Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrriv | Structured version Visualization version GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
eqbrriv.1 | ⊢ Rel 𝐴 |
eqbrriv.2 | ⊢ Rel 𝐵 |
eqbrriv.3 | ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) |
Ref | Expression |
---|---|
eqbrriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrriv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqbrriv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqbrriv.3 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) | |
4 | df-br 5080 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
5 | df-br 5080 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
6 | 3, 4, 5 | 3bitr3i 301 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
7 | 1, 2, 6 | eqrelriiv 5699 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2110 〈cop 4573 class class class wbr 5079 Rel wrel 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 |
This theorem is referenced by: resco 6153 tpostpos 8053 sbthcl 8864 dfle2 12880 dflt2 12881 xpab 33673 idsset 34188 dfbigcup2 34197 imageval 34228 inxpxrn 36517 |
Copyright terms: Public domain | W3C validator |