MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrriv Structured version   Visualization version   GIF version

Theorem eqbrriv 5690
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Hypotheses
Ref Expression
eqbrriv.1 Rel 𝐴
eqbrriv.2 Rel 𝐵
eqbrriv.3 (𝑥𝐴𝑦𝑥𝐵𝑦)
Assertion
Ref Expression
eqbrriv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqbrriv
StepHypRef Expression
1 eqbrriv.1 . 2 Rel 𝐴
2 eqbrriv.2 . 2 Rel 𝐵
3 eqbrriv.3 . . 3 (𝑥𝐴𝑦𝑥𝐵𝑦)
4 df-br 5071 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 5071 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3i 300 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
71, 2, 6eqrelriiv 5689 1 𝐴 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  resco  6143  tpostpos  8033  sbthcl  8835  dfle2  12810  dflt2  12811  xpab  33579  idsset  34119  dfbigcup2  34128  imageval  34159  inxpxrn  36448
  Copyright terms: Public domain W3C validator