| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resco | Structured version Visualization version GIF version | ||
| Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5959 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
| 2 | relco 6062 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brco 5815 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) |
| 7 | 19.42v 1954 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
| 8 | vex 3440 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 9 | 8 | brresi 5942 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧)) |
| 10 | 9 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦)) |
| 11 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
| 12 | 10, 11 | bitr2i 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 13 | 12 | exbii 1849 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 14 | 6, 7, 13 | 3bitr2i 299 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 15 | 4 | brresi 5942 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦)) |
| 16 | 3, 4 | brco 5815 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
| 18 | 1, 2, 17 | eqbrriv 5735 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 class class class wbr 5093 ↾ cres 5621 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-co 5628 df-res 5631 |
| This theorem is referenced by: cocnvcnv2 6212 coires1 6218 dftpos2 8179 ttrclco 9614 canthp1lem2 10550 o1res 15473 gsumzaddlem 19839 tsmsf1o 24066 tsmsmhm 24067 mbfres 25578 hhssims 31261 symgcom 33059 cycpmconjslem1 33130 cycpmconjslem2 33131 erdsze2lem2 35255 cvmlift2lem9a 35354 mbfresfi 37712 cocnv 37771 xrnres 38455 xrnres2 38456 xrnres3 38457 diophrw 42857 eldioph2 42860 mbfres2cn 46061 funcoressn 47147 upgrimpthslem1 48012 tposrescnv 48984 |
| Copyright terms: Public domain | W3C validator |