| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version | ||
| Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8925 | . 2 ⊢ Rel ≈ | |
| 2 | inss1 4202 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
| 3 | reldom 8926 | . . 3 ⊢ Rel ≼ | |
| 4 | relss 5746 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
| 5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
| 6 | brin 5161 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
| 7 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 8 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brcnv 5848 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
| 10 | 9 | anbi2i 623 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
| 11 | sbthb 9067 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
| 12 | 6, 10, 11 | 3bitrri 298 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
| 13 | 1, 5, 12 | eqbrriv 5756 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∩ cin 3915 ⊆ wss 3916 class class class wbr 5109 ◡ccnv 5639 Rel wrel 5645 ≈ cen 8917 ≼ cdom 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-er 8673 df-en 8921 df-dom 8922 |
| This theorem is referenced by: dfsdom2 9069 |
| Copyright terms: Public domain | W3C validator |