MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resco Structured version   Visualization version   GIF version

Theorem resco 6281
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem resco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6035 . 2 Rel ((𝐴𝐵) ↾ 𝐶)
2 relco 6138 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 vex 3492 . . . . . 6 𝑥 ∈ V
4 vex 3492 . . . . . 6 𝑦 ∈ V
53, 4brco 5895 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
65anbi2i 622 . . . 4 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
7 19.42v 1953 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
8 vex 3492 . . . . . . . 8 𝑧 ∈ V
98brresi 6018 . . . . . . 7 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐶𝑥𝐵𝑧))
109anbi1i 623 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦))
11 anass 468 . . . . . 6 (((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)))
1210, 11bitr2i 276 . . . . 5 ((𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1312exbii 1846 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
146, 7, 133bitr2i 299 . . 3 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
154brresi 6018 . . 3 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦 ↔ (𝑥𝐶𝑥(𝐴𝐵)𝑦))
163, 4brco 5895 . . 3 (𝑥(𝐴 ∘ (𝐵𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1714, 15, 163bitr4i 303 . 2 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦𝑥(𝐴 ∘ (𝐵𝐶))𝑦)
181, 2, 17eqbrriv 5815 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108   class class class wbr 5166  cres 5702  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-co 5709  df-res 5712
This theorem is referenced by:  cocnvcnv2  6289  coires1  6295  dftpos2  8284  ttrclco  9787  canthp1lem2  10722  o1res  15606  gsumzaddlem  19963  tsmsf1o  24174  tsmsmhm  24175  mbfres  25698  hhssims  31306  symgcom  33076  cycpmconjslem1  33147  cycpmconjslem2  33148  erdsze2lem2  35172  cvmlift2lem9a  35271  mbfresfi  37626  cocnv  37685  xrnres  38358  xrnres2  38359  xrnres3  38360  diophrw  42715  eldioph2  42718  mbfres2cn  45879  funcoressn  46957
  Copyright terms: Public domain W3C validator