Step | Hyp | Ref
| Expression |
1 | | sssucid 6328 |
. . 3
⊢ 𝐵 ⊆ suc 𝐵 |
2 | | sstr2 3924 |
. . 3
⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ suc 𝐵 → 𝐴 ⊆ suc 𝐵)) |
3 | 1, 2 | mpi 20 |
. 2
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ suc 𝐵) |
4 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
5 | 4 | biimpcd 248 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝐵 → 𝐵 ∈ 𝐴)) |
6 | | limsuc 7671 |
. . . . . . . . . . . . . 14
⊢ (Lim
𝐴 → (𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴)) |
7 | 6 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ ((Lim
𝐴 ∧ 𝐵 ∈ 𝐴) → suc 𝐵 ∈ 𝐴) |
8 | | limord 6310 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝐴 → Ord 𝐴) |
9 | | ordelord 6273 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
10 | 8, 9 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ ((Lim
𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) |
11 | | ordsuc 7636 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝐵 ↔ Ord suc 𝐵) |
12 | 10, 11 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((Lim
𝐴 ∧ 𝐵 ∈ 𝐴) → Ord suc 𝐵) |
13 | | ordtri1 6284 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ 𝐴)) |
14 | 8, 12, 13 | syl2an2r 681 |
. . . . . . . . . . . . . 14
⊢ ((Lim
𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ 𝐴)) |
15 | 14 | con2bid 354 |
. . . . . . . . . . . . 13
⊢ ((Lim
𝐴 ∧ 𝐵 ∈ 𝐴) → (suc 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ suc 𝐵)) |
16 | 7, 15 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ⊆ suc 𝐵) |
17 | 16 | ex 412 |
. . . . . . . . . . 11
⊢ (Lim
𝐴 → (𝐵 ∈ 𝐴 → ¬ 𝐴 ⊆ suc 𝐵)) |
18 | 5, 17 | sylan9r 508 |
. . . . . . . . . 10
⊢ ((Lim
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐵 → ¬ 𝐴 ⊆ suc 𝐵)) |
19 | 18 | con2d 134 |
. . . . . . . . 9
⊢ ((Lim
𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵)) |
20 | 19 | ex 412 |
. . . . . . . 8
⊢ (Lim
𝐴 → (𝑥 ∈ 𝐴 → (𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵))) |
21 | 20 | com23 86 |
. . . . . . 7
⊢ (Lim
𝐴 → (𝐴 ⊆ suc 𝐵 → (𝑥 ∈ 𝐴 → ¬ 𝑥 = 𝐵))) |
22 | 21 | imp31 417 |
. . . . . 6
⊢ (((Lim
𝐴 ∧ 𝐴 ⊆ suc 𝐵) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 = 𝐵) |
23 | | ssel2 3912 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ suc 𝐵) |
24 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
25 | 24 | elsuc 6320 |
. . . . . . . . . 10
⊢ (𝑥 ∈ suc 𝐵 ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐵)) |
26 | 23, 25 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐵)) |
27 | 26 | ord 860 |
. . . . . . . 8
⊢ ((𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐵)) |
28 | 27 | con1d 145 |
. . . . . . 7
⊢ ((𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐵)) |
29 | 28 | adantll 710 |
. . . . . 6
⊢ (((Lim
𝐴 ∧ 𝐴 ⊆ suc 𝐵) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐵)) |
30 | 22, 29 | mpd 15 |
. . . . 5
⊢ (((Lim
𝐴 ∧ 𝐴 ⊆ suc 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
31 | 30 | ex 412 |
. . . 4
⊢ ((Lim
𝐴 ∧ 𝐴 ⊆ suc 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
32 | 31 | ssrdv 3923 |
. . 3
⊢ ((Lim
𝐴 ∧ 𝐴 ⊆ suc 𝐵) → 𝐴 ⊆ 𝐵) |
33 | 32 | ex 412 |
. 2
⊢ (Lim
𝐴 → (𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵)) |
34 | 3, 33 | impbid2 225 |
1
⊢ (Lim
𝐴 → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵)) |