MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resco Structured version   Visualization version   GIF version

Theorem resco 6194
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem resco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5951 . 2 Rel ((𝐴𝐵) ↾ 𝐶)
2 relco 6054 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 vex 3438 . . . . . 6 𝑥 ∈ V
4 vex 3438 . . . . . 6 𝑦 ∈ V
53, 4brco 5808 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
65anbi2i 623 . . . 4 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
7 19.42v 1954 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
8 vex 3438 . . . . . . . 8 𝑧 ∈ V
98brresi 5934 . . . . . . 7 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐶𝑥𝐵𝑧))
109anbi1i 624 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦))
11 anass 468 . . . . . 6 (((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)))
1210, 11bitr2i 276 . . . . 5 ((𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1312exbii 1849 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
146, 7, 133bitr2i 299 . . 3 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
154brresi 5934 . . 3 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦 ↔ (𝑥𝐶𝑥(𝐴𝐵)𝑦))
163, 4brco 5808 . . 3 (𝑥(𝐴 ∘ (𝐵𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1714, 15, 163bitr4i 303 . 2 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦𝑥(𝐴 ∘ (𝐵𝐶))𝑦)
181, 2, 17eqbrriv 5729 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2110   class class class wbr 5089  cres 5616  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-co 5623  df-res 5626
This theorem is referenced by:  cocnvcnv2  6202  coires1  6208  dftpos2  8168  ttrclco  9603  canthp1lem2  10536  o1res  15459  gsumzaddlem  19826  tsmsf1o  24053  tsmsmhm  24054  mbfres  25565  hhssims  31244  symgcom  33042  cycpmconjslem1  33113  cycpmconjslem2  33114  erdsze2lem2  35216  cvmlift2lem9a  35315  mbfresfi  37685  cocnv  37744  xrnres  38413  xrnres2  38414  xrnres3  38415  diophrw  42771  eldioph2  42774  mbfres2cn  45975  funcoressn  47052  upgrimpthslem1  47917  tposrescnv  48889
  Copyright terms: Public domain W3C validator