MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resco Structured version   Visualization version   GIF version

Theorem resco 6272
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem resco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6026 . 2 Rel ((𝐴𝐵) ↾ 𝐶)
2 relco 6129 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 vex 3482 . . . . . 6 𝑥 ∈ V
4 vex 3482 . . . . . 6 𝑦 ∈ V
53, 4brco 5884 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
65anbi2i 623 . . . 4 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
7 19.42v 1951 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
8 vex 3482 . . . . . . . 8 𝑧 ∈ V
98brresi 6009 . . . . . . 7 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐶𝑥𝐵𝑧))
109anbi1i 624 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦))
11 anass 468 . . . . . 6 (((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)))
1210, 11bitr2i 276 . . . . 5 ((𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1312exbii 1845 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
146, 7, 133bitr2i 299 . . 3 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
154brresi 6009 . . 3 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦 ↔ (𝑥𝐶𝑥(𝐴𝐵)𝑦))
163, 4brco 5884 . . 3 (𝑥(𝐴 ∘ (𝐵𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1714, 15, 163bitr4i 303 . 2 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦𝑥(𝐴 ∘ (𝐵𝐶))𝑦)
181, 2, 17eqbrriv 5804 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1776  wcel 2106   class class class wbr 5148  cres 5691  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-co 5698  df-res 5701
This theorem is referenced by:  cocnvcnv2  6280  coires1  6286  dftpos2  8267  ttrclco  9756  canthp1lem2  10691  o1res  15593  gsumzaddlem  19954  tsmsf1o  24169  tsmsmhm  24170  mbfres  25693  hhssims  31303  symgcom  33086  cycpmconjslem1  33157  cycpmconjslem2  33158  erdsze2lem2  35189  cvmlift2lem9a  35288  mbfresfi  37653  cocnv  37712  xrnres  38384  xrnres2  38385  xrnres3  38386  diophrw  42747  eldioph2  42750  mbfres2cn  45914  funcoressn  46992
  Copyright terms: Public domain W3C validator