| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version | ||
| Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8884 | . 2 ⊢ Rel ≈ | |
| 2 | inss1 4186 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
| 3 | reldom 8885 | . . 3 ⊢ Rel ≼ | |
| 4 | relss 5728 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
| 5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
| 6 | brin 5147 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
| 7 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 8 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brcnv 5828 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
| 10 | 9 | anbi2i 623 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
| 11 | sbthb 9022 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
| 12 | 6, 10, 11 | 3bitrri 298 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
| 13 | 1, 5, 12 | eqbrriv 5737 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 class class class wbr 5095 ◡ccnv 5620 Rel wrel 5626 ≈ cen 8876 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-er 8631 df-en 8880 df-dom 8881 |
| This theorem is referenced by: dfsdom2 9024 |
| Copyright terms: Public domain | W3C validator |