| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version | ||
| Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8869 | . 2 ⊢ Rel ≈ | |
| 2 | inss1 4182 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
| 3 | reldom 8870 | . . 3 ⊢ Rel ≼ | |
| 4 | relss 5717 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
| 5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
| 6 | brin 5138 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brcnv 5817 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
| 10 | 9 | anbi2i 623 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
| 11 | sbthb 9006 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
| 12 | 6, 10, 11 | 3bitrri 298 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
| 13 | 1, 5, 12 | eqbrriv 5726 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5086 ◡ccnv 5610 Rel wrel 5616 ≈ cen 8861 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-er 8617 df-en 8865 df-dom 8866 |
| This theorem is referenced by: dfsdom2 9008 |
| Copyright terms: Public domain | W3C validator |