![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 9010 | . 2 ⊢ Rel ≈ | |
2 | inss1 4258 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
3 | reldom 9011 | . . 3 ⊢ Rel ≼ | |
4 | relss 5805 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
6 | brin 5218 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
7 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5907 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
10 | 9 | anbi2i 622 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
11 | sbthb 9162 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
12 | 6, 10, 11 | 3bitrri 298 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
13 | 1, 5, 12 | eqbrriv 5815 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 ≈ cen 9002 ≼ cdom 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-er 8765 df-en 9006 df-dom 9007 |
This theorem is referenced by: dfsdom2 9164 |
Copyright terms: Public domain | W3C validator |