MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Visualization version   GIF version

Theorem aalioulem3 26242
Description: Lemma for aaliou 26246. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Distinct variable groups:   𝜑,𝑥,𝑟   𝑥,𝐴,𝑟   𝑥,𝐹,𝑟
Allowed substitution hints:   𝑁(𝑥,𝑟)

Proof of Theorem aalioulem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5 (𝜑𝐴 ∈ ℝ)
2 1re 11174 . . . . 5 1 ∈ ℝ
3 resubcl 11486 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
41, 2, 3sylancl 586 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ)
5 peano2re 11347 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
61, 5syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
7 reelprrecn 11160 . . . . 5 ℝ ∈ {ℝ, ℂ}
8 ssid 3969 . . . . . . . . 9 ℂ ⊆ ℂ
9 fncpn 25835 . . . . . . . . 9 (ℂ ⊆ ℂ → (𝓑C𝑛‘ℂ) Fn ℕ0)
108, 9ax-mp 5 . . . . . . . 8 (𝓑C𝑛‘ℂ) Fn ℕ0
11 1nn0 12458 . . . . . . . 8 1 ∈ ℕ0
12 fnfvelrn 7052 . . . . . . . 8 (((𝓑C𝑛‘ℂ) Fn ℕ0 ∧ 1 ∈ ℕ0) → ((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ))
1310, 11, 12mp2an 692 . . . . . . 7 ((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ)
14 intss1 4927 . . . . . . 7 (((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ) → ran (𝓑C𝑛‘ℂ) ⊆ ((𝓑C𝑛‘ℂ)‘1))
1513, 14ax-mp 5 . . . . . 6 ran (𝓑C𝑛‘ℂ) ⊆ ((𝓑C𝑛‘ℂ)‘1)
16 aalioulem2.b . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℤ))
17 plycpn 26197 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹 ran (𝓑C𝑛‘ℂ))
1816, 17syl 17 . . . . . 6 (𝜑𝐹 ran (𝓑C𝑛‘ℂ))
1915, 18sselid 3944 . . . . 5 (𝜑𝐹 ∈ ((𝓑C𝑛‘ℂ)‘1))
20 cpnres 25839 . . . . 5 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘1)) → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1))
217, 19, 20sylancr 587 . . . 4 (𝜑 → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1))
22 df-ima 5651 . . . . 5 (𝐹 “ ℝ) = ran (𝐹 ↾ ℝ)
23 zssre 12536 . . . . . . . . 9 ℤ ⊆ ℝ
24 ax-resscn 11125 . . . . . . . . 9 ℝ ⊆ ℂ
25 plyss 26104 . . . . . . . . 9 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
2623, 24, 25mp2an 692 . . . . . . . 8 (Poly‘ℤ) ⊆ (Poly‘ℝ)
2726, 16sselid 3944 . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℝ))
28 plyreres 26190 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
2927, 28syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℝ)
3029frnd 6696 . . . . 5 (𝜑 → ran (𝐹 ↾ ℝ) ⊆ ℝ)
3122, 30eqsstrid 3985 . . . 4 (𝜑 → (𝐹 “ ℝ) ⊆ ℝ)
32 iccssre 13390 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
334, 6, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
3433, 24sstrdi 3959 . . . . 5 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℂ)
35 plyf 26103 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3616, 35syl 17 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
3736fdmd 6698 . . . . 5 (𝜑 → dom 𝐹 = ℂ)
3834, 37sseqtrrd 3984 . . . 4 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ dom 𝐹)
394, 6, 21, 31, 38c1lip3 25904 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))))
40 simp2 1137 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℝ)
4140recnd 11202 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℂ)
421adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ℝ)
43423ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℝ)
4443recnd 11202 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℂ)
4541, 44abssubd 15422 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) = (abs‘(𝐴𝑟)))
46 simp3 1138 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝐴𝑟)) ≤ 1)
4745, 46eqbrtrd 5129 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) ≤ 1)
48 1red 11175 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 1 ∈ ℝ)
49 elicc4abs 15286 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5043, 48, 40, 49syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5147, 50mpbird 257 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
521recnd 11202 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
5352subidd 11521 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐴) = 0)
5453fveq2d 6862 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
55 abs0 15251 . . . . . . . . . . . . . . 15 (abs‘0) = 0
56 0le1 11701 . . . . . . . . . . . . . . 15 0 ≤ 1
5755, 56eqbrtri 5128 . . . . . . . . . . . . . 14 (abs‘0) ≤ 1
5854, 57eqbrtrdi 5146 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐴)) ≤ 1)
59 1red 11175 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
60 elicc4abs 15286 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
611, 59, 1, 60syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
6258, 61mpbird 257 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
6362adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
64633ad2ant1 1133 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
65 fveq2 6858 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
6665oveq2d 7403 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → ((𝐹𝑐) − (𝐹𝑏)) = ((𝐹𝑐) − (𝐹𝑟)))
6766fveq2d 6862 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (abs‘((𝐹𝑐) − (𝐹𝑏))) = (abs‘((𝐹𝑐) − (𝐹𝑟))))
68 oveq2 7395 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝑐𝑏) = (𝑐𝑟))
6968fveq2d 6862 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝑐𝑏)) = (abs‘(𝑐𝑟)))
7069oveq2d 7403 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (𝑎 · (abs‘(𝑐𝑏))) = (𝑎 · (abs‘(𝑐𝑟))))
7167, 70breq12d 5120 . . . . . . . . . . 11 (𝑏 = 𝑟 → ((abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) ↔ (abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟)))))
72 fveq2 6858 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
7372fvoveq1d 7409 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (abs‘((𝐹𝑐) − (𝐹𝑟))) = (abs‘((𝐹𝐴) − (𝐹𝑟))))
74 fvoveq1 7410 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (abs‘(𝑐𝑟)) = (abs‘(𝐴𝑟)))
7574oveq2d 7403 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (𝑎 · (abs‘(𝑐𝑟))) = (𝑎 · (abs‘(𝐴𝑟))))
7673, 75breq12d 5120 . . . . . . . . . . 11 (𝑐 = 𝐴 → ((abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟))) ↔ (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7771, 76rspc2v 3599 . . . . . . . . . 10 ((𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ∧ 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1))) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7851, 64, 77syl2anc 584 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
79 simp1l 1198 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝜑)
80 aalioulem3.e . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 0)
8179, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) = 0)
82 0cn 11166 . . . . . . . . . . . . 13 0 ∈ ℂ
8381, 82eqeltrdi 2836 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) ∈ ℂ)
8436adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ ℝ) → 𝐹:ℂ⟶ℂ)
85843ad2ant1 1133 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐹:ℂ⟶ℂ)
8685, 41ffvelcdmd 7057 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝑟) ∈ ℂ)
8783, 86abssubd 15422 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘((𝐹𝑟) − (𝐹𝐴))))
8881oveq2d 7403 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = ((𝐹𝑟) − 0))
8986subid1d 11522 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − 0) = (𝐹𝑟))
9088, 89eqtrd 2764 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = (𝐹𝑟))
9190fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝑟) − (𝐹𝐴))) = (abs‘(𝐹𝑟)))
9287, 91eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘(𝐹𝑟)))
9392breq1d 5117 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟))) ↔ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
9478, 93sylibd 239 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
95943exp 1119 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9695com34 91 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9796com23 86 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9897ralrimdv 3131 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
9998reximdva 3146 . . 3 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
10039, 99mpd 15 . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
101 1rp 12955 . . . . . 6 1 ∈ ℝ+
102101a1i 11 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 = 0) → 1 ∈ ℝ+)
103 recn 11158 . . . . . . . 8 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
104103adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
105 neqne 2933 . . . . . . 7 𝑎 = 0 → 𝑎 ≠ 0)
106 absrpcl 15254 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
107104, 105, 106syl2an 596 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (abs‘𝑎) ∈ ℝ+)
108107rpreccld 13005 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (1 / (abs‘𝑎)) ∈ ℝ+)
109102, 108ifclda 4524 . . . 4 ((𝜑𝑎 ∈ ℝ) → if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+)
110 eqid 2729 . . . . . . . . 9 if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎)))
111 eqif 4530 . . . . . . . . 9 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ↔ ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))))
112110, 111mpbi 230 . . . . . . . 8 ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))))
113 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
114 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
115114adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
1161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐴 ∈ ℝ)
117 simprl 770 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℝ)
118116, 117resubcld 11606 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℝ)
119118recnd 11202 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℂ)
120119abscld 15405 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℝ)
121120recnd 11202 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐴𝑟)) ∈ ℂ)
123122mul02d 11372 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (0 · (abs‘(𝐴𝑟))) = 0)
124115, 123eqtrd 2764 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = 0)
125113, 124breqtrd 5133 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ 0)
12636ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐹:ℂ⟶ℂ)
127117recnd 11202 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℂ)
128126, 127ffvelcdmd 7057 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐹𝑟) ∈ ℂ)
129128adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐹𝑟) ∈ ℂ)
130129absge0d 15413 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐹𝑟)))
131128abscld 15405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ∈ ℝ)
132131adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
133 0re 11176 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
134 letri3 11259 . . . . . . . . . . . . . . . 16 (((abs‘(𝐹𝑟)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
135132, 133, 134sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
136125, 130, 135mpbir2and 713 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) = 0)
137136oveq2d 7403 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = (1 · 0))
138 ax-1cn 11126 . . . . . . . . . . . . . 14 1 ∈ ℂ
139138mul01i 11364 . . . . . . . . . . . . 13 (1 · 0) = 0
140137, 139eqtrdi 2780 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = 0)
141119adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐴𝑟) ∈ ℂ)
142141absge0d 15413 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐴𝑟)))
143140, 142eqbrtrd 5129 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
144 oveq1 7394 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = (1 · (abs‘(𝐹𝑟))))
145144breq1d 5117 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
146143, 145syl5ibrcom 247 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
147146expimpd 453 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
148 df-ne 2926 . . . . . . . . . . . 12 (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0)
149131adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
150149recnd 11202 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℂ)
151 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℝ)
152151recnd 11202 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
153152, 106sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
154153rpcnne0d 13004 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0))
155 divrec2 11854 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ (abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
1561553expb 1120 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0)) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
157150, 154, 156syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
158 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℝ)
159158, 120remulcld 11204 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ∈ ℝ)
160158recnd 11202 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℂ)
161160abscld 15405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘𝑎) ∈ ℝ)
162161, 120remulcld 11204 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((abs‘𝑎) · (abs‘(𝐴𝑟))) ∈ ℝ)
163 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
164119absge0d 15413 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 0 ≤ (abs‘(𝐴𝑟)))
165 leabs 15265 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → 𝑎 ≤ (abs‘𝑎))
166165ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ≤ (abs‘𝑎))
167158, 161, 120, 164, 166lemul1ad 12122 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
168131, 159, 162, 163, 167letrd 11331 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
169168adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
170120adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐴𝑟)) ∈ ℝ)
171149, 170, 153ledivmuld 13048 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟)))))
172169, 171mpbird 257 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)))
173157, 172eqbrtrrd 5131 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
174148, 173sylan2br 595 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
175 oveq1 7394 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
176175breq1d 5117 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
177174, 176syl5ibrcom 247 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
178177expimpd 453 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
179147, 178jaod 859 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
180112, 179mpi 20 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
181180expr 456 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → ((abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
182181imim2d 57 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
183182ralimdva 3145 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
184 oveq1 7394 . . . . . . . 8 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (𝑥 · (abs‘(𝐹𝑟))) = (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))))
185184breq1d 5117 . . . . . . 7 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → ((𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
186185imbi2d 340 . . . . . 6 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
187186ralbidv 3156 . . . . 5 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
188187rspcev 3588 . . . 4 ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
189109, 183, 188syl6an 684 . . 3 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
190189rexlimdva 3134 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
191100, 190mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914  ifcif 4488  {cpr 4591   cint 4910   class class class wbr 5107  dom cdm 5638  ran crn 5639  cres 5640  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  +crp 12951  [,]cicc 13309  abscabs 15200  𝓑C𝑛ccpn 25766  Polycply 26089  degcdgr 26092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-0p 25571  df-limc 25767  df-dv 25768  df-dvn 25769  df-cpn 25770  df-ply 26093  df-coe 26095  df-dgr 26096
This theorem is referenced by:  aalioulem4  26243
  Copyright terms: Public domain W3C validator