![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resco | Structured version Visualization version GIF version |
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
resco | ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6008 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ↾ 𝐶) | |
2 | relco 6106 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ↾ 𝐶)) | |
3 | vex 3473 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3473 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brco 5867 | . . . . 5 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
6 | 5 | anbi2i 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) |
7 | 19.42v 1950 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥 ∈ 𝐶 ∧ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
8 | vex 3473 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
9 | 8 | brresi 5988 | . . . . . . 7 ⊢ (𝑥(𝐵 ↾ 𝐶)𝑧 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧)) |
10 | 9 | anbi1i 623 | . . . . . 6 ⊢ ((𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦) ↔ ((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦)) |
11 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦))) | |
12 | 10, 11 | bitr2i 276 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ (𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
13 | 12 | exbii 1843 | . . . 4 ⊢ (∃𝑧(𝑥 ∈ 𝐶 ∧ (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
14 | 6, 7, 13 | 3bitr2i 299 | . . 3 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
15 | 4 | brresi 5988 | . . 3 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ (𝑥 ∈ 𝐶 ∧ 𝑥(𝐴 ∘ 𝐵)𝑦)) |
16 | 3, 4 | brco 5867 | . . 3 ⊢ (𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵 ↾ 𝐶)𝑧 ∧ 𝑧𝐴𝑦)) |
17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑥((𝐴 ∘ 𝐵) ↾ 𝐶)𝑦 ↔ 𝑥(𝐴 ∘ (𝐵 ↾ 𝐶))𝑦) |
18 | 1, 2, 17 | eqbrriv 5787 | 1 ⊢ ((𝐴 ∘ 𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 class class class wbr 5142 ↾ cres 5674 ∘ ccom 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-co 5681 df-res 5684 |
This theorem is referenced by: cocnvcnv2 6256 coires1 6262 dftpos2 8242 ttrclco 9733 canthp1lem2 10668 o1res 15528 gsumzaddlem 19867 tsmsf1o 24036 tsmsmhm 24037 mbfres 25560 hhssims 31071 symgcom 32784 cycpmconjslem1 32853 cycpmconjslem2 32854 erdsze2lem2 34750 cvmlift2lem9a 34849 mbfresfi 37074 cocnv 37133 xrnres 37811 xrnres2 37812 xrnres3 37813 diophrw 42101 eldioph2 42104 mbfres2cn 45269 funcoressn 46347 |
Copyright terms: Public domain | W3C validator |