MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos Structured version   Visualization version   GIF version

Theorem tpostpos 8229
Description: Value of the double transposition for a general class 𝐹. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))

Proof of Theorem tpostpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 8214 . 2 Rel tpos tpos 𝐹
2 relinxp 5807 . 2 Rel (𝐹 ∩ (((V × V) ∪ {∅}) × V))
3 relcnv 6096 . . . . . . . . 9 Rel dom tpos 𝐹
4 df-rel 5676 . . . . . . . . 9 (Rel dom tpos 𝐹dom tpos 𝐹 ⊆ (V × V))
53, 4mpbi 229 . . . . . . . 8 dom tpos 𝐹 ⊆ (V × V)
6 simpl 482 . . . . . . . 8 ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) → 𝑤dom tpos 𝐹)
75, 6sselid 3975 . . . . . . 7 ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) → 𝑤 ∈ (V × V))
8 simpr 484 . . . . . . 7 ((𝑤𝐹𝑧𝑤 ∈ (V × V)) → 𝑤 ∈ (V × V))
9 elvv 5743 . . . . . . . . 9 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
10 eleq1 2815 . . . . . . . . . . . . . 14 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤dom tpos 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹))
11 vex 3472 . . . . . . . . . . . . . . 15 𝑥 ∈ V
12 vex 3472 . . . . . . . . . . . . . . 15 𝑦 ∈ V
1311, 12opelcnv 5874 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ dom tpos 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹)
1410, 13bitrdi 287 . . . . . . . . . . . . 13 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤dom tpos 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹))
15 sneq 4633 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = {⟨𝑥, 𝑦⟩})
1615cnveqd 5868 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = {⟨𝑥, 𝑦⟩})
1716unieqd 4915 . . . . . . . . . . . . . . 15 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = {⟨𝑥, 𝑦⟩})
18 opswap 6221 . . . . . . . . . . . . . . 15 {⟨𝑥, 𝑦⟩} = ⟨𝑦, 𝑥
1917, 18eqtrdi 2782 . . . . . . . . . . . . . 14 (𝑤 = ⟨𝑥, 𝑦⟩ → {𝑤} = ⟨𝑦, 𝑥⟩)
2019breq1d 5151 . . . . . . . . . . . . 13 (𝑤 = ⟨𝑥, 𝑦⟩ → ( {𝑤}tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧))
2114, 20anbi12d 630 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ (⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹 ∧ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧)))
22 opex 5457 . . . . . . . . . . . . . . 15 𝑦, 𝑥⟩ ∈ V
23 vex 3472 . . . . . . . . . . . . . . 15 𝑧 ∈ V
2422, 23breldm 5901 . . . . . . . . . . . . . 14 (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 → ⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹)
2524pm4.71ri 560 . . . . . . . . . . . . 13 (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 ↔ (⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹 ∧ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧))
26 brtpos 8218 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦𝐹𝑧))
2726elv 3474 . . . . . . . . . . . . 13 (⟨𝑦, 𝑥⟩tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦𝐹𝑧)
2825, 27bitr3i 277 . . . . . . . . . . . 12 ((⟨𝑦, 𝑥⟩ ∈ dom tpos 𝐹 ∧ ⟨𝑦, 𝑥⟩tpos 𝐹𝑧) ↔ ⟨𝑥, 𝑦𝐹𝑧)
2921, 28bitrdi 287 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ ⟨𝑥, 𝑦𝐹𝑧))
30 breq1 5144 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦𝐹𝑧))
3129, 30bitr4d 282 . . . . . . . . . 10 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ 𝑤𝐹𝑧))
3231exlimivv 1927 . . . . . . . . 9 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ 𝑤𝐹𝑧))
339, 32sylbi 216 . . . . . . . 8 (𝑤 ∈ (V × V) → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ 𝑤𝐹𝑧))
34 iba 527 . . . . . . . 8 (𝑤 ∈ (V × V) → (𝑤𝐹𝑧 ↔ (𝑤𝐹𝑧𝑤 ∈ (V × V))))
3533, 34bitrd 279 . . . . . . 7 (𝑤 ∈ (V × V) → ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤 ∈ (V × V))))
367, 8, 35pm5.21nii 378 . . . . . 6 ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤 ∈ (V × V)))
37 elsni 4640 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {∅} → 𝑤 = ∅)
3837sneqd 4635 . . . . . . . . . . . . . . 15 (𝑤 ∈ {∅} → {𝑤} = {∅})
3938cnveqd 5868 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅} → {𝑤} = {∅})
40 cnvsn0 6202 . . . . . . . . . . . . . 14 {∅} = ∅
4139, 40eqtrdi 2782 . . . . . . . . . . . . 13 (𝑤 ∈ {∅} → {𝑤} = ∅)
4241unieqd 4915 . . . . . . . . . . . 12 (𝑤 ∈ {∅} → {𝑤} = ∅)
43 uni0 4932 . . . . . . . . . . . 12 ∅ = ∅
4442, 43eqtrdi 2782 . . . . . . . . . . 11 (𝑤 ∈ {∅} → {𝑤} = ∅)
4544breq1d 5151 . . . . . . . . . 10 (𝑤 ∈ {∅} → ( {𝑤}tpos 𝐹𝑧 ↔ ∅tpos 𝐹𝑧))
46 brtpos0 8216 . . . . . . . . . . 11 (𝑧 ∈ V → (∅tpos 𝐹𝑧 ↔ ∅𝐹𝑧))
4746elv 3474 . . . . . . . . . 10 (∅tpos 𝐹𝑧 ↔ ∅𝐹𝑧)
4845, 47bitrdi 287 . . . . . . . . 9 (𝑤 ∈ {∅} → ( {𝑤}tpos 𝐹𝑧 ↔ ∅𝐹𝑧))
4937breq1d 5151 . . . . . . . . 9 (𝑤 ∈ {∅} → (𝑤𝐹𝑧 ↔ ∅𝐹𝑧))
5048, 49bitr4d 282 . . . . . . . 8 (𝑤 ∈ {∅} → ( {𝑤}tpos 𝐹𝑧𝑤𝐹𝑧))
5150pm5.32i 574 . . . . . . 7 ((𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤 ∈ {∅} ∧ 𝑤𝐹𝑧))
5251biancomi 462 . . . . . 6 ((𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤 ∈ {∅}))
5336, 52orbi12i 911 . . . . 5 (((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ∨ (𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧)) ↔ ((𝑤𝐹𝑧𝑤 ∈ (V × V)) ∨ (𝑤𝐹𝑧𝑤 ∈ {∅})))
54 andir 1005 . . . . 5 (((𝑤dom tpos 𝐹𝑤 ∈ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ ((𝑤dom tpos 𝐹 {𝑤}tpos 𝐹𝑧) ∨ (𝑤 ∈ {∅} ∧ {𝑤}tpos 𝐹𝑧)))
55 andi 1004 . . . . 5 ((𝑤𝐹𝑧 ∧ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅})) ↔ ((𝑤𝐹𝑧𝑤 ∈ (V × V)) ∨ (𝑤𝐹𝑧𝑤 ∈ {∅})))
5653, 54, 553bitr4i 303 . . . 4 (((𝑤dom tpos 𝐹𝑤 ∈ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧 ∧ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅})))
57 elun 4143 . . . . 5 (𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ↔ (𝑤dom tpos 𝐹𝑤 ∈ {∅}))
5857anbi1i 623 . . . 4 ((𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ ((𝑤dom tpos 𝐹𝑤 ∈ {∅}) ∧ {𝑤}tpos 𝐹𝑧))
59 brxp 5718 . . . . . . 7 (𝑤(((V × V) ∪ {∅}) × V)𝑧 ↔ (𝑤 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 ∈ V))
6023, 59mpbiran2 707 . . . . . 6 (𝑤(((V × V) ∪ {∅}) × V)𝑧𝑤 ∈ ((V × V) ∪ {∅}))
61 elun 4143 . . . . . 6 (𝑤 ∈ ((V × V) ∪ {∅}) ↔ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅}))
6260, 61bitri 275 . . . . 5 (𝑤(((V × V) ∪ {∅}) × V)𝑧 ↔ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅}))
6362anbi2i 622 . . . 4 ((𝑤𝐹𝑧𝑤(((V × V) ∪ {∅}) × V)𝑧) ↔ (𝑤𝐹𝑧 ∧ (𝑤 ∈ (V × V) ∨ 𝑤 ∈ {∅})))
6456, 58, 633bitr4i 303 . . 3 ((𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧) ↔ (𝑤𝐹𝑧𝑤(((V × V) ∪ {∅}) × V)𝑧))
65 brtpos2 8215 . . . 4 (𝑧 ∈ V → (𝑤tpos tpos 𝐹𝑧 ↔ (𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧)))
6665elv 3474 . . 3 (𝑤tpos tpos 𝐹𝑧 ↔ (𝑤 ∈ (dom tpos 𝐹 ∪ {∅}) ∧ {𝑤}tpos 𝐹𝑧))
67 brin 5193 . . 3 (𝑤(𝐹 ∩ (((V × V) ∪ {∅}) × V))𝑧 ↔ (𝑤𝐹𝑧𝑤(((V × V) ∪ {∅}) × V)𝑧))
6864, 66, 673bitr4i 303 . 2 (𝑤tpos tpos 𝐹𝑧𝑤(𝐹 ∩ (((V × V) ∪ {∅}) × V))𝑧)
691, 2, 68eqbrriv 5784 1 tpos tpos 𝐹 = (𝐹 ∩ (((V × V) ∪ {∅}) × V))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 844   = wceq 1533  wex 1773  wcel 2098  Vcvv 3468  cun 3941  cin 3942  wss 3943  c0 4317  {csn 4623  cop 4629   cuni 4902   class class class wbr 5141   × cxp 5667  ccnv 5668  dom cdm 5669  Rel wrel 5674  tpos ctpos 8208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-fv 6544  df-tpos 8209
This theorem is referenced by:  tpostpos2  8230
  Copyright terms: Public domain W3C validator