . 11 (𝜑𝐵 ∈ On)
7 cantnfcl.g . . . . . . . . . . 11 𝐺 = OrdIso( E , (𝐹 supp ∅))
8 cantnfcl.f . . . . . . . . . . 11 (𝜑𝐹𝑆)
94, 5, 6, 7, 8cantnfcl 9582 . . . . . . . . . 10 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
109simpld 494 . . . . . . . . 9 (𝜑 → E We (𝐹 supp ∅))
117oiiso 9448 . . . . . . . . 9 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
123, 10, 11syl2anc 584 . . . . . . . 8 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13 isof1o 7264 . . . . . . . 8 (𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1412, 13syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
1514adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅))
16 f1ocnv 6780 . . . . . 6 (𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) → 𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺)
17 f1of 6768 . . . . . 6 (𝐺:(𝐹 supp ∅)–1-1-onto→dom 𝐺𝐺:(𝐹 supp ∅)⟶dom 𝐺)
1815, 16, 173syl 18 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐺:(𝐹 supp ∅)⟶dom 𝐺)
19 cantnfle.c . . . . . . 7 (𝜑𝐶𝐵)
2019anim1i 615 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅))
214, 5, 6cantnfs 9581 . . . . . . . . . . 11 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
228, 21mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
2322simpld 494 . . . . . . . . 9 (𝜑𝐹:𝐵𝐴)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹:𝐵𝐴)
2524ffnd 6657 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐹 Fn 𝐵)
266adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐵 ∈ On)
27 0ex 5249 . . . . . . . 8 ∅ ∈ V
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ∅ ∈ V)
29 elsuppfn 8110 . . . . . . 7 ((𝐹 Fn 𝐵𝐵 ∈ On ∧ ∅ ∈ V) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3025, 26, 28, 29syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐶 ∈ (𝐹 supp ∅) ↔ (𝐶𝐵 ∧ (𝐹𝐶) ≠ ∅)))
3120, 30mpbird 257 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → 𝐶 ∈ (𝐹 supp ∅))
3218, 31ffvelcdmd 7023 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺𝐶) ∈ dom 𝐺)
339simprd 495 . . . . . 6 (𝜑 → dom 𝐺 ∈ ω)
3433adantr 480 . . . . 5 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → dom 𝐺 ∈ ω)
35 eqimss 3996 . . . . . . . . . 10 (𝑥 = dom 𝐺𝑥 ⊆ dom 𝐺)
3635biantrurd 532 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥)))
37 eleq2 2817 . . . . . . . . 9 (𝑥 = dom 𝐺 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ dom 𝐺))
3836, 37bitr3d 281 . . . . . . . 8 (𝑥 = dom 𝐺 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝐺𝐶) ∈ dom 𝐺))
39 fveq2 6826 . . . . . . . . 9 (𝑥 = dom 𝐺 → (𝐻𝑥) = (𝐻‘dom 𝐺))
4039sseq2d 3970 . . . . . . . 8 (𝑥 = dom 𝐺 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
4138, 40imbi12d 344 . . . . . . 7 (𝑥 = dom 𝐺 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
4241imbi2d 340 . . . . . 6 (𝑥 = dom 𝐺 → (((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))) ↔ ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))))
43 sseq1 3963 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ⊆ dom 𝐺 ↔ ∅ ⊆ dom 𝐺))
44 eleq2 2817 . . . . . . . . 9 (𝑥 = ∅ → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ ∅))
4543, 44anbi12d 632 . . . . . . . 8 (𝑥 = ∅ → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅)))
46 fveq2 6826 . . . . . . . . 9 (𝑥 = ∅ → (𝐻𝑥) = (𝐻‘∅))
4746sseq2d 3970 . . . . . . . 8 (𝑥 = ∅ → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
4845, 47imbi12d 344 . . . . . . 7 (𝑥 = ∅ → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))))
49 sseq1 3963 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺))
50 eleq2 2817 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ 𝑦))
5149, 50anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)))
52 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
5352sseq2d 3970 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
5451, 53imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦))))
55 sseq1 3963 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝑥 ⊆ dom 𝐺 ↔ suc 𝑦 ⊆ dom 𝐺))
56 eleq2 2817 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝐺𝐶) ∈ 𝑥 ↔ (𝐺𝐶) ∈ suc 𝑦))
5755, 56anbi12d 632 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) ↔ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦)))
58 fveq2 6826 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐻𝑥) = (𝐻‘suc 𝑦))
5958sseq2d 3970 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥) ↔ ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
6057, 59imbi12d 344 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥)) ↔ ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
61 noel 4291 . . . . . . . . . 10 ¬ (𝐺𝐶) ∈ ∅
6261pm2.21i 119 . . . . . . . . 9 ((𝐺𝐶) ∈ ∅ → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6362adantl 481 . . . . . . . 8 ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅))
6463a1i 11 . . . . . . 7 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((∅ ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘∅)))
65 fvex 6839 . . . . . . . . . . . 12 (𝐺𝐶) ∈ V
6665elsuc 6383 . . . . . . . . . . 11 ((𝐺𝐶) ∈ suc 𝑦 ↔ ((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦))
67 sssucid 6393 . . . . . . . . . . . . . . . . 17 𝑦 ⊆ suc 𝑦
68 sstr 3946 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝑦 ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ⊆ dom 𝐺)
6967, 68mpan 690 . . . . . . . . . . . . . . . 16 (suc 𝑦 ⊆ dom 𝐺𝑦 ⊆ dom 𝐺)
7069ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → 𝑦 ⊆ dom 𝐺)
71 simprr 772 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (𝐺𝐶) ∈ 𝑦)
72 pm2.27 42 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)))
74 cantnfval.h . . . . . . . . . . . . . . . . . . . . 21 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
7574cantnfvalf 9580 . . . . . . . . . . . . . . . . . . . 20 𝐻:ω⟶On
7675ffvelcdmi 7021 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ω → (𝐻𝑦) ∈ On)
7776ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ∈ On)
785ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐴 ∈ On)
796ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐵 ∈ On)
80 suppssdm 8117 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 supp ∅) ⊆ dom 𝐹
8180, 23fssdm 6675 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐹 supp ∅) ⊆ 𝐵)
8281ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹 supp ∅) ⊆ 𝐵)
83 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → suc 𝑦 ⊆ dom 𝐺)
84 sucidg 6394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ω → 𝑦 ∈ suc 𝑦)
8584ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ suc 𝑦)
8683, 85sseldd 3938 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝑦 ∈ dom 𝐺)
877oif 9441 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺:dom 𝐺⟶(𝐹 supp ∅)
8887ffvelcdmi 7021 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ dom 𝐺 → (𝐺𝑦) ∈ (𝐹 supp ∅))
8986, 88syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ (𝐹 supp ∅))
9082, 89sseldd 3938 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ 𝐵)
91 onelon 6336 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ (𝐺𝑦) ∈ 𝐵) → (𝐺𝑦) ∈ On)
9279, 90, 91syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐺𝑦) ∈ On)
93 oecl 8462 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐺𝑦) ∈ On) → (𝐴o (𝐺𝑦)) ∈ On)
9478, 92, 93syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐴o (𝐺𝑦)) ∈ On)
9523ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → 𝐹:𝐵𝐴)
9695, 90ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ 𝐴)
97 onelon 6336 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ 𝐴) → (𝐹‘(𝐺𝑦)) ∈ On)
9878, 96, 97syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐹‘(𝐺𝑦)) ∈ On)
99 omcl 8461 . . . . . . . . . . . . . . . . . . 19 (((𝐴o (𝐺𝑦)) ∈ On ∧ (𝐹‘(𝐺𝑦)) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
10094, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On)
101 oaword2 8478 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑦) ∈ On ∧ ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
10277, 100, 101syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
1034, 5, 6, 7, 8, 74cantnfsuc 9585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ω) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
104103ad4ant13 751 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
105102, 104sseqtrrd 3975 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (𝐻𝑦) ⊆ (𝐻‘suc 𝑦))
106 sstr 3946 . . . . . . . . . . . . . . . . 17 ((((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) ∧ (𝐻𝑦) ⊆ (𝐻‘suc 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
107106expcom 413 . . . . . . . . . . . . . . . 16 ((𝐻𝑦) ⊆ (𝐻‘suc 𝑦) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
108105, 107syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
109108adantrr 717 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
11073, 109syld 47 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦)) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
111110expr 456 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
112 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝐶) = 𝑦)
113112fveq2d 6830 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = (𝐺𝑦))
114 f1ocnvfv2 7218 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺:dom 𝐺1-1-onto→(𝐹 supp ∅) ∧ 𝐶 ∈ (𝐹 supp ∅)) → (𝐺‘(𝐺𝐶)) = 𝐶)
11515, 31, 114syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (𝐺‘(𝐺𝐶)) = 𝐶)
116115ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺‘(𝐺𝐶)) = 𝐶)
117113, 116eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐺𝑦) = 𝐶)
118117oveq2d 7369 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐴o (𝐺𝑦)) = (𝐴o 𝐶))
119117fveq2d 6830 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐹‘(𝐺𝑦)) = (𝐹𝐶))
120118, 119oveq12d 7371 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) = ((𝐴o 𝐶) ·o (𝐹𝐶)))
121 oaword1 8477 . . . . . . . . . . . . . . . . . 18 ((((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ∈ On ∧ (𝐻𝑦) ∈ On) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
122100, 77, 121syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
123122adantrr 717 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
124120, 123eqsstrrd 3973 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
125103ad4ant13 751 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → (𝐻‘suc 𝑦) = (((𝐴o (𝐺𝑦)) ·o (𝐹‘(𝐺𝑦))) +o (𝐻𝑦)))
126124, 125sseqtrrd 3975 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ (suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) = 𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))
127126expr 456 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))
128127a1dd 50 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) = 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
129111, 128jaod 859 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → (((𝐺𝐶) ∈ 𝑦 ∨ (𝐺𝐶) = 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
13066, 129biimtrid 242 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) ∧ suc 𝑦 ⊆ dom 𝐺) → ((𝐺𝐶) ∈ suc 𝑦 → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
131130expimpd 453 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
132131com23 86 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐶) ≠ ∅) ∧ 𝑦 ∈ ω) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦))))
133132expcom 413 . . . . . . 7 (𝑦 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → (((𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑦)) → ((suc 𝑦 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ suc 𝑦) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘suc 𝑦)))))
13448, 54, 60, 64, 133finds2 7838 . . . . . 6 (𝑥 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝑥 ⊆ dom 𝐺 ∧ (𝐺𝐶) ∈ 𝑥) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻𝑥))))
13542, 134vtoclga 3534 . . . . 5 (dom 𝐺 ∈ ω → ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))))
13634, 135mpcom 38 . . . 4 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐺𝐶) ∈ dom 𝐺 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺)))
13732, 136mpd 15 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ (𝐻‘dom 𝐺))
1384, 5, 6, 7, 8, 74cantnfval 9583 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
139138adantr 480 . . 3 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
140137, 139sseqtrrd 3975 . 2 ((𝜑 ∧ (𝐹𝐶) ≠ ∅) → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
141 onelon 6336 . . . . . 6 ((𝐵 ∈ On ∧ 𝐶𝐵) → 𝐶 ∈ On)
1426, 19, 141syl2anc 584 . . . . 5 (𝜑𝐶 ∈ On)
143 oecl 8462 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1445, 142, 143syl2anc 584 . . . 4 (𝜑 → (𝐴o 𝐶) ∈ On)
145 om0 8442 . . . 4 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146144, 145syl 17 . . 3 (𝜑 → ((𝐴o 𝐶) ·o ∅) = ∅)
147 0ss 4353 . . 3 ∅ ⊆ ((𝐴 CNF 𝐵)‘𝐹)
148146, 147eqsstrdi 3982 . 2 (𝜑 → ((𝐴o 𝐶) ·o ∅) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
1492, 140, 148pm2.61ne 3010 1 (𝜑 → ((𝐴o 𝐶) ·o (𝐹𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  wss 3905  c0 4286   class class class wbr 5095   E cep 5522   We wwe 5575  ccnv 5622  dom cdm 5623  Oncon0 6311  suc csuc 6313   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486   Isom wiso 6487  (class class class)co 7353  cmpo 7355  ωcom 7806   supp csupp 8100  seqωcseqom 8376   +o coa 8392   ·o comu 8393  o coe 8394   finSupp cfsupp 9270  OrdIsocoi 9420   CNF ccnf 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seqom 8377  df-1o 8395  df-oadd 8399  df-omul 8400  df-oexp 8401  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-cnf 9577
This theorem is referenced by:  cantnflem3  9606
  Copyright terms: Public domain W3C validator