Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resco | Structured version Visualization version GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5920 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 6148 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 5779 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 19.42v 1957 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
8 | vex 3436 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 8 | brresi 5900 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧)) |
10 | 9 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦)) |
11 | anass 469 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
12 | 10, 11 | bitr2i 275 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1850 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 299 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brresi 5900 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦)) |
16 | 3, 4 | brco 5779 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 5701 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 class class class wbr 5074 ↾ cres 5591 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-co 5598 df-res 5601 |
This theorem is referenced by: cocnvcnv2 6162 coires1 6168 dftpos2 8059 ttrclco 9476 canthp1lem2 10409 o1res 15269 gsumzaddlem 19522 tsmsf1o 23296 tsmsmhm 23297 mbfres 24808 hhssims 29636 symgcom 31352 cycpmconjslem1 31421 cycpmconjslem2 31422 erdsze2lem2 33166 cvmlift2lem9a 33265 mbfresfi 35823 cocnv 35883 xrnres 36528 xrnres2 36529 xrnres3 36530 diophrw 40581 eldioph2 40584 mbfres2cn 43499 funcoressn 44536 |
Copyright terms: Public domain | W3C validator |