MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem30 Structured version   Visualization version   GIF version

Theorem fin23lem30 10295
Description: Lemma for fin23 10342. The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem30 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem30
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4530 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 216 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 simpr 484 . . . . . . . . . . 11 ((𝑃 ∈ Fin ∧ Fun 𝑡) → Fun 𝑡)
5 fin23lem.d . . . . . . . . . . . 12 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
65funmpt2 6555 . . . . . . . . . . 11 Fun 𝑅
7 funco 6556 . . . . . . . . . . 11 ((Fun 𝑡 ∧ Fun 𝑅) → Fun (𝑡𝑅))
84, 6, 7sylancl 586 . . . . . . . . . 10 ((𝑃 ∈ Fin ∧ Fun 𝑡) → Fun (𝑡𝑅))
9 elunirn 7225 . . . . . . . . . 10 (Fun (𝑡𝑅) → (𝑎 ran (𝑡𝑅) ↔ ∃𝑏 ∈ dom (𝑡𝑅)𝑎 ∈ ((𝑡𝑅)‘𝑏)))
108, 9syl 17 . . . . . . . . 9 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑎 ran (𝑡𝑅) ↔ ∃𝑏 ∈ dom (𝑡𝑅)𝑎 ∈ ((𝑡𝑅)‘𝑏)))
11 dmcoss 5938 . . . . . . . . . . . 12 dom (𝑡𝑅) ⊆ dom 𝑅
1211sseli 3942 . . . . . . . . . . 11 (𝑏 ∈ dom (𝑡𝑅) → 𝑏 ∈ dom 𝑅)
13 fvco 6959 . . . . . . . . . . . . . . . 16 ((Fun 𝑅𝑏 ∈ dom 𝑅) → ((𝑡𝑅)‘𝑏) = (𝑡‘(𝑅𝑏)))
146, 13mpan 690 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑅 → ((𝑡𝑅)‘𝑏) = (𝑡‘(𝑅𝑏)))
1514adantl 481 . . . . . . . . . . . . . 14 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑡𝑅)‘𝑏) = (𝑡‘(𝑅𝑏)))
1615eleq2d 2814 . . . . . . . . . . . . 13 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ ((𝑡𝑅)‘𝑏) ↔ 𝑎 ∈ (𝑡‘(𝑅𝑏))))
17 incom 4172 . . . . . . . . . . . . . . . 16 ((𝑡‘(𝑅𝑏)) ∩ ran 𝑈) = ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏)))
18 difss 4099 . . . . . . . . . . . . . . . . . . . . . . 23 (ω ∖ 𝑃) ⊆ ω
19 ominf 9205 . . . . . . . . . . . . . . . . . . . . . . . . 25 ¬ ω ∈ Fin
20 fin23lem.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
2120ssrab3 4045 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑃 ⊆ ω
22 undif 4445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ⊆ ω ↔ (𝑃 ∪ (ω ∖ 𝑃)) = ω)
2321, 22mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∪ (ω ∖ 𝑃)) = ω
24 unfi 9135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → (𝑃 ∪ (ω ∖ 𝑃)) ∈ Fin)
2523, 24eqeltrrid 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → ω ∈ Fin)
2625ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ Fin → ((ω ∖ 𝑃) ∈ Fin → ω ∈ Fin))
2719, 26mtoi 199 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ Fin → ¬ (ω ∖ 𝑃) ∈ Fin)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (ω ∖ 𝑃) ∈ Fin)
295fin23lem22 10280 . . . . . . . . . . . . . . . . . . . . . . 23 (((ω ∖ 𝑃) ⊆ ω ∧ ¬ (ω ∖ 𝑃) ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
3018, 28, 29sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
31 f1of 6800 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅:ω–1-1-onto→(ω ∖ 𝑃) → 𝑅:ω⟶(ω ∖ 𝑃))
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑅:ω⟶(ω ∖ 𝑃))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑏 ∈ dom 𝑅)
3432fdmd 6698 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → dom 𝑅 = ω)
3533, 34eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑏 ∈ ω)
3632, 35ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑅𝑏) ∈ (ω ∖ 𝑃))
3736eldifbd 3927 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (𝑅𝑏) ∈ 𝑃)
3820eleq2i 2820 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑏) ∈ 𝑃 ↔ (𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)})
3937, 38sylnib 328 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)})
4036eldifad 3926 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑅𝑏) ∈ ω)
41 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑅𝑏) → (𝑡𝑣) = (𝑡‘(𝑅𝑏)))
4241sseq2d 3979 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝑅𝑏) → ( ran 𝑈 ⊆ (𝑡𝑣) ↔ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏))))
4342elrab3 3660 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑏) ∈ ω → ((𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)} ↔ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏))))
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)} ↔ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏))))
4539, 44mtbid 324 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)))
46 fin23lem.a . . . . . . . . . . . . . . . . . . 19 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
4746fin23lem20 10290 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑏) ∈ ω → ( ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) ∨ ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅))
4840, 47syl 17 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ( ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) ∨ ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅))
49 orel1 888 . . . . . . . . . . . . . . . . 17 ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) → (( ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) ∨ ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅) → ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅))
5045, 48, 49sylc 65 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅)
5117, 50eqtrid 2776 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑡‘(𝑅𝑏)) ∩ ran 𝑈) = ∅)
52 disj 4413 . . . . . . . . . . . . . . 15 (((𝑡‘(𝑅𝑏)) ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ∈ (𝑡‘(𝑅𝑏)) ¬ 𝑎 ran 𝑈)
5351, 52sylib 218 . . . . . . . . . . . . . 14 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ∀𝑎 ∈ (𝑡‘(𝑅𝑏)) ¬ 𝑎 ran 𝑈)
54 rsp 3225 . . . . . . . . . . . . . 14 (∀𝑎 ∈ (𝑡‘(𝑅𝑏)) ¬ 𝑎 ran 𝑈 → (𝑎 ∈ (𝑡‘(𝑅𝑏)) → ¬ 𝑎 ran 𝑈))
5553, 54syl 17 . . . . . . . . . . . . 13 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ (𝑡‘(𝑅𝑏)) → ¬ 𝑎 ran 𝑈))
5616, 55sylbid 240 . . . . . . . . . . . 12 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈))
5756ex 412 . . . . . . . . . . 11 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑏 ∈ dom 𝑅 → (𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈)))
5812, 57syl5 34 . . . . . . . . . 10 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑏 ∈ dom (𝑡𝑅) → (𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈)))
5958rexlimdv 3132 . . . . . . . . 9 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (∃𝑏 ∈ dom (𝑡𝑅)𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈))
6010, 59sylbid 240 . . . . . . . 8 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑎 ran (𝑡𝑅) → ¬ 𝑎 ran 𝑈))
6160ralrimiv 3124 . . . . . . 7 ((𝑃 ∈ Fin ∧ Fun 𝑡) → ∀𝑎 ran (𝑡𝑅) ¬ 𝑎 ran 𝑈)
62 disj 4413 . . . . . . 7 (( ran (𝑡𝑅) ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ran (𝑡𝑅) ¬ 𝑎 ran 𝑈)
6361, 62sylibr 234 . . . . . 6 ((𝑃 ∈ Fin ∧ Fun 𝑡) → ( ran (𝑡𝑅) ∩ ran 𝑈) = ∅)
64 rneq 5900 . . . . . . . . 9 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6564unieqd 4884 . . . . . . . 8 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6665ineq1d 4182 . . . . . . 7 (𝑍 = (𝑡𝑅) → ( ran 𝑍 ran 𝑈) = ( ran (𝑡𝑅) ∩ ran 𝑈))
6766eqeq1d 2731 . . . . . 6 (𝑍 = (𝑡𝑅) → (( ran 𝑍 ran 𝑈) = ∅ ↔ ( ran (𝑡𝑅) ∩ ran 𝑈) = ∅))
6863, 67imbitrrid 246 . . . . 5 (𝑍 = (𝑡𝑅) → ((𝑃 ∈ Fin ∧ Fun 𝑡) → ( ran 𝑍 ran 𝑈) = ∅))
6968expd 415 . . . 4 (𝑍 = (𝑡𝑅) → (𝑃 ∈ Fin → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)))
7069impcom 407 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
71 rneq 5900 . . . . . . . 8 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
7271unieqd 4884 . . . . . . 7 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
7372ineq1d 4182 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ( ran 𝑍 ran 𝑈) = ( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ∩ ran 𝑈))
74 rncoss 5939 . . . . . . . 8 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
7574unissi 4880 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
76 disj 4413 . . . . . . . 8 (( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ¬ 𝑎 ran 𝑈)
77 eluniab 4885 . . . . . . . . . 10 (𝑎 {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑏(𝑎𝑏 ∧ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)))
78 eleq2 2817 . . . . . . . . . . . . . 14 (𝑏 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎𝑏𝑎 ∈ ((𝑡𝑧) ∖ ran 𝑈)))
79 eldifn 4095 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑡𝑧) ∖ ran 𝑈) → ¬ 𝑎 ran 𝑈)
8078, 79biimtrdi 253 . . . . . . . . . . . . 13 (𝑏 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎𝑏 → ¬ 𝑎 ran 𝑈))
8180rexlimivw 3130 . . . . . . . . . . . 12 (∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎𝑏 → ¬ 𝑎 ran 𝑈))
8281impcom 407 . . . . . . . . . . 11 ((𝑎𝑏 ∧ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)) → ¬ 𝑎 ran 𝑈)
8382exlimiv 1930 . . . . . . . . . 10 (∃𝑏(𝑎𝑏 ∧ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)) → ¬ 𝑎 ran 𝑈)
8477, 83sylbi 217 . . . . . . . . 9 (𝑎 {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)} → ¬ 𝑎 ran 𝑈)
85 eqid 2729 . . . . . . . . . . 11 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
8685rnmpt 5921 . . . . . . . . . 10 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)}
8786unieqi 4883 . . . . . . . . 9 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)}
8884, 87eleq2s 2846 . . . . . . . 8 (𝑎 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → ¬ 𝑎 ran 𝑈)
8976, 88mprgbir 3051 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∩ ran 𝑈) = ∅
90 ssdisj 4423 . . . . . . 7 (( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∧ ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∩ ran 𝑈) = ∅) → ( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ∩ ran 𝑈) = ∅)
9175, 89, 90mp2an 692 . . . . . 6 ( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ∩ ran 𝑈) = ∅
9273, 91eqtrdi 2780 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ( ran 𝑍 ran 𝑈) = ∅)
9392a1d 25 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
9493adantl 481 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
9570, 94jaoi 857 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
961, 3, 95mp2b 10 1 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563   cuni 4871   cint 4910   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  ccom 5642  suc csuc 6334  Fun wfun 6505  wf 6507  1-1-ontowf1o 6510  cfv 6511  crio 7343  (class class class)co 7387  cmpo 7389  ωcom 7842  seqωcseqom 8415  m cmap 8799  cen 8915  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892
This theorem is referenced by:  fin23lem31  10296
  Copyright terms: Public domain W3C validator