![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resco | Structured version Visualization version GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6026 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 6129 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3482 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 5884 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 19.42v 1951 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
8 | vex 3482 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 8 | brresi 6009 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧)) |
10 | 9 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦)) |
11 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
12 | 10, 11 | bitr2i 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1845 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 299 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brresi 6009 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦)) |
16 | 3, 4 | brco 5884 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 5804 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 class class class wbr 5148 ↾ cres 5691 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-co 5698 df-res 5701 |
This theorem is referenced by: cocnvcnv2 6280 coires1 6286 dftpos2 8267 ttrclco 9756 canthp1lem2 10691 o1res 15593 gsumzaddlem 19954 tsmsf1o 24169 tsmsmhm 24170 mbfres 25693 hhssims 31303 symgcom 33086 cycpmconjslem1 33157 cycpmconjslem2 33158 erdsze2lem2 35189 cvmlift2lem9a 35288 mbfresfi 37653 cocnv 37712 xrnres 38384 xrnres2 38385 xrnres3 38386 diophrw 42747 eldioph2 42750 mbfres2cn 45914 funcoressn 46992 |
Copyright terms: Public domain | W3C validator |