MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsssuc Structured version   Visualization version   GIF version

Theorem limsssuc 7567
Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limsssuc (Lim 𝐴 → (𝐴𝐵𝐴 ⊆ suc 𝐵))

Proof of Theorem limsssuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sssucid 6270 . . 3 𝐵 ⊆ suc 𝐵
2 sstr2 3976 . . 3 (𝐴𝐵 → (𝐵 ⊆ suc 𝐵𝐴 ⊆ suc 𝐵))
31, 2mpi 20 . 2 (𝐴𝐵𝐴 ⊆ suc 𝐵)
4 eleq1 2902 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
54biimpcd 251 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 = 𝐵𝐵𝐴))
6 limsuc 7566 . . . . . . . . . . . . . 14 (Lim 𝐴 → (𝐵𝐴 ↔ suc 𝐵𝐴))
76biimpa 479 . . . . . . . . . . . . 13 ((Lim 𝐴𝐵𝐴) → suc 𝐵𝐴)
8 limord 6252 . . . . . . . . . . . . . . 15 (Lim 𝐴 → Ord 𝐴)
9 ordelord 6215 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
108, 9sylan 582 . . . . . . . . . . . . . . . 16 ((Lim 𝐴𝐵𝐴) → Ord 𝐵)
11 ordsuc 7531 . . . . . . . . . . . . . . . 16 (Ord 𝐵 ↔ Ord suc 𝐵)
1210, 11sylib 220 . . . . . . . . . . . . . . 15 ((Lim 𝐴𝐵𝐴) → Ord suc 𝐵)
13 ordtri1 6226 . . . . . . . . . . . . . . 15 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵𝐴))
148, 12, 13syl2an2r 683 . . . . . . . . . . . . . 14 ((Lim 𝐴𝐵𝐴) → (𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵𝐴))
1514con2bid 357 . . . . . . . . . . . . 13 ((Lim 𝐴𝐵𝐴) → (suc 𝐵𝐴 ↔ ¬ 𝐴 ⊆ suc 𝐵))
167, 15mpbid 234 . . . . . . . . . . . 12 ((Lim 𝐴𝐵𝐴) → ¬ 𝐴 ⊆ suc 𝐵)
1716ex 415 . . . . . . . . . . 11 (Lim 𝐴 → (𝐵𝐴 → ¬ 𝐴 ⊆ suc 𝐵))
185, 17sylan9r 511 . . . . . . . . . 10 ((Lim 𝐴𝑥𝐴) → (𝑥 = 𝐵 → ¬ 𝐴 ⊆ suc 𝐵))
1918con2d 136 . . . . . . . . 9 ((Lim 𝐴𝑥𝐴) → (𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵))
2019ex 415 . . . . . . . 8 (Lim 𝐴 → (𝑥𝐴 → (𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵)))
2120com23 86 . . . . . . 7 (Lim 𝐴 → (𝐴 ⊆ suc 𝐵 → (𝑥𝐴 → ¬ 𝑥 = 𝐵)))
2221imp31 420 . . . . . 6 (((Lim 𝐴𝐴 ⊆ suc 𝐵) ∧ 𝑥𝐴) → ¬ 𝑥 = 𝐵)
23 ssel2 3964 . . . . . . . . . 10 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → 𝑥 ∈ suc 𝐵)
24 vex 3499 . . . . . . . . . . 11 𝑥 ∈ V
2524elsuc 6262 . . . . . . . . . 10 (𝑥 ∈ suc 𝐵 ↔ (𝑥𝐵𝑥 = 𝐵))
2623, 25sylib 220 . . . . . . . . 9 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → (𝑥𝐵𝑥 = 𝐵))
2726ord 860 . . . . . . . 8 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → (¬ 𝑥𝐵𝑥 = 𝐵))
2827con1d 147 . . . . . . 7 ((𝐴 ⊆ suc 𝐵𝑥𝐴) → (¬ 𝑥 = 𝐵𝑥𝐵))
2928adantll 712 . . . . . 6 (((Lim 𝐴𝐴 ⊆ suc 𝐵) ∧ 𝑥𝐴) → (¬ 𝑥 = 𝐵𝑥𝐵))
3022, 29mpd 15 . . . . 5 (((Lim 𝐴𝐴 ⊆ suc 𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
3130ex 415 . . . 4 ((Lim 𝐴𝐴 ⊆ suc 𝐵) → (𝑥𝐴𝑥𝐵))
3231ssrdv 3975 . . 3 ((Lim 𝐴𝐴 ⊆ suc 𝐵) → 𝐴𝐵)
3332ex 415 . 2 (Lim 𝐴 → (𝐴 ⊆ suc 𝐵𝐴𝐵))
343, 33impbid2 228 1 (Lim 𝐴 → (𝐴𝐵𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wss 3938  Ord word 6192  Lim wlim 6194  suc csuc 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199
This theorem is referenced by:  cardlim  9403
  Copyright terms: Public domain W3C validator