MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthcl Structured version   Visualization version   GIF version

Theorem sbthcl 9040
Description: Schroeder-Bernstein Theorem in class form. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
sbthcl ≈ = ( ≼ ∩ ≼ )

Proof of Theorem sbthcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 8900 . 2 Rel ≈
2 inss1 4196 . . 3 ( ≼ ∩ ≼ ) ⊆ ≼
3 reldom 8901 . . 3 Rel ≼
4 relss 5736 . . 3 (( ≼ ∩ ≼ ) ⊆ ≼ → (Rel ≼ → Rel ( ≼ ∩ ≼ )))
52, 3, 4mp2 9 . 2 Rel ( ≼ ∩ ≼ )
6 brin 5154 . . 3 (𝑥( ≼ ∩ ≼ )𝑦 ↔ (𝑥𝑦𝑥𝑦))
7 vex 3448 . . . . 5 𝑥 ∈ V
8 vex 3448 . . . . 5 𝑦 ∈ V
97, 8brcnv 5836 . . . 4 (𝑥𝑦𝑦𝑥)
109anbi2i 623 . . 3 ((𝑥𝑦𝑥𝑦) ↔ (𝑥𝑦𝑦𝑥))
11 sbthb 9039 . . 3 ((𝑥𝑦𝑦𝑥) ↔ 𝑥𝑦)
126, 10, 113bitrri 298 . 2 (𝑥𝑦𝑥( ≼ ∩ ≼ )𝑦)
131, 5, 12eqbrriv 5745 1 ≈ = ( ≼ ∩ ≼ )
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cin 3910  wss 3911   class class class wbr 5102  ccnv 5630  Rel wrel 5636  cen 8892  cdom 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-er 8648  df-en 8896  df-dom 8897
This theorem is referenced by:  dfsdom2  9041
  Copyright terms: Public domain W3C validator