![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8311 | . 2 ⊢ Rel ≈ | |
2 | inss1 4092 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
3 | reldom 8312 | . . 3 ⊢ Rel ≼ | |
4 | relss 5506 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
6 | brin 4981 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
7 | vex 3418 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | vex 3418 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5603 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
10 | 9 | anbi2i 613 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
11 | sbthb 8434 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
12 | 6, 10, 11 | 3bitrri 290 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
13 | 1, 5, 12 | eqbrriv 5514 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∩ cin 3828 ⊆ wss 3829 class class class wbr 4929 ◡ccnv 5406 Rel wrel 5412 ≈ cen 8303 ≼ cdom 8304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-er 8089 df-en 8307 df-dom 8308 |
This theorem is referenced by: dfsdom2 8436 |
Copyright terms: Public domain | W3C validator |