MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Visualization version   GIF version

Theorem aalioulem3 25022
Description: Lemma for aaliou 25026. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem3 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Distinct variable groups:   𝜑,𝑥,𝑟   𝑥,𝐴,𝑟   𝑥,𝐹,𝑟
Allowed substitution hints:   𝑁(𝑥,𝑟)

Proof of Theorem aalioulem3
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5 (𝜑𝐴 ∈ ℝ)
2 1re 10672 . . . . 5 1 ∈ ℝ
3 resubcl 10981 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 − 1) ∈ ℝ)
41, 2, 3sylancl 590 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ)
5 peano2re 10844 . . . . 5 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
61, 5syl 17 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ)
7 reelprrecn 10660 . . . . 5 ℝ ∈ {ℝ, ℂ}
8 ssid 3915 . . . . . . . . 9 ℂ ⊆ ℂ
9 fncpn 24625 . . . . . . . . 9 (ℂ ⊆ ℂ → (𝓑C𝑛‘ℂ) Fn ℕ0)
108, 9ax-mp 5 . . . . . . . 8 (𝓑C𝑛‘ℂ) Fn ℕ0
11 1nn0 11943 . . . . . . . 8 1 ∈ ℕ0
12 fnfvelrn 6840 . . . . . . . 8 (((𝓑C𝑛‘ℂ) Fn ℕ0 ∧ 1 ∈ ℕ0) → ((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ))
1310, 11, 12mp2an 692 . . . . . . 7 ((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ)
14 intss1 4854 . . . . . . 7 (((𝓑C𝑛‘ℂ)‘1) ∈ ran (𝓑C𝑛‘ℂ) → ran (𝓑C𝑛‘ℂ) ⊆ ((𝓑C𝑛‘ℂ)‘1))
1513, 14ax-mp 5 . . . . . 6 ran (𝓑C𝑛‘ℂ) ⊆ ((𝓑C𝑛‘ℂ)‘1)
16 aalioulem2.b . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℤ))
17 plycpn 24977 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹 ran (𝓑C𝑛‘ℂ))
1816, 17syl 17 . . . . . 6 (𝜑𝐹 ran (𝓑C𝑛‘ℂ))
1915, 18sseldi 3891 . . . . 5 (𝜑𝐹 ∈ ((𝓑C𝑛‘ℂ)‘1))
20 cpnres 24629 . . . . 5 ((ℝ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((𝓑C𝑛‘ℂ)‘1)) → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1))
217, 19, 20sylancr 591 . . . 4 (𝜑 → (𝐹 ↾ ℝ) ∈ ((𝓑C𝑛‘ℝ)‘1))
22 df-ima 5538 . . . . 5 (𝐹 “ ℝ) = ran (𝐹 ↾ ℝ)
23 zssre 12020 . . . . . . . . 9 ℤ ⊆ ℝ
24 ax-resscn 10625 . . . . . . . . 9 ℝ ⊆ ℂ
25 plyss 24888 . . . . . . . . 9 ((ℤ ⊆ ℝ ∧ ℝ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℝ))
2623, 24, 25mp2an 692 . . . . . . . 8 (Poly‘ℤ) ⊆ (Poly‘ℝ)
2726, 16sseldi 3891 . . . . . . 7 (𝜑𝐹 ∈ (Poly‘ℝ))
28 plyreres 24971 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
2927, 28syl 17 . . . . . 6 (𝜑 → (𝐹 ↾ ℝ):ℝ⟶ℝ)
3029frnd 6506 . . . . 5 (𝜑 → ran (𝐹 ↾ ℝ) ⊆ ℝ)
3122, 30eqsstrid 3941 . . . 4 (𝜑 → (𝐹 “ ℝ) ⊆ ℝ)
32 iccssre 12854 . . . . . . 7 (((𝐴 − 1) ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
334, 6, 32syl2anc 588 . . . . . 6 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℝ)
3433, 24sstrdi 3905 . . . . 5 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ ℂ)
35 plyf 24887 . . . . . . 7 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3616, 35syl 17 . . . . . 6 (𝜑𝐹:ℂ⟶ℂ)
3736fdmd 6509 . . . . 5 (𝜑 → dom 𝐹 = ℂ)
3834, 37sseqtrrd 3934 . . . 4 (𝜑 → ((𝐴 − 1)[,](𝐴 + 1)) ⊆ dom 𝐹)
394, 6, 21, 31, 38c1lip3 24691 . . 3 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))))
40 simp2 1135 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℝ)
4140recnd 10700 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ℂ)
421adantr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ℝ)
43423ad2ant1 1131 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℝ)
4443recnd 10700 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ℂ)
4541, 44abssubd 14854 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) = (abs‘(𝐴𝑟)))
46 simp3 1136 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝐴𝑟)) ≤ 1)
4745, 46eqbrtrd 5055 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘(𝑟𝐴)) ≤ 1)
48 1red 10673 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 1 ∈ ℝ)
49 elicc4abs 14720 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5043, 48, 40, 49syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝑟𝐴)) ≤ 1))
5147, 50mpbird 260 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
521recnd 10700 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
5352subidd 11016 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐴) = 0)
5453fveq2d 6663 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐴)) = (abs‘0))
55 abs0 14686 . . . . . . . . . . . . . . 15 (abs‘0) = 0
56 0le1 11194 . . . . . . . . . . . . . . 15 0 ≤ 1
5755, 56eqbrtri 5054 . . . . . . . . . . . . . 14 (abs‘0) ≤ 1
5854, 57eqbrtrdi 5072 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐴)) ≤ 1)
59 1red 10673 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
60 elicc4abs 14720 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
611, 59, 1, 60syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ↔ (abs‘(𝐴𝐴)) ≤ 1))
6258, 61mpbird 260 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
6362adantr 485 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
64633ad2ant1 1131 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1)))
65 fveq2 6659 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝐹𝑏) = (𝐹𝑟))
6665oveq2d 7167 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → ((𝐹𝑐) − (𝐹𝑏)) = ((𝐹𝑐) − (𝐹𝑟)))
6766fveq2d 6663 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (abs‘((𝐹𝑐) − (𝐹𝑏))) = (abs‘((𝐹𝑐) − (𝐹𝑟))))
68 oveq2 7159 . . . . . . . . . . . . . 14 (𝑏 = 𝑟 → (𝑐𝑏) = (𝑐𝑟))
6968fveq2d 6663 . . . . . . . . . . . . 13 (𝑏 = 𝑟 → (abs‘(𝑐𝑏)) = (abs‘(𝑐𝑟)))
7069oveq2d 7167 . . . . . . . . . . . 12 (𝑏 = 𝑟 → (𝑎 · (abs‘(𝑐𝑏))) = (𝑎 · (abs‘(𝑐𝑟))))
7167, 70breq12d 5046 . . . . . . . . . . 11 (𝑏 = 𝑟 → ((abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) ↔ (abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟)))))
72 fveq2 6659 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (𝐹𝑐) = (𝐹𝐴))
7372fvoveq1d 7173 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (abs‘((𝐹𝑐) − (𝐹𝑟))) = (abs‘((𝐹𝐴) − (𝐹𝑟))))
74 fvoveq1 7174 . . . . . . . . . . . . 13 (𝑐 = 𝐴 → (abs‘(𝑐𝑟)) = (abs‘(𝐴𝑟)))
7574oveq2d 7167 . . . . . . . . . . . 12 (𝑐 = 𝐴 → (𝑎 · (abs‘(𝑐𝑟))) = (𝑎 · (abs‘(𝐴𝑟))))
7673, 75breq12d 5046 . . . . . . . . . . 11 (𝑐 = 𝐴 → ((abs‘((𝐹𝑐) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝑐𝑟))) ↔ (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7771, 76rspc2v 3552 . . . . . . . . . 10 ((𝑟 ∈ ((𝐴 − 1)[,](𝐴 + 1)) ∧ 𝐴 ∈ ((𝐴 − 1)[,](𝐴 + 1))) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
7851, 64, 77syl2anc 588 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
79 simp1l 1195 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝜑)
80 aalioulem3.e . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 0)
8179, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) = 0)
82 0cn 10664 . . . . . . . . . . . . 13 0 ∈ ℂ
8381, 82eqeltrdi 2861 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝐴) ∈ ℂ)
8436adantr 485 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ ℝ) → 𝐹:ℂ⟶ℂ)
85843ad2ant1 1131 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → 𝐹:ℂ⟶ℂ)
8685, 41ffvelrnd 6844 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (𝐹𝑟) ∈ ℂ)
8783, 86abssubd 14854 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘((𝐹𝑟) − (𝐹𝐴))))
8881oveq2d 7167 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = ((𝐹𝑟) − 0))
8986subid1d 11017 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − 0) = (𝐹𝑟))
9088, 89eqtrd 2794 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((𝐹𝑟) − (𝐹𝐴)) = (𝐹𝑟))
9190fveq2d 6663 . . . . . . . . . . 11 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝑟) − (𝐹𝐴))) = (abs‘(𝐹𝑟)))
9287, 91eqtrd 2794 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (abs‘((𝐹𝐴) − (𝐹𝑟))) = (abs‘(𝐹𝑟)))
9392breq1d 5043 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → ((abs‘((𝐹𝐴) − (𝐹𝑟))) ≤ (𝑎 · (abs‘(𝐴𝑟))) ↔ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
9478, 93sylibd 242 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ ∧ (abs‘(𝐴𝑟)) ≤ 1) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
95943exp 1117 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9695com34 91 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → (𝑟 ∈ ℝ → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9796com23 86 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → (𝑟 ∈ ℝ → ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))))
9897ralrimdv 3118 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
9998reximdva 3199 . . 3 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑏 ∈ ((𝐴 − 1)[,](𝐴 + 1))∀𝑐 ∈ ((𝐴 − 1)[,](𝐴 + 1))(abs‘((𝐹𝑐) − (𝐹𝑏))) ≤ (𝑎 · (abs‘(𝑐𝑏))) → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))))
10039, 99mpd 15 . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))))
101 1rp 12427 . . . . . 6 1 ∈ ℝ+
102101a1i 11 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑎 = 0) → 1 ∈ ℝ+)
103 recn 10658 . . . . . . . 8 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
104103adantl 486 . . . . . . 7 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℂ)
105 neqne 2960 . . . . . . 7 𝑎 = 0 → 𝑎 ≠ 0)
106 absrpcl 14689 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
107104, 105, 106syl2an 599 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (abs‘𝑎) ∈ ℝ+)
108107rpreccld 12475 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝑎 = 0) → (1 / (abs‘𝑎)) ∈ ℝ+)
109102, 108ifclda 4456 . . . 4 ((𝜑𝑎 ∈ ℝ) → if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+)
110 eqid 2759 . . . . . . . . 9 if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎)))
111 eqif 4462 . . . . . . . . 9 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ↔ ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))))
112110, 111mpbi 233 . . . . . . . 8 ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))))
113 simplrr 778 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
114 oveq1 7158 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
115114adantl 486 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = (0 · (abs‘(𝐴𝑟))))
1161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐴 ∈ ℝ)
117 simprl 771 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℝ)
118116, 117resubcld 11099 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℝ)
119118recnd 10700 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐴𝑟) ∈ ℂ)
120119abscld 14837 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℝ)
121120recnd 10700 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐴𝑟)) ∈ ℂ)
122121adantr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐴𝑟)) ∈ ℂ)
123122mul02d 10869 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (0 · (abs‘(𝐴𝑟))) = 0)
124115, 123eqtrd 2794 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝑎 · (abs‘(𝐴𝑟))) = 0)
125113, 124breqtrd 5059 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ≤ 0)
12636ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝐹:ℂ⟶ℂ)
127117recnd 10700 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑟 ∈ ℂ)
128126, 127ffvelrnd 6844 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝐹𝑟) ∈ ℂ)
129128adantr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐹𝑟) ∈ ℂ)
130129absge0d 14845 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐹𝑟)))
131128abscld 14837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ∈ ℝ)
132131adantr 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
133 0re 10674 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
134 letri3 10757 . . . . . . . . . . . . . . . 16 (((abs‘(𝐹𝑟)) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
135132, 133, 134sylancl 590 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → ((abs‘(𝐹𝑟)) = 0 ↔ ((abs‘(𝐹𝑟)) ≤ 0 ∧ 0 ≤ (abs‘(𝐹𝑟)))))
136125, 130, 135mpbir2and 713 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (abs‘(𝐹𝑟)) = 0)
137136oveq2d 7167 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = (1 · 0))
138 ax-1cn 10626 . . . . . . . . . . . . . 14 1 ∈ ℂ
139138mul01i 10861 . . . . . . . . . . . . 13 (1 · 0) = 0
140137, 139eqtrdi 2810 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) = 0)
141119adantr 485 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (𝐴𝑟) ∈ ℂ)
142141absge0d 14845 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → 0 ≤ (abs‘(𝐴𝑟)))
143140, 142eqbrtrd 5055 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
144 oveq1 7158 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = (1 · (abs‘(𝐹𝑟))))
145144breq1d 5043 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (1 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
146143, 145syl5ibrcom 250 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
147146expimpd 458 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
148 df-ne 2953 . . . . . . . . . . . 12 (𝑎 ≠ 0 ↔ ¬ 𝑎 = 0)
149131adantr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℝ)
150149recnd 10700 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ∈ ℂ)
151 simpllr 776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℝ)
152151recnd 10700 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
153152, 106sylancom 592 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘𝑎) ∈ ℝ+)
154153rpcnne0d 12474 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0))
155 divrec2 11346 . . . . . . . . . . . . . . 15 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ (abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
1561553expb 1118 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑟)) ∈ ℂ ∧ ((abs‘𝑎) ∈ ℂ ∧ (abs‘𝑎) ≠ 0)) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
157150, 154, 156syl2anc 588 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
158 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℝ)
159158, 120remulcld 10702 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ∈ ℝ)
160158recnd 10700 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ∈ ℂ)
161160abscld 14837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘𝑎) ∈ ℝ)
162161, 120remulcld 10702 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((abs‘𝑎) · (abs‘(𝐴𝑟))) ∈ ℝ)
163 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))
164119absge0d 14845 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 0 ≤ (abs‘(𝐴𝑟)))
165 leabs 14700 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℝ → 𝑎 ≤ (abs‘𝑎))
166165ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → 𝑎 ≤ (abs‘𝑎))
167158, 161, 120, 164, 166lemul1ad 11610 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (𝑎 · (abs‘(𝐴𝑟))) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
168131, 159, 162, 163, 167letrd 10828 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
169168adantr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟))))
170120adantr 485 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (abs‘(𝐴𝑟)) ∈ ℝ)
171149, 170, 153ledivmuld 12518 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → (((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐹𝑟)) ≤ ((abs‘𝑎) · (abs‘(𝐴𝑟)))))
172169, 171mpbird 260 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((abs‘(𝐹𝑟)) / (abs‘𝑎)) ≤ (abs‘(𝐴𝑟)))
173157, 172eqbrtrrd 5057 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ 𝑎 ≠ 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
174148, 173sylan2br 598 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
175 oveq1 7158 . . . . . . . . . . . 12 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) = ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))))
176175breq1d 5043 . . . . . . . . . . 11 (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ ((1 / (abs‘𝑎)) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
177174, 176syl5ibrcom 250 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) ∧ ¬ 𝑎 = 0) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
178177expimpd 458 . . . . . . . . 9 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → ((¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
179147, 178jaod 857 . . . . . . . 8 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (((𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = 1) ∨ (¬ 𝑎 = 0 ∧ if(𝑎 = 0, 1, (1 / (abs‘𝑎))) = (1 / (abs‘𝑎)))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
180112, 179mpi 20 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))
181180expr 461 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → ((abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟))) → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
182181imim2d 57 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝑟 ∈ ℝ) → (((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
183182ralimdva 3109 . . . 4 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
184 oveq1 7158 . . . . . . . 8 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (𝑥 · (abs‘(𝐹𝑟))) = (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))))
185184breq1d 5043 . . . . . . 7 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → ((𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)) ↔ (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
186185imbi2d 345 . . . . . 6 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
187186ralbidv 3127 . . . . 5 (𝑥 = if(𝑎 = 0, 1, (1 / (abs‘𝑎))) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))) ↔ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
188187rspcev 3542 . . . 4 ((if(𝑎 = 0, 1, (1 / (abs‘𝑎))) ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (if(𝑎 = 0, 1, (1 / (abs‘𝑎))) · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
189109, 183, 188syl6an 684 . . 3 ((𝜑𝑎 ∈ ℝ) → (∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
190189rexlimdva 3209 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (abs‘(𝐹𝑟)) ≤ (𝑎 · (abs‘(𝐴𝑟)))) → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟)))))
191100, 190mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑟 ∈ ℝ ((abs‘(𝐴𝑟)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑟))) ≤ (abs‘(𝐴𝑟))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  wrex 3072  wss 3859  ifcif 4421  {cpr 4525   cint 4839   class class class wbr 5033  dom cdm 5525  ran crn 5526  cres 5527  cima 5528   Fn wfn 6331  wf 6332  cfv 6336  (class class class)co 7151  cc 10566  cr 10567  0cc0 10568  1c1 10569   + caddc 10571   · cmul 10573  cle 10707  cmin 10901   / cdiv 11328  cn 11667  0cn0 11927  cz 12013  +crp 12423  [,]cicc 12775  abscabs 14634  𝓑C𝑛ccpn 24557  Polycply 24873  degcdgr 24876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-fl 13204  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-rlim 14887  df-sum 15084  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-rest 16747  df-topn 16748  df-0g 16766  df-gsum 16767  df-topgen 16768  df-pt 16769  df-prds 16772  df-xrs 16826  df-qtop 16831  df-imas 16832  df-xps 16834  df-mre 16908  df-mrc 16909  df-acs 16911  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-grp 18165  df-minusg 18166  df-mulg 18285  df-subg 18336  df-cntz 18507  df-cmn 18968  df-mgp 19301  df-ur 19313  df-ring 19360  df-cring 19361  df-subrg 19594  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-fbas 20156  df-fg 20157  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-lp 21829  df-perf 21830  df-cn 21920  df-cnp 21921  df-haus 22008  df-cmp 22080  df-tx 22255  df-hmeo 22448  df-fil 22539  df-fm 22631  df-flim 22632  df-flf 22633  df-xms 23015  df-ms 23016  df-tms 23017  df-cncf 23572  df-0p 24363  df-limc 24558  df-dv 24559  df-dvn 24560  df-cpn 24561  df-ply 24877  df-coe 24879  df-dgr 24880
This theorem is referenced by:  aalioulem4  25023
  Copyright terms: Public domain W3C validator