| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resco | Structured version Visualization version GIF version | ||
| Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
| Ref | Expression |
|---|---|
| resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5978 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
| 2 | relco 6081 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
| 3 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 3454 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brco 5836 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 6 | 5 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) |
| 7 | 19.42v 1953 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
| 8 | vex 3454 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 9 | 8 | brresi 5961 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧)) |
| 10 | 9 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦)) |
| 11 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
| 12 | 10, 11 | bitr2i 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 13 | 12 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 14 | 6, 7, 13 | 3bitr2i 299 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 15 | 4 | brresi 5961 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦)) |
| 16 | 3, 4 | brco 5836 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
| 18 | 1, 2, 17 | eqbrriv 5756 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5109 ↾ cres 5642 ∘ ccom 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-co 5649 df-res 5652 |
| This theorem is referenced by: cocnvcnv2 6233 coires1 6239 dftpos2 8224 ttrclco 9677 canthp1lem2 10612 o1res 15532 gsumzaddlem 19857 tsmsf1o 24038 tsmsmhm 24039 mbfres 25551 hhssims 31209 symgcom 33046 cycpmconjslem1 33117 cycpmconjslem2 33118 erdsze2lem2 35191 cvmlift2lem9a 35290 mbfresfi 37655 cocnv 37714 xrnres 38383 xrnres2 38384 xrnres3 38385 diophrw 42740 eldioph2 42743 mbfres2cn 45949 funcoressn 47033 upgrimpthslem1 47897 tposrescnv 48857 |
| Copyright terms: Public domain | W3C validator |