MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Visualization version   GIF version

Theorem aalioulem3 24380
Description: Lemma for aaliou 24384. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Distinct variable groups:   𝜑,𝑥,𝑟   𝑥,𝐴,𝑟   𝑥,𝐹,𝑟
Allowed substitution hints:   𝑁(𝑥,𝑟)

Proof of Theorem aalioulem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5 (𝜑𝐴 ∈ ℝ)
2 1re 10293 . . . . 5 1 ∈ ℝ
3 resubcl 10599 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
41, 2, 3sylancl 580 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ)
5 peano2re 10463 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
61, 5syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
7 reelprrecn 10281 . . . . 5 ℝ ∈ {ℝ, ℂ}
8 ssid 3783 . . . . . . . . 9 ℂ ⊆ ℂ
9 fncpn 23987 . . . . . . . . 9 (ℂ ⊆ ℂ → (Cn‘ℂ) Fn ℕ0)
108, 9ax-mp 5 . . . . . . . 8 (Cn‘ℂ) Fn ℕ0
11 1nn0 11556 . . . . . . . 8 1 ∈ ℕ0
12 fnfvelrn 6546 . . . . . . . 8 (((Cn‘ℂ) Fn ℕ0 ∧ 1 ∈ ℕ0) → ((Cn‘ℂ)‘1) ∈ ran (Cn‘ℂ))
1310, 11, 12mp2an 683 . . . . . . 7 ((Cn‘ℂ)‘1) ∈ ran (Cn‘ℂ)
14 intss1 4648 . . . . . . 7 (((Cn‘ℂ)‘1) ∈ ran (Cn‘ℂ) → ran (Cn‘ℂ) ⊆ ((Cn‘ℂ)‘1))
1513, 14ax-mp 5 . . . . . 6 ran (Cn‘ℂ) ⊆ ((Cn‘ℂ)‘1)
16 aalioulem2.b . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℤ))
17 plycpn 24335 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹 ran (Cn‘ℂ))
1816, 17syl 17 . . . . . 6 (𝜑𝐹 ran (Cn‘ℂ))
1915, 18sseldi 3759 . . . . 5 (𝜑𝐹 ∈ ((Cn‘ℂ)‘1))
20 cpnres 23991 . . . . 5 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘1)) → (𝐹 ↾ ℝ) ∈ ((Cn‘ℝ)‘1))
217, 19, 20sylancr 581 . . . 4 (𝜑 → (𝐹 ↾ ℝ) ∈ ((Cn‘ℝ)‘1))
22 df-ima 5290 . . . . 5 (𝐹 “ ℝ) = ran (𝐹 ↾ ℝ)
23 zssre 11631 . . . . . . . . 9 ℤ ⊆ ℝ
24 ax-resscn 10246 . . . . . . . . 9 ℝ ⊆ ℂ
25 plyss 24246 . . . . . . . . 9 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
2623, 24, 25mp2an 683 . . . . . . . 8 (Poly‘ℤ) ⊆ (Poly‘ℝ)
2726, 16sseldi 3759 . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℝ))
28 plyreres 24329 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
2927, 28syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℝ)
3029frnd 6230 . . . . 5 (𝜑 → ran (𝐹 ↾ ℝ) ⊆ ℝ)
3122, 30syl5eqss 3809 . . . 4 (𝜑 → (𝐹 “ ℝ) ⊆ ℝ)
32 iccssre 12457 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
334, 6, 32syl2anc 579 . . . . . 6 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
3433, 24syl6ss 3773 . . . . 5 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℂ)
35 plyf 24245 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3616, 35syl 17 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
3736fdmd 6232 . . . . 5 (𝜑 → dom 𝐹 = ℂ)
3834, 37sseqtr4d 3802 . . . 4 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ dom 𝐹)
394, 6, 21, 31, 38c1lip3 24053 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))))
40 simp2 1167 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℝ)
4140recnd 10322 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℂ)
421adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ℝ)
43423ad2ant1 1163 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℝ)
4443recnd 10322 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℂ)
4541, 44abssubd 14479 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) = (abs‘(𝐴𝑟)))
46 simp3 1168 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝐴𝑟)) ≤ 1)
4745, 46eqbrtrd 4831 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) ≤ 1)
48 1red 10294 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 1 ∈ ℝ)
49 elicc4abs 14346 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5043, 48, 40, 49syl3anc 1490 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5147, 50mpbird 248 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
521recnd 10322 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
5352subidd 10634 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐴) = 0)
5453fveq2d 6379 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
55 abs0 14312 . . . . . . . . . . . . . . 15 (abs‘0) = 0
56 0le1 10805 . . . . . . . . . . . . . . 15 0 ≤ 1
5755, 56eqbrtri 4830 . . . . . . . . . . . . . 14 (abs‘0) ≤ 1
5854, 57syl6eqbr 4848 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐴)) ≤ 1)
59 1red 10294 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
60 elicc4abs 14346 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
611, 59, 1, 60syl3anc 1490 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
6258, 61mpbird 248 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
6362adantr 472 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
64633ad2ant1 1163 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
65 fveq2 6375 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
6665oveq2d 6858 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → ((𝐹𝑐) − (𝐹𝑏)) = ((𝐹𝑐) − (𝐹𝑟)))
6766fveq2d 6379 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (abs‘((𝐹𝑐) − (𝐹𝑏))) = (abs‘((𝐹𝑐) − (𝐹𝑟))))
68 oveq2 6850 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝑐𝑏) = (𝑐𝑟))
6968fveq2d 6379 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝑐𝑏)) = (abs‘(𝑐𝑟)))
7069oveq2d 6858 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (𝑎 · (abs‘(𝑐𝑏))) = (𝑎 · (abs‘(𝑐𝑟))))
7167, 70breq12d 4822 . . . . . . . . . . 11 (𝑏 = 𝑟 → ((abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) ↔ (abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟)))))
72 fveq2 6375 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
7372fvoveq1d 6864 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (abs‘((𝐹𝑐) − (𝐹𝑟))) = (abs‘((𝐹𝐴) − (𝐹𝑟))))
74 fvoveq1 6865 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (abs‘(𝑐𝑟)) = (abs‘(𝐴𝑟)))
7574oveq2d 6858 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (𝑎 · (abs‘(𝑐𝑟))) = (𝑎 · (abs‘(𝐴𝑟))))
7673, 75breq12d 4822 . . . . . . . . . . 11 (𝑐 = 𝐴 → ((abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟))) ↔ (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7771, 76rspc2v 3474 . . . . . . . . . 10 ((𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ∧ 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1))) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7851, 64, 77syl2anc 579 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
79 simp1l 1254 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝜑)
80 aalioulem3.e . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 0)
8179, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) = 0)
82 0cn 10285 . . . . . . . . . . . . 13 0 ∈ ℂ
8381, 82syl6eqel 2852 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) ∈ ℂ)
8436adantr 472 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ ℝ) → 𝐹:ℂ⟶ℂ)
85843ad2ant1 1163 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐹:ℂ⟶ℂ)
8685, 41ffvelrnd 6550 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝑟) ∈ ℂ)
8783, 86abssubd 14479 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘((𝐹𝑟) − (𝐹𝐴))))
8881oveq2d 6858 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = ((𝐹𝑟) − 0))
8986subid1d 10635 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − 0) = (𝐹𝑟))
9088, 89eqtrd 2799 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = (𝐹𝑟))
9190fveq2d 6379 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝑟) − (𝐹𝐴))) = (abs‘(𝐹𝑟)))
9287, 91eqtrd 2799 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘(𝐹𝑟)))
9392breq1d 4819 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟))) ↔ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
9478, 93sylibd 230 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
95943exp 1148 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9695com34 91 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9796com23 86 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9897ralrimdv 3115 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
9998reximdva 3163 . . 3 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
10039, 99mpd 15 . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
101 1rp 12032 . . . . . 6 1 ∈ ℝ+
102101a1i 11 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 = 0) → 1 ∈ ℝ+)
103 recn 10279 . . . . . . . 8 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
104103adantl 473 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
105 df-ne 2938 . . . . . . . 8 (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0)
106105biimpri 219 . . . . . . 7 𝑎 = 0 → 𝑎 ≠ 0)
107 absrpcl 14315 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
108104, 106, 107syl2an 589 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (abs‘𝑎) ∈ ℝ+)
109108rpreccld 12080 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (1 / (abs‘𝑎)) ∈ ℝ+)
110102, 109ifclda 4277 . . . 4 ((𝜑𝑎 ∈ ℝ) → if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+)
111 eqid 2765 . . . . . . . . 9 if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎)))
112 eqif 4283 . . . . . . . . 9 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ↔ ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))))
113111, 112mpbi 221 . . . . . . . 8 ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))))
114 simplrr 796 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
115 oveq1 6849 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
116115adantl 473 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
1171ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐴 ∈ ℝ)
118 simprl 787 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℝ)
119117, 118resubcld 10712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℝ)
120119recnd 10322 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℂ)
121120abscld 14462 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℝ)
122121recnd 10322 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℂ)
123122adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐴𝑟)) ∈ ℂ)
124123mul02d 10488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (0 · (abs‘(𝐴𝑟))) = 0)
125116, 124eqtrd 2799 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = 0)
126114, 125breqtrd 4835 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ 0)
12736ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐹:ℂ⟶ℂ)
128118recnd 10322 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℂ)
129127, 128ffvelrnd 6550 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐹𝑟) ∈ ℂ)
130129adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐹𝑟) ∈ ℂ)
131130absge0d 14470 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐹𝑟)))
132129abscld 14462 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ∈ ℝ)
133132adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
134 0re 10295 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
135 letri3 10377 . . . . . . . . . . . . . . . 16 (((abs‘(𝐹𝑟)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
136133, 134, 135sylancl 580 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
137126, 131, 136mpbir2and 704 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) = 0)
138137oveq2d 6858 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = (1 · 0))
139 ax-1cn 10247 . . . . . . . . . . . . . 14 1 ∈ ℂ
140139mul01i 10480 . . . . . . . . . . . . 13 (1 · 0) = 0
141138, 140syl6eq 2815 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = 0)
142120adantr 472 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐴𝑟) ∈ ℂ)
143142absge0d 14470 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐴𝑟)))
144141, 143eqbrtrd 4831 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
145 oveq1 6849 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = (1 · (abs‘(𝐹𝑟))))
146145breq1d 4819 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
147144, 146syl5ibrcom 238 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
148147expimpd 445 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
149132adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
150149recnd 10322 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℂ)
151 simpllr 793 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℝ)
152151recnd 10322 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
153152, 107sylancom 582 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
154153rpcnne0d 12079 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0))
155 divrec2 10956 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ (abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
1561553expb 1149 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0)) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
157150, 154, 156syl2anc 579 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
158 simplr 785 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℝ)
159158, 121remulcld 10324 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ∈ ℝ)
160158recnd 10322 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℂ)
161160abscld 14462 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘𝑎) ∈ ℝ)
162161, 121remulcld 10324 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((abs‘𝑎) · (abs‘(𝐴𝑟))) ∈ ℝ)
163 simprr 789 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
164120absge0d 14470 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 0 ≤ (abs‘(𝐴𝑟)))
165 leabs 14326 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → 𝑎 ≤ (abs‘𝑎))
166165ad2antlr 718 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ≤ (abs‘𝑎))
167158, 161, 121, 164, 166lemul1ad 11217 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
168132, 159, 162, 163, 167letrd 10448 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
169168adantr 472 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
170121adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐴𝑟)) ∈ ℝ)
171149, 170, 153ledivmuld 12123 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟)))))
172169, 171mpbird 248 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)))
173157, 172eqbrtrrd 4833 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
174105, 173sylan2br 588 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
175 oveq1 6849 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
176175breq1d 4819 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
177174, 176syl5ibrcom 238 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
178177expimpd 445 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
179148, 178jaod 885 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
180113, 179mpi 20 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
181180expr 448 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → ((abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
182181imim2d 57 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
183182ralimdva 3109 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
184 oveq1 6849 . . . . . . . 8 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (𝑥 · (abs‘(𝐹𝑟))) = (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))))
185184breq1d 4819 . . . . . . 7 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → ((𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
186185imbi2d 331 . . . . . 6 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
187186ralbidv 3133 . . . . 5 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
188187rspcev 3461 . . . 4 ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
189110, 183, 188syl6an 674 . . 3 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
190189rexlimdva 3178 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
191100, 190mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3732  ifcif 4243  {cpr 4336   cint 4633   class class class wbr 4809  dom cdm 5277  ran crn 5278  cres 5279  cima 5280   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cle 10329  cmin 10520   / cdiv 10938  cn 11274  0cn0 11538  cz 11624  +crp 12028  [,]cicc 12380  abscabs 14261  Cnccpn 23920  Polycply 24231  degcdgr 24234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-rlim 14507  df-sum 14704  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-grp 17694  df-minusg 17695  df-mulg 17810  df-subg 17857  df-cntz 18015  df-cmn 18461  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-subrg 19047  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-0p 23728  df-limc 23921  df-dv 23922  df-dvn 23923  df-cpn 23924  df-ply 24235  df-coe 24237  df-dgr 24238
This theorem is referenced by:  aalioulem4  24381
  Copyright terms: Public domain W3C validator