Step | Hyp | Ref
| Expression |
1 | | fin23lem.e |
. 2
⊢ 𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) |
2 | | eqif 4497 |
. . 3
⊢ (𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)))) |
3 | 2 | biimpi 215 |
. 2
⊢ (𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)))) |
4 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → Fun 𝑡) |
5 | | fin23lem.d |
. . . . . . . . . . . 12
⊢ 𝑅 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤)) |
6 | 5 | funmpt2 6457 |
. . . . . . . . . . 11
⊢ Fun 𝑅 |
7 | | funco 6458 |
. . . . . . . . . . 11
⊢ ((Fun
𝑡 ∧ Fun 𝑅) → Fun (𝑡 ∘ 𝑅)) |
8 | 4, 6, 7 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → Fun (𝑡 ∘ 𝑅)) |
9 | | elunirn 7106 |
. . . . . . . . . 10
⊢ (Fun
(𝑡 ∘ 𝑅) → (𝑎 ∈ ∪ ran
(𝑡 ∘ 𝑅) ↔ ∃𝑏 ∈ dom (𝑡 ∘ 𝑅)𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏))) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑎 ∈ ∪ ran
(𝑡 ∘ 𝑅) ↔ ∃𝑏 ∈ dom (𝑡 ∘ 𝑅)𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏))) |
11 | | dmcoss 5869 |
. . . . . . . . . . . 12
⊢ dom
(𝑡 ∘ 𝑅) ⊆ dom 𝑅 |
12 | 11 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ dom (𝑡 ∘ 𝑅) → 𝑏 ∈ dom 𝑅) |
13 | | fvco 6848 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝑅 ∧ 𝑏 ∈ dom 𝑅) → ((𝑡 ∘ 𝑅)‘𝑏) = (𝑡‘(𝑅‘𝑏))) |
14 | 6, 13 | mpan 686 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ dom 𝑅 → ((𝑡 ∘ 𝑅)‘𝑏) = (𝑡‘(𝑅‘𝑏))) |
15 | 14 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑡 ∘ 𝑅)‘𝑏) = (𝑡‘(𝑅‘𝑏))) |
16 | 15 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏) ↔ 𝑎 ∈ (𝑡‘(𝑅‘𝑏)))) |
17 | | incom 4131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡‘(𝑅‘𝑏)) ∩ ∩ ran
𝑈) = (∩ ran 𝑈 ∩ (𝑡‘(𝑅‘𝑏))) |
18 | | difss 4062 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ω
∖ 𝑃) ⊆
ω |
19 | | ominf 8964 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ¬
ω ∈ Fin |
20 | | fin23lem.b |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑃 = {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} |
21 | 20 | ssrab3 4011 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑃 ⊆
ω |
22 | | undif 4412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑃 ⊆ ω ↔ (𝑃 ∪ (ω ∖ 𝑃)) = ω) |
23 | 21, 22 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃 ∪ (ω ∖ 𝑃)) = ω |
24 | | unfi 8917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑃 ∈ Fin ∧ (ω
∖ 𝑃) ∈ Fin)
→ (𝑃 ∪ (ω
∖ 𝑃)) ∈
Fin) |
25 | 23, 24 | eqeltrrid 2844 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ Fin ∧ (ω
∖ 𝑃) ∈ Fin)
→ ω ∈ Fin) |
26 | 25 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ Fin → ((ω
∖ 𝑃) ∈ Fin
→ ω ∈ Fin)) |
27 | 19, 26 | mtoi 198 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑃 ∈ Fin → ¬
(ω ∖ 𝑃) ∈
Fin) |
28 | 27 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (ω ∖ 𝑃) ∈ Fin) |
29 | 5 | fin23lem22 10014 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((ω ∖ 𝑃) ⊆ ω ∧ ¬ (ω
∖ 𝑃) ∈ Fin)
→ 𝑅:ω–1-1-onto→(ω ∖ 𝑃)) |
30 | 18, 28, 29 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃)) |
31 | | f1of 6700 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅:ω–1-1-onto→(ω ∖ 𝑃) → 𝑅:ω⟶(ω ∖ 𝑃)) |
32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑅:ω⟶(ω ∖ 𝑃)) |
33 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑏 ∈ dom 𝑅) |
34 | 32 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → dom 𝑅 = ω) |
35 | 33, 34 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑏 ∈ ω) |
36 | 32, 35 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑅‘𝑏) ∈ (ω ∖ 𝑃)) |
37 | 36 | eldifbd 3896 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (𝑅‘𝑏) ∈ 𝑃) |
38 | 20 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅‘𝑏) ∈ 𝑃 ↔ (𝑅‘𝑏) ∈ {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)}) |
39 | 37, 38 | sylnib 327 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (𝑅‘𝑏) ∈ {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)}) |
40 | 36 | eldifad 3895 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑅‘𝑏) ∈ ω) |
41 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = (𝑅‘𝑏) → (𝑡‘𝑣) = (𝑡‘(𝑅‘𝑏))) |
42 | 41 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = (𝑅‘𝑏) → (∩ ran
𝑈 ⊆ (𝑡‘𝑣) ↔ ∩ ran
𝑈 ⊆ (𝑡‘(𝑅‘𝑏)))) |
43 | 42 | elrab3 3618 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅‘𝑏) ∈ ω → ((𝑅‘𝑏) ∈ {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} ↔ ∩ ran
𝑈 ⊆ (𝑡‘(𝑅‘𝑏)))) |
44 | 40, 43 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑅‘𝑏) ∈ {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} ↔ ∩ ran
𝑈 ⊆ (𝑡‘(𝑅‘𝑏)))) |
45 | 39, 44 | mtbid 323 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ ∩
ran 𝑈 ⊆ (𝑡‘(𝑅‘𝑏))) |
46 | | fin23lem.a |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
47 | 46 | fin23lem20 10024 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅‘𝑏) ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘(𝑅‘𝑏)) ∨ (∩ ran
𝑈 ∩ (𝑡‘(𝑅‘𝑏))) = ∅)) |
48 | 40, 47 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (∩ ran
𝑈 ⊆ (𝑡‘(𝑅‘𝑏)) ∨ (∩ ran
𝑈 ∩ (𝑡‘(𝑅‘𝑏))) = ∅)) |
49 | | orel1 885 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∩ ran 𝑈 ⊆ (𝑡‘(𝑅‘𝑏)) → ((∩ ran
𝑈 ⊆ (𝑡‘(𝑅‘𝑏)) ∨ (∩ ran
𝑈 ∩ (𝑡‘(𝑅‘𝑏))) = ∅) → (∩ ran 𝑈 ∩ (𝑡‘(𝑅‘𝑏))) = ∅)) |
50 | 45, 48, 49 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (∩ ran
𝑈 ∩ (𝑡‘(𝑅‘𝑏))) = ∅) |
51 | 17, 50 | eqtrid 2790 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑡‘(𝑅‘𝑏)) ∩ ∩ ran
𝑈) =
∅) |
52 | | disj 4378 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡‘(𝑅‘𝑏)) ∩ ∩ ran
𝑈) = ∅ ↔
∀𝑎 ∈ (𝑡‘(𝑅‘𝑏)) ¬ 𝑎 ∈ ∩ ran
𝑈) |
53 | 51, 52 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ∀𝑎 ∈ (𝑡‘(𝑅‘𝑏)) ¬ 𝑎 ∈ ∩ ran
𝑈) |
54 | | rsp 3129 |
. . . . . . . . . . . . . 14
⊢
(∀𝑎 ∈
(𝑡‘(𝑅‘𝑏)) ¬ 𝑎 ∈ ∩ ran
𝑈 → (𝑎 ∈ (𝑡‘(𝑅‘𝑏)) → ¬ 𝑎 ∈ ∩ ran
𝑈)) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ (𝑡‘(𝑅‘𝑏)) → ¬ 𝑎 ∈ ∩ ran
𝑈)) |
56 | 16, 55 | sylbid 239 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏) → ¬ 𝑎 ∈ ∩ ran
𝑈)) |
57 | 56 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑏 ∈ dom 𝑅 → (𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏) → ¬ 𝑎 ∈ ∩ ran
𝑈))) |
58 | 12, 57 | syl5 34 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑏 ∈ dom (𝑡 ∘ 𝑅) → (𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏) → ¬ 𝑎 ∈ ∩ ran
𝑈))) |
59 | 58 | rexlimdv 3211 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → (∃𝑏 ∈ dom (𝑡 ∘ 𝑅)𝑎 ∈ ((𝑡 ∘ 𝑅)‘𝑏) → ¬ 𝑎 ∈ ∩ ran
𝑈)) |
60 | 10, 59 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑎 ∈ ∪ ran
(𝑡 ∘ 𝑅) → ¬ 𝑎 ∈ ∩ ran 𝑈)) |
61 | 60 | ralrimiv 3106 |
. . . . . . 7
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → ∀𝑎 ∈ ∪ ran (𝑡 ∘ 𝑅) ¬ 𝑎 ∈ ∩ ran
𝑈) |
62 | | disj 4378 |
. . . . . . 7
⊢ ((∪ ran (𝑡 ∘ 𝑅) ∩ ∩ ran
𝑈) = ∅ ↔
∀𝑎 ∈ ∪ ran (𝑡 ∘ 𝑅) ¬ 𝑎 ∈ ∩ ran
𝑈) |
63 | 61, 62 | sylibr 233 |
. . . . . 6
⊢ ((𝑃 ∈ Fin ∧ Fun 𝑡) → (∪ ran (𝑡 ∘ 𝑅) ∩ ∩ ran
𝑈) =
∅) |
64 | | rneq 5834 |
. . . . . . . . 9
⊢ (𝑍 = (𝑡 ∘ 𝑅) → ran 𝑍 = ran (𝑡 ∘ 𝑅)) |
65 | 64 | unieqd 4850 |
. . . . . . . 8
⊢ (𝑍 = (𝑡 ∘ 𝑅) → ∪ ran
𝑍 = ∪ ran (𝑡 ∘ 𝑅)) |
66 | 65 | ineq1d 4142 |
. . . . . . 7
⊢ (𝑍 = (𝑡 ∘ 𝑅) → (∪ ran
𝑍 ∩ ∩ ran 𝑈) = (∪ ran (𝑡 ∘ 𝑅) ∩ ∩ ran
𝑈)) |
67 | 66 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑍 = (𝑡 ∘ 𝑅) → ((∪ ran
𝑍 ∩ ∩ ran 𝑈) = ∅ ↔ (∪ ran (𝑡 ∘ 𝑅) ∩ ∩ ran
𝑈) =
∅)) |
68 | 63, 67 | syl5ibr 245 |
. . . . 5
⊢ (𝑍 = (𝑡 ∘ 𝑅) → ((𝑃 ∈ Fin ∧ Fun 𝑡) → (∪ ran
𝑍 ∩ ∩ ran 𝑈) = ∅)) |
69 | 68 | expd 415 |
. . . 4
⊢ (𝑍 = (𝑡 ∘ 𝑅) → (𝑃 ∈ Fin → (Fun 𝑡 → (∪ ran
𝑍 ∩ ∩ ran 𝑈) = ∅))) |
70 | 69 | impcom 407 |
. . 3
⊢ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) → (Fun 𝑡 → (∪ ran
𝑍 ∩ ∩ ran 𝑈) = ∅)) |
71 | | rneq 5834 |
. . . . . . . 8
⊢ (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) |
72 | 71 | unieqd 4850 |
. . . . . . 7
⊢ (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → ∪ ran 𝑍 = ∪ ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) |
73 | 72 | ineq1d 4142 |
. . . . . 6
⊢ (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → (∪ ran 𝑍 ∩ ∩ ran
𝑈) = (∪ ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) ∩ ∩ ran 𝑈)) |
74 | | rncoss 5870 |
. . . . . . . 8
⊢ ran
((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) ⊆ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) |
75 | 74 | unissi 4845 |
. . . . . . 7
⊢ ∪ ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) ⊆ ∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) |
76 | | disj 4378 |
. . . . . . . 8
⊢ ((∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∩ ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ∈ ∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ¬ 𝑎 ∈ ∩ ran 𝑈) |
77 | | eluniab 4851 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ∪ {𝑏
∣ ∃𝑧 ∈
𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈)} ↔ ∃𝑏(𝑎 ∈ 𝑏 ∧ ∃𝑧 ∈ 𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈))) |
78 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈) → (𝑎 ∈ 𝑏 ↔ 𝑎 ∈ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))) |
79 | | eldifn 4058 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ((𝑡‘𝑧) ∖ ∩ ran
𝑈) → ¬ 𝑎 ∈ ∩ ran 𝑈) |
80 | 78, 79 | syl6bi 252 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈) → (𝑎 ∈ 𝑏 → ¬ 𝑎 ∈ ∩ ran
𝑈)) |
81 | 80 | rexlimivw 3210 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈) → (𝑎 ∈ 𝑏 → ¬ 𝑎 ∈ ∩ ran
𝑈)) |
82 | 81 | impcom 407 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝑏 ∧ ∃𝑧 ∈ 𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) → ¬ 𝑎 ∈ ∩ ran 𝑈) |
83 | 82 | exlimiv 1934 |
. . . . . . . . . 10
⊢
(∃𝑏(𝑎 ∈ 𝑏 ∧ ∃𝑧 ∈ 𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) → ¬ 𝑎 ∈ ∩ ran 𝑈) |
84 | 77, 83 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑎 ∈ ∪ {𝑏
∣ ∃𝑧 ∈
𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈)} → ¬ 𝑎 ∈ ∩ ran 𝑈) |
85 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) = (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) |
86 | 85 | rnmpt 5853 |
. . . . . . . . . 10
⊢ ran
(𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) = {𝑏 ∣ ∃𝑧 ∈ 𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈)} |
87 | 86 | unieqi 4849 |
. . . . . . . . 9
⊢ ∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) = ∪ {𝑏
∣ ∃𝑧 ∈
𝑃 𝑏 = ((𝑡‘𝑧) ∖ ∩ ran
𝑈)} |
88 | 84, 87 | eleq2s 2857 |
. . . . . . . 8
⊢ (𝑎 ∈ ∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) → ¬ 𝑎 ∈ ∩ ran 𝑈) |
89 | 76, 88 | mprgbir 3078 |
. . . . . . 7
⊢ (∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∩ ∩ ran 𝑈) = ∅ |
90 | | ssdisj 4390 |
. . . . . . 7
⊢ ((∪ ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) ⊆ ∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∧ (∪ ran (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∩ ∩ ran 𝑈) = ∅) → (∪ ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) ∩ ∩ ran 𝑈) = ∅) |
91 | 75, 89, 90 | mp2an 688 |
. . . . . 6
⊢ (∪ ran ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) ∩ ∩ ran 𝑈) = ∅ |
92 | 73, 91 | eqtrdi 2795 |
. . . . 5
⊢ (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → (∪ ran 𝑍 ∩ ∩ ran
𝑈) =
∅) |
93 | 92 | a1d 25 |
. . . 4
⊢ (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → (Fun 𝑡 → (∪ ran
𝑍 ∩ ∩ ran 𝑈) = ∅)) |
94 | 93 | adantl 481 |
. . 3
⊢ ((¬
𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) → (Fun 𝑡 → (∪ ran 𝑍 ∩ ∩ ran
𝑈) =
∅)) |
95 | 70, 94 | jaoi 853 |
. 2
⊢ (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄))) → (Fun 𝑡 → (∪ ran 𝑍 ∩ ∩ ran
𝑈) =
∅)) |
96 | 1, 3, 95 | mp2b 10 |
1
⊢ (Fun
𝑡 → (∪ ran 𝑍 ∩ ∩ ran
𝑈) =
∅) |