Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8712 | . 2 ⊢ Rel ≈ | |
2 | inss1 4167 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
3 | reldom 8713 | . . 3 ⊢ Rel ≼ | |
4 | relss 5690 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
6 | brin 5130 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
7 | vex 3434 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | vex 3434 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5788 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
10 | 9 | anbi2i 622 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
11 | sbthb 8850 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
12 | 6, 10, 11 | 3bitrri 297 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
13 | 1, 5, 12 | eqbrriv 5698 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∩ cin 3890 ⊆ wss 3891 class class class wbr 5078 ◡ccnv 5587 Rel wrel 5593 ≈ cen 8704 ≼ cdom 8705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-er 8472 df-en 8708 df-dom 8709 |
This theorem is referenced by: dfsdom2 8852 |
Copyright terms: Public domain | W3C validator |