MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthcl Structured version   Visualization version   GIF version

Theorem sbthcl 9101
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
sbthcl ≈ = ( ≼ ∩ ≼ )

Proof of Theorem sbthcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 8950 . 2 Rel ≈
2 inss1 4228 . . 3 ( ≼ ∩ ≼ ) ⊆ ≼
3 reldom 8951 . . 3 Rel ≼
4 relss 5781 . . 3 (( ≼ ∩ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ≼ )))
52, 3, 4mp2 9 . 2 Rel ( ≼ ∩ ≼ )
6 brin 5200 . . 3 (𝑥( ≼ ∩ ≼ )𝑦 ↔ (𝑥𝑦𝑥𝑦))
7 vex 3477 . . . . 5 𝑥 ∈ V
8 vex 3477 . . . . 5 𝑦 ∈ V
97, 8brcnv 5882 . . . 4 (𝑥𝑦𝑦𝑥)
109anbi2i 622 . . 3 ((𝑥𝑦𝑥𝑦) ↔ (𝑥𝑦𝑦𝑥))
11 sbthb 9100 . . 3 ((𝑥𝑦𝑦𝑥) ↔ 𝑥𝑦)
126, 10, 113bitrri 298 . 2 (𝑥𝑦𝑥( ≼ ∩ ≼ )𝑦)
131, 5, 12eqbrriv 5791 1 ≈ = ( ≼ ∩ ≼ )
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cin 3947  wss 3948   class class class wbr 5148  ccnv 5675  Rel wrel 5681  cen 8942  cdom 8943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-er 8709  df-en 8946  df-dom 8947
This theorem is referenced by:  dfsdom2  9102
  Copyright terms: Public domain W3C validator