MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resco Structured version   Visualization version   GIF version

Theorem resco 6203
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem resco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5959 . 2 Rel ((𝐴𝐵) ↾ 𝐶)
2 relco 6062 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 vex 3440 . . . . . 6 𝑥 ∈ V
4 vex 3440 . . . . . 6 𝑦 ∈ V
53, 4brco 5815 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
65anbi2i 623 . . . 4 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
7 19.42v 1954 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
8 vex 3440 . . . . . . . 8 𝑧 ∈ V
98brresi 5942 . . . . . . 7 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐶𝑥𝐵𝑧))
109anbi1i 624 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦))
11 anass 468 . . . . . 6 (((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)))
1210, 11bitr2i 276 . . . . 5 ((𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1312exbii 1849 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
146, 7, 133bitr2i 299 . . 3 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
154brresi 5942 . . 3 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦 ↔ (𝑥𝐶𝑥(𝐴𝐵)𝑦))
163, 4brco 5815 . . 3 (𝑥(𝐴 ∘ (𝐵𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1714, 15, 163bitr4i 303 . 2 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦𝑥(𝐴 ∘ (𝐵𝐶))𝑦)
181, 2, 17eqbrriv 5735 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111   class class class wbr 5093  cres 5621  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-co 5628  df-res 5631
This theorem is referenced by:  cocnvcnv2  6212  coires1  6218  dftpos2  8179  ttrclco  9614  canthp1lem2  10550  o1res  15473  gsumzaddlem  19839  tsmsf1o  24066  tsmsmhm  24067  mbfres  25578  hhssims  31261  symgcom  33059  cycpmconjslem1  33130  cycpmconjslem2  33131  erdsze2lem2  35255  cvmlift2lem9a  35354  mbfresfi  37712  cocnv  37771  xrnres  38455  xrnres2  38456  xrnres3  38457  diophrw  42857  eldioph2  42860  mbfres2cn  46061  funcoressn  47147  upgrimpthslem1  48012  tposrescnv  48984
  Copyright terms: Public domain W3C validator