Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrriv Structured version   Visualization version   GIF version

Theorem eqbrriv 5641
 Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Hypotheses
Ref Expression
eqbrriv.1 Rel 𝐴
eqbrriv.2 Rel 𝐵
eqbrriv.3 (𝑥𝐴𝑦𝑥𝐵𝑦)
Assertion
Ref Expression
eqbrriv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqbrriv
StepHypRef Expression
1 eqbrriv.1 . 2 Rel 𝐴
2 eqbrriv.2 . 2 Rel 𝐵
3 eqbrriv.3 . . 3 (𝑥𝐴𝑦𝑥𝐵𝑦)
4 df-br 5043 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 5043 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3i 304 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
71, 2, 6eqrelriiv 5640 1 𝐴 = 𝐵
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   = wceq 1538   ∈ wcel 2114  ⟨cop 4545   class class class wbr 5042  Rel wrel 5537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-12 2178  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-v 3471  df-in 3915  df-ss 3925  df-br 5043  df-opab 5105  df-xp 5538  df-rel 5539 This theorem is referenced by:  resco  6081  tpostpos  7899  sbthcl  8627  dfle2  12528  dflt2  12529  idsset  33425  dfbigcup2  33434  imageval  33465  inxpxrn  35761
 Copyright terms: Public domain W3C validator