MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos Structured version   Visualization version   GIF version

Theorem tpostpos 8062
Description: Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))

Proof of Theorem tpostpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 8047 . 2 Rel tpos tpos 𝐹
2 relinxp 5724 . 2 Rel (𝐹 ∩ (((V × V) ∪ {∅}) × V))
3 relcnv 6012 . . . . . . . . 9 Rel dom tpos 𝐹
4 df-rel 5596 . . . . . . . . 9 (Rel dom tpos 𝐹dom tpos 𝐹 ⊆ (V × V))
53, 4mpbi 229 . . . . . . . 8 dom tpos 𝐹 ⊆ (V × V)
6 simpl 483 . . . . . . . 8 ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) → 𝑤dom tpos 𝐹)
75, 6sselid 3919 . . . . . . 7 ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) → 𝑤 ∈ (V × V))
8 simpr 485 . . . . . . 7 ((𝑤𝐹𝑧𝑤 ∈ (V × V)) → 𝑤 ∈ (V × V))
9 elvv 5661 . . . . . . . . 9 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
10 eleq1 2826 . . . . . . . . . . . . . 14 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹))
11 vex 3436 . . . . . . . . . . . . . . 15 𝑥 ∈ V
12 vex 3436 . . . . . . . . . . . . . . 15 𝑦 ∈ V
1311, 12opelcnv 5790 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹)
1410, 13bitrdi 287 . . . . . . . . . . . . 13 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤dom tpos 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹))
15 sneq 4571 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = {⟨𝑥, 𝑦⟩})
1615cnveqd 5784 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = {⟨𝑥, 𝑦⟩})
1716unieqd 4853 . . . . . . . . . . . . . . 15 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = {⟨𝑥, 𝑦⟩})
18 opswap 6132 . . . . . . . . . . . . . . 15 {⟨𝑥, 𝑦⟩} = ⟨𝑦, 𝑥
1917, 18eqtrdi 2794 . . . . . . . . . . . . . 14 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = ⟨𝑦, 𝑥⟩)
2019breq1d 5084 . . . . . . . . . . . . 13 (𝑤 = ⟨𝑥, 𝑦⟩ → ( {𝑤}tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧))
2114, 20anbi12d 631 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ (⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹 ∧ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧)))
22 opex 5379 . . . . . . . . . . . . . . 15 𝑦, 𝑥⟩ ∈ V
23 vex 3436 . . . . . . . . . . . . . . 15 𝑧 ∈ V
2422, 23breldm 5817 . . . . . . . . . . . . . 14 (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 → ⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹)
2524pm4.71ri 561 . . . . . . . . . . . . 13 (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 ↔ (⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹 ∧ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧))
26 brtpos 8051 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦𝐹𝑧))
2726elv 3438 . . . . . . . . . . . . 13 (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦𝐹𝑧)
2825, 27bitr3i 276 . . . . . . . . . . . 12 ((⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹 ∧ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧) ↔ ⟨𝑥, 𝑦𝐹𝑧)
2921, 28bitrdi 287 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ ⟨𝑥, 𝑦𝐹𝑧))
30 breq1 5077 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦𝐹𝑧))
3129, 30bitr4d 281 . . . . . . . . . 10 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ 𝑤𝐹𝑧))
3231exlimivv 1935 . . . . . . . . 9 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ 𝑤𝐹𝑧))
339, 32sylbi 216 . . . . . . . 8 (𝑤 ∈ (V × V) → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ 𝑤𝐹𝑧))
34 iba 528 . . . . . . . 8 (𝑤 ∈ (V × V) → (𝑤𝐹𝑧 ↔ (𝑤𝐹𝑧𝑤 ∈ (V × V))))
3533, 34bitrd 278 . . . . . . 7 (𝑤 ∈ (V × V) → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤 ∈ (V × V))))
367, 8, 35pm5.21nii 380 . . . . . 6 ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤 ∈ (V × V)))
37 elsni 4578 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {∅} → 𝑤 = ∅)
3837sneqd 4573 . . . . . . . . . . . . . . 15 (𝑤 ∈ {∅} → {𝑤} = {∅})
3938cnveqd 5784 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅} → {𝑤} = {∅})
40 cnvsn0 6113 . . . . . . . . . . . . . 14 {∅} = ∅
4139, 40eqtrdi 2794 . . . . . . . . . . . . 13 (𝑤 ∈ {∅} → {𝑤} = ∅)
4241unieqd 4853 . . . . . . . . . . . 12 (𝑤 ∈ {∅} → {𝑤} = ∅)
43 uni0 4869 . . . . . . . . . . . 12 ∅ = ∅
4442, 43eqtrdi 2794 . . . . . . . . . . 11 (𝑤 ∈ {∅} → {𝑤} = ∅)
4544breq1d 5084 . . . . . . . . . 10 (𝑤 ∈ {∅} → ( {𝑤}tpos 𝐹𝑧 ↔ ∅tpos 𝐹𝑧))
46 brtpos0 8049 . . . . . . . . . . 11 (𝑧 ∈ V → (∅tpos 𝐹𝑧 ↔ ∅𝐹𝑧))
4746elv 3438 . . . . . . . . . 10 (∅tpos 𝐹𝑧 ↔ ∅𝐹𝑧)
4845, 47bitrdi 287 . . . . . . . . 9 (𝑤 ∈ {∅} → ( {𝑤}tpos 𝐹𝑧 ↔ ∅𝐹𝑧))
4937breq1d 5084 . . . . . . . . 9 (𝑤 ∈ {∅} → (𝑤𝐹𝑧 ↔ ∅𝐹𝑧))
5048, 49bitr4d 281 . . . . . . . 8 (𝑤 ∈ {∅} → ( {𝑤}tpos 𝐹𝑧𝑤𝐹𝑧))
5150pm5.32i 575 . . . . . . 7 ((𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤 ∈ {∅} ∧ 𝑤𝐹𝑧))
5251biancomi 463 . . . . . 6 ((𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤 ∈ {∅}))
5336, 52orbi12i 912 . . . . 5 (((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ∨ (𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧)) ↔ ((𝑤𝐹𝑧𝑤 ∈ (V × V)) ∨ (𝑤𝐹𝑧𝑤 ∈ {∅})))
54 andir 1006 . . . . 5 (((𝑤dom tpos 𝐹𝑤 ∈ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ∨ (𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧)))
55 andi 1005 . . . . 5 ((𝑤𝐹𝑧 ∧ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅})) ↔ ((𝑤𝐹𝑧𝑤 ∈ (V × V)) ∨ (𝑤𝐹𝑧𝑤 ∈ {∅})))
5653, 54, 553bitr4i 303 . . . 4 (((𝑤dom tpos 𝐹𝑤 ∈ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧 ∧ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅})))
57 elun 4083 . . . . 5 (𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ↔ (𝑤dom tpos 𝐹𝑤 ∈ {∅}))
5857anbi1i 624 . . . 4 ((𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ ((𝑤dom tpos 𝐹𝑤 ∈ {∅}) ∧ {𝑤}tpos 𝐹𝑧))
59 brxp 5636 . . . . . . 7 (𝑤(((V × V) ∪ {∅}) × V)𝑧 ↔ (𝑤 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 ∈ V))
6023, 59mpbiran2 707 . . . . . 6 (𝑤(((V × V) ∪ {∅}) × V)𝑧𝑤 ∈ ((V × V) ∪ {∅}))
61 elun 4083 . . . . . 6 (𝑤 ∈ ((V × V) ∪ {∅}) ↔ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅}))
6260, 61bitri 274 . . . . 5 (𝑤(((V × V) ∪ {∅}) × V)𝑧 ↔ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅}))
6362anbi2i 623 . . . 4 ((𝑤𝐹𝑧𝑤(((V × V) ∪ {∅}) × V)𝑧) ↔ (𝑤𝐹𝑧 ∧ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅})))
6456, 58, 633bitr4i 303 . . 3 ((𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤(((V × V) ∪ {∅}) × V)𝑧))
65 brtpos2 8048 . . . 4 (𝑧 ∈ V → (𝑤tpos tpos 𝐹𝑧 ↔ (𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧)))
6665elv 3438 . . 3 (𝑤tpos tpos 𝐹𝑧 ↔ (𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧))
67 brin 5126 . . 3 (𝑤(𝐹 ∩ (((V × V) ∪ {∅}) × V))𝑧 ↔ (𝑤𝐹𝑧𝑤(((V × V) ∪ {∅}) × V)𝑧))
6864, 66, 673bitr4i 303 . 2 (𝑤tpos tpos 𝐹𝑧𝑤(𝐹 ∩ (((V × V) ∪ {∅}) × V))𝑧)
691, 2, 68eqbrriv 5701 1 tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074   × cxp 5587  ccnv 5588  dom cdm 5589  Rel wrel 5594  tpos ctpos 8041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-tpos 8042
This theorem is referenced by:  tpostpos2  8063
  Copyright terms: Public domain W3C validator