MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Visualization version   GIF version

Theorem aalioulem3 26299
Description: Lemma for aaliou 26303. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Distinct variable groups:   𝜑,𝑥,𝑟   𝑥,𝐴,𝑟   𝑥,𝐹,𝑟
Allowed substitution hints:   𝑁(𝑥,𝑟)

Proof of Theorem aalioulem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5 (𝜑𝐴 ∈ ℝ)
2 1re 11240 . . . . 5 1 ∈ ℝ
3 resubcl 11552 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
41, 2, 3sylancl 586 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ)
5 peano2re 11413 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
61, 5syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
7 reelprrecn 11226 . . . . 5 ℝ ∈ {ℝ, ℂ}
8 ssid 3986 . . . . . . . . 9 ℂ ⊆ ℂ
9 fncpn 25892 . . . . . . . . 9 (ℂ ⊆ ℂ → (𝓑C𝑛‘ℂ) Fn ℕ0)
108, 9ax-mp 5 . . . . . . . 8 (𝓑C𝑛‘ℂ) Fn ℕ0
11 1nn0 12522 . . . . . . . 8 1 ∈ ℕ0
12 fnfvelrn 7075 . . . . . . . 8 (((𝓑C𝑛‘ℂ) Fn ℕ0 ∧ 1 ∈ ℕ0) → ((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ))
1310, 11, 12mp2an 692 . . . . . . 7 ((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ)
14 intss1 4944 . . . . . . 7 (((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ) → ran (𝓑C𝑛‘ℂ) ⊆ ((𝓑C𝑛‘ℂ)‘1))
1513, 14ax-mp 5 . . . . . 6 ran (𝓑C𝑛‘ℂ) ⊆ ((𝓑C𝑛‘ℂ)‘1)
16 aalioulem2.b . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℤ))
17 plycpn 26254 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹 ran (𝓑C𝑛‘ℂ))
1816, 17syl 17 . . . . . 6 (𝜑𝐹 ran (𝓑C𝑛‘ℂ))
1915, 18sselid 3961 . . . . 5 (𝜑𝐹 ∈ ((𝓑C𝑛‘ℂ)‘1))
20 cpnres 25896 . . . . 5 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘1)) → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1))
217, 19, 20sylancr 587 . . . 4 (𝜑 → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1))
22 df-ima 5672 . . . . 5 (𝐹 “ ℝ) = ran (𝐹 ↾ ℝ)
23 zssre 12600 . . . . . . . . 9 ℤ ⊆ ℝ
24 ax-resscn 11191 . . . . . . . . 9 ℝ ⊆ ℂ
25 plyss 26161 . . . . . . . . 9 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
2623, 24, 25mp2an 692 . . . . . . . 8 (Poly‘ℤ) ⊆ (Poly‘ℝ)
2726, 16sselid 3961 . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℝ))
28 plyreres 26247 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
2927, 28syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℝ)
3029frnd 6719 . . . . 5 (𝜑 → ran (𝐹 ↾ ℝ) ⊆ ℝ)
3122, 30eqsstrid 4002 . . . 4 (𝜑 → (𝐹 “ ℝ) ⊆ ℝ)
32 iccssre 13451 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
334, 6, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
3433, 24sstrdi 3976 . . . . 5 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℂ)
35 plyf 26160 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3616, 35syl 17 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
3736fdmd 6721 . . . . 5 (𝜑 → dom 𝐹 = ℂ)
3834, 37sseqtrrd 4001 . . . 4 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ dom 𝐹)
394, 6, 21, 31, 38c1lip3 25961 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))))
40 simp2 1137 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℝ)
4140recnd 11268 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℂ)
421adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ℝ)
43423ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℝ)
4443recnd 11268 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℂ)
4541, 44abssubd 15477 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) = (abs‘(𝐴𝑟)))
46 simp3 1138 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝐴𝑟)) ≤ 1)
4745, 46eqbrtrd 5146 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) ≤ 1)
48 1red 11241 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 1 ∈ ℝ)
49 elicc4abs 15343 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5043, 48, 40, 49syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5147, 50mpbird 257 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
521recnd 11268 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
5352subidd 11587 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐴) = 0)
5453fveq2d 6885 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
55 abs0 15309 . . . . . . . . . . . . . . 15 (abs‘0) = 0
56 0le1 11765 . . . . . . . . . . . . . . 15 0 ≤ 1
5755, 56eqbrtri 5145 . . . . . . . . . . . . . 14 (abs‘0) ≤ 1
5854, 57eqbrtrdi 5163 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐴)) ≤ 1)
59 1red 11241 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
60 elicc4abs 15343 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
611, 59, 1, 60syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
6258, 61mpbird 257 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
6362adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
64633ad2ant1 1133 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
65 fveq2 6881 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
6665oveq2d 7426 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → ((𝐹𝑐) − (𝐹𝑏)) = ((𝐹𝑐) − (𝐹𝑟)))
6766fveq2d 6885 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (abs‘((𝐹𝑐) − (𝐹𝑏))) = (abs‘((𝐹𝑐) − (𝐹𝑟))))
68 oveq2 7418 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝑐𝑏) = (𝑐𝑟))
6968fveq2d 6885 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝑐𝑏)) = (abs‘(𝑐𝑟)))
7069oveq2d 7426 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (𝑎 · (abs‘(𝑐𝑏))) = (𝑎 · (abs‘(𝑐𝑟))))
7167, 70breq12d 5137 . . . . . . . . . . 11 (𝑏 = 𝑟 → ((abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) ↔ (abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟)))))
72 fveq2 6881 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
7372fvoveq1d 7432 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (abs‘((𝐹𝑐) − (𝐹𝑟))) = (abs‘((𝐹𝐴) − (𝐹𝑟))))
74 fvoveq1 7433 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (abs‘(𝑐𝑟)) = (abs‘(𝐴𝑟)))
7574oveq2d 7426 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (𝑎 · (abs‘(𝑐𝑟))) = (𝑎 · (abs‘(𝐴𝑟))))
7673, 75breq12d 5137 . . . . . . . . . . 11 (𝑐 = 𝐴 → ((abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟))) ↔ (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7771, 76rspc2v 3617 . . . . . . . . . 10 ((𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ∧ 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1))) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7851, 64, 77syl2anc 584 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
79 simp1l 1198 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝜑)
80 aalioulem3.e . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 0)
8179, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) = 0)
82 0cn 11232 . . . . . . . . . . . . 13 0 ∈ ℂ
8381, 82eqeltrdi 2843 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) ∈ ℂ)
8436adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ ℝ) → 𝐹:ℂ⟶ℂ)
85843ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐹:ℂ⟶ℂ)
8685, 41ffvelcdmd 7080 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝑟) ∈ ℂ)
8783, 86abssubd 15477 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘((𝐹𝑟) − (𝐹𝐴))))
8881oveq2d 7426 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = ((𝐹𝑟) − 0))
8986subid1d 11588 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − 0) = (𝐹𝑟))
9088, 89eqtrd 2771 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = (𝐹𝑟))
9190fveq2d 6885 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝑟) − (𝐹𝐴))) = (abs‘(𝐹𝑟)))
9287, 91eqtrd 2771 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘(𝐹𝑟)))
9392breq1d 5134 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟))) ↔ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
9478, 93sylibd 239 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
95943exp 1119 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9695com34 91 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9796com23 86 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9897ralrimdv 3139 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
9998reximdva 3154 . . 3 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
10039, 99mpd 15 . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
101 1rp 13017 . . . . . 6 1 ∈ ℝ+
102101a1i 11 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 = 0) → 1 ∈ ℝ+)
103 recn 11224 . . . . . . . 8 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
104103adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
105 neqne 2941 . . . . . . 7 𝑎 = 0 → 𝑎 ≠ 0)
106 absrpcl 15312 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
107104, 105, 106syl2an 596 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (abs‘𝑎) ∈ ℝ+)
108107rpreccld 13066 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (1 / (abs‘𝑎)) ∈ ℝ+)
109102, 108ifclda 4541 . . . 4 ((𝜑𝑎 ∈ ℝ) → if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+)
110 eqid 2736 . . . . . . . . 9 if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎)))
111 eqif 4547 . . . . . . . . 9 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ↔ ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))))
112110, 111mpbi 230 . . . . . . . 8 ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))))
113 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
114 oveq1 7417 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
115114adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
1161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐴 ∈ ℝ)
117 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℝ)
118116, 117resubcld 11670 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℝ)
119118recnd 11268 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℂ)
120119abscld 15460 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℝ)
121120recnd 11268 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐴𝑟)) ∈ ℂ)
123122mul02d 11438 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (0 · (abs‘(𝐴𝑟))) = 0)
124115, 123eqtrd 2771 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = 0)
125113, 124breqtrd 5150 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ 0)
12636ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐹:ℂ⟶ℂ)
127117recnd 11268 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℂ)
128126, 127ffvelcdmd 7080 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐹𝑟) ∈ ℂ)
129128adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐹𝑟) ∈ ℂ)
130129absge0d 15468 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐹𝑟)))
131128abscld 15460 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ∈ ℝ)
132131adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
133 0re 11242 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
134 letri3 11325 . . . . . . . . . . . . . . . 16 (((abs‘(𝐹𝑟)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
135132, 133, 134sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
136125, 130, 135mpbir2and 713 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) = 0)
137136oveq2d 7426 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = (1 · 0))
138 ax-1cn 11192 . . . . . . . . . . . . . 14 1 ∈ ℂ
139138mul01i 11430 . . . . . . . . . . . . 13 (1 · 0) = 0
140137, 139eqtrdi 2787 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = 0)
141119adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐴𝑟) ∈ ℂ)
142141absge0d 15468 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐴𝑟)))
143140, 142eqbrtrd 5146 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
144 oveq1 7417 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = (1 · (abs‘(𝐹𝑟))))
145144breq1d 5134 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
146143, 145syl5ibrcom 247 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
147146expimpd 453 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
148 df-ne 2934 . . . . . . . . . . . 12 (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0)
149131adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
150149recnd 11268 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℂ)
151 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℝ)
152151recnd 11268 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
153152, 106sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
154153rpcnne0d 13065 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0))
155 divrec2 11918 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ (abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
1561553expb 1120 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0)) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
157150, 154, 156syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
158 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℝ)
159158, 120remulcld 11270 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ∈ ℝ)
160158recnd 11268 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℂ)
161160abscld 15460 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘𝑎) ∈ ℝ)
162161, 120remulcld 11270 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((abs‘𝑎) · (abs‘(𝐴𝑟))) ∈ ℝ)
163 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
164119absge0d 15468 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 0 ≤ (abs‘(𝐴𝑟)))
165 leabs 15323 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → 𝑎 ≤ (abs‘𝑎))
166165ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ≤ (abs‘𝑎))
167158, 161, 120, 164, 166lemul1ad 12186 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
168131, 159, 162, 163, 167letrd 11397 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
169168adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
170120adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐴𝑟)) ∈ ℝ)
171149, 170, 153ledivmuld 13109 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟)))))
172169, 171mpbird 257 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)))
173157, 172eqbrtrrd 5148 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
174148, 173sylan2br 595 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
175 oveq1 7417 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
176175breq1d 5134 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
177174, 176syl5ibrcom 247 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
178177expimpd 453 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
179147, 178jaod 859 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
180112, 179mpi 20 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
181180expr 456 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → ((abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
182181imim2d 57 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
183182ralimdva 3153 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
184 oveq1 7417 . . . . . . . 8 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (𝑥 · (abs‘(𝐹𝑟))) = (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))))
185184breq1d 5134 . . . . . . 7 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → ((𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
186185imbi2d 340 . . . . . 6 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
187186ralbidv 3164 . . . . 5 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
188187rspcev 3606 . . . 4 ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
189109, 183, 188syl6an 684 . . 3 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
190189rexlimdva 3142 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
191100, 190mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  ifcif 4505  {cpr 4608   cint 4927   class class class wbr 5124  dom cdm 5659  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cle 11275  cmin 11471   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  +crp 13013  [,]cicc 13370  abscabs 15258  𝓑C𝑛ccpn 25823  Polycply 26146  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-0p 25628  df-limc 25824  df-dv 25825  df-dvn 25826  df-cpn 25827  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  aalioulem4  26300
  Copyright terms: Public domain W3C validator