![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthcl | Structured version Visualization version GIF version |
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthcl | ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8998 | . 2 ⊢ Rel ≈ | |
2 | inss1 4248 | . . 3 ⊢ ( ≼ ∩ ◡ ≼ ) ⊆ ≼ | |
3 | reldom 8999 | . . 3 ⊢ Rel ≼ | |
4 | relss 5798 | . . 3 ⊢ (( ≼ ∩ ◡ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ◡ ≼ ))) | |
5 | 2, 3, 4 | mp2 9 | . 2 ⊢ Rel ( ≼ ∩ ◡ ≼ ) |
6 | brin 5203 | . . 3 ⊢ (𝑥( ≼ ∩ ◡ ≼ )𝑦 ↔ (𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦)) | |
7 | vex 3485 | . . . . 5 ⊢ 𝑥 ∈ V | |
8 | vex 3485 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5900 | . . . 4 ⊢ (𝑥◡ ≼ 𝑦 ↔ 𝑦 ≼ 𝑥) |
10 | 9 | anbi2i 623 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑥◡ ≼ 𝑦) ↔ (𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥)) |
11 | sbthb 9142 | . . 3 ⊢ ((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) ↔ 𝑥 ≈ 𝑦) | |
12 | 6, 10, 11 | 3bitrri 298 | . 2 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑥( ≼ ∩ ◡ ≼ )𝑦) |
13 | 1, 5, 12 | eqbrriv 5808 | 1 ⊢ ≈ = ( ≼ ∩ ◡ ≼ ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∩ cin 3965 ⊆ wss 3966 class class class wbr 5151 ◡ccnv 5692 Rel wrel 5698 ≈ cen 8990 ≼ cdom 8991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-er 8753 df-en 8994 df-dom 8995 |
This theorem is referenced by: dfsdom2 9144 |
Copyright terms: Public domain | W3C validator |