Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem30 Structured version   Visualization version   GIF version

Theorem fin23lem30 9815
 Description: Lemma for fin23 9862. The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem30 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem30
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4464 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 219 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 simpr 488 . . . . . . . . . . 11 ((𝑃 ∈ Fin ∧ Fun 𝑡) → Fun 𝑡)
5 fin23lem.d . . . . . . . . . . . 12 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
65funmpt2 6379 . . . . . . . . . . 11 Fun 𝑅
7 funco 6380 . . . . . . . . . . 11 ((Fun 𝑡 ∧ Fun 𝑅) → Fun (𝑡𝑅))
84, 6, 7sylancl 589 . . . . . . . . . 10 ((𝑃 ∈ Fin ∧ Fun 𝑡) → Fun (𝑡𝑅))
9 elunirn 7008 . . . . . . . . . 10 (Fun (𝑡𝑅) → (𝑎 ran (𝑡𝑅) ↔ ∃𝑏 ∈ dom (𝑡𝑅)𝑎 ∈ ((𝑡𝑅)‘𝑏)))
108, 9syl 17 . . . . . . . . 9 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑎 ran (𝑡𝑅) ↔ ∃𝑏 ∈ dom (𝑡𝑅)𝑎 ∈ ((𝑡𝑅)‘𝑏)))
11 dmcoss 5817 . . . . . . . . . . . 12 dom (𝑡𝑅) ⊆ dom 𝑅
1211sseli 3890 . . . . . . . . . . 11 (𝑏 ∈ dom (𝑡𝑅) → 𝑏 ∈ dom 𝑅)
13 fvco 6755 . . . . . . . . . . . . . . . 16 ((Fun 𝑅𝑏 ∈ dom 𝑅) → ((𝑡𝑅)‘𝑏) = (𝑡‘(𝑅𝑏)))
146, 13mpan 689 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom 𝑅 → ((𝑡𝑅)‘𝑏) = (𝑡‘(𝑅𝑏)))
1514adantl 485 . . . . . . . . . . . . . 14 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑡𝑅)‘𝑏) = (𝑡‘(𝑅𝑏)))
1615eleq2d 2837 . . . . . . . . . . . . 13 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ ((𝑡𝑅)‘𝑏) ↔ 𝑎 ∈ (𝑡‘(𝑅𝑏))))
17 incom 4108 . . . . . . . . . . . . . . . 16 ((𝑡‘(𝑅𝑏)) ∩ ran 𝑈) = ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏)))
18 difss 4039 . . . . . . . . . . . . . . . . . . . . . . 23 (ω ∖ 𝑃) ⊆ ω
19 ominf 8781 . . . . . . . . . . . . . . . . . . . . . . . . 25 ¬ ω ∈ Fin
20 fin23lem.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
2120ssrab3 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑃 ⊆ ω
22 undif 4381 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ⊆ ω ↔ (𝑃 ∪ (ω ∖ 𝑃)) = ω)
2321, 22mpbi 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∪ (ω ∖ 𝑃)) = ω
24 unfi 8754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → (𝑃 ∪ (ω ∖ 𝑃)) ∈ Fin)
2523, 24eqeltrrid 2857 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → ω ∈ Fin)
2625ex 416 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ Fin → ((ω ∖ 𝑃) ∈ Fin → ω ∈ Fin))
2719, 26mtoi 202 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ Fin → ¬ (ω ∖ 𝑃) ∈ Fin)
2827ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (ω ∖ 𝑃) ∈ Fin)
295fin23lem22 9800 . . . . . . . . . . . . . . . . . . . . . . 23 (((ω ∖ 𝑃) ⊆ ω ∧ ¬ (ω ∖ 𝑃) ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
3018, 28, 29sylancr 590 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
31 f1of 6607 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅:ω–1-1-onto→(ω ∖ 𝑃) → 𝑅:ω⟶(ω ∖ 𝑃))
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑅:ω⟶(ω ∖ 𝑃))
33 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑏 ∈ dom 𝑅)
3432fdmd 6513 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → dom 𝑅 = ω)
3533, 34eleqtrd 2854 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → 𝑏 ∈ ω)
3632, 35ffvelrnd 6849 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑅𝑏) ∈ (ω ∖ 𝑃))
3736eldifbd 3873 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (𝑅𝑏) ∈ 𝑃)
3820eleq2i 2843 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑏) ∈ 𝑃 ↔ (𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)})
3937, 38sylnib 331 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ (𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)})
4036eldifad 3872 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑅𝑏) ∈ ω)
41 fveq2 6663 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑅𝑏) → (𝑡𝑣) = (𝑡‘(𝑅𝑏)))
4241sseq2d 3926 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (𝑅𝑏) → ( ran 𝑈 ⊆ (𝑡𝑣) ↔ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏))))
4342elrab3 3605 . . . . . . . . . . . . . . . . . . 19 ((𝑅𝑏) ∈ ω → ((𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)} ↔ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏))))
4440, 43syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑅𝑏) ∈ {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)} ↔ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏))))
4539, 44mtbid 327 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ¬ ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)))
46 fin23lem.a . . . . . . . . . . . . . . . . . . 19 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
4746fin23lem20 9810 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑏) ∈ ω → ( ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) ∨ ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅))
4840, 47syl 17 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ( ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) ∨ ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅))
49 orel1 886 . . . . . . . . . . . . . . . . 17 ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) → (( ran 𝑈 ⊆ (𝑡‘(𝑅𝑏)) ∨ ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅) → ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅))
5045, 48, 49sylc 65 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ( ran 𝑈 ∩ (𝑡‘(𝑅𝑏))) = ∅)
5117, 50syl5eq 2805 . . . . . . . . . . . . . . 15 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ((𝑡‘(𝑅𝑏)) ∩ ran 𝑈) = ∅)
52 disj 4347 . . . . . . . . . . . . . . 15 (((𝑡‘(𝑅𝑏)) ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ∈ (𝑡‘(𝑅𝑏)) ¬ 𝑎 ran 𝑈)
5351, 52sylib 221 . . . . . . . . . . . . . 14 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → ∀𝑎 ∈ (𝑡‘(𝑅𝑏)) ¬ 𝑎 ran 𝑈)
54 rsp 3134 . . . . . . . . . . . . . 14 (∀𝑎 ∈ (𝑡‘(𝑅𝑏)) ¬ 𝑎 ran 𝑈 → (𝑎 ∈ (𝑡‘(𝑅𝑏)) → ¬ 𝑎 ran 𝑈))
5553, 54syl 17 . . . . . . . . . . . . 13 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ (𝑡‘(𝑅𝑏)) → ¬ 𝑎 ran 𝑈))
5616, 55sylbid 243 . . . . . . . . . . . 12 (((𝑃 ∈ Fin ∧ Fun 𝑡) ∧ 𝑏 ∈ dom 𝑅) → (𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈))
5756ex 416 . . . . . . . . . . 11 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑏 ∈ dom 𝑅 → (𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈)))
5812, 57syl5 34 . . . . . . . . . 10 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑏 ∈ dom (𝑡𝑅) → (𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈)))
5958rexlimdv 3207 . . . . . . . . 9 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (∃𝑏 ∈ dom (𝑡𝑅)𝑎 ∈ ((𝑡𝑅)‘𝑏) → ¬ 𝑎 ran 𝑈))
6010, 59sylbid 243 . . . . . . . 8 ((𝑃 ∈ Fin ∧ Fun 𝑡) → (𝑎 ran (𝑡𝑅) → ¬ 𝑎 ran 𝑈))
6160ralrimiv 3112 . . . . . . 7 ((𝑃 ∈ Fin ∧ Fun 𝑡) → ∀𝑎 ran (𝑡𝑅) ¬ 𝑎 ran 𝑈)
62 disj 4347 . . . . . . 7 (( ran (𝑡𝑅) ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ran (𝑡𝑅) ¬ 𝑎 ran 𝑈)
6361, 62sylibr 237 . . . . . 6 ((𝑃 ∈ Fin ∧ Fun 𝑡) → ( ran (𝑡𝑅) ∩ ran 𝑈) = ∅)
64 rneq 5782 . . . . . . . . 9 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6564unieqd 4815 . . . . . . . 8 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6665ineq1d 4118 . . . . . . 7 (𝑍 = (𝑡𝑅) → ( ran 𝑍 ran 𝑈) = ( ran (𝑡𝑅) ∩ ran 𝑈))
6766eqeq1d 2760 . . . . . 6 (𝑍 = (𝑡𝑅) → (( ran 𝑍 ran 𝑈) = ∅ ↔ ( ran (𝑡𝑅) ∩ ran 𝑈) = ∅))
6863, 67syl5ibr 249 . . . . 5 (𝑍 = (𝑡𝑅) → ((𝑃 ∈ Fin ∧ Fun 𝑡) → ( ran 𝑍 ran 𝑈) = ∅))
6968expd 419 . . . 4 (𝑍 = (𝑡𝑅) → (𝑃 ∈ Fin → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)))
7069impcom 411 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
71 rneq 5782 . . . . . . . 8 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
7271unieqd 4815 . . . . . . 7 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
7372ineq1d 4118 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ( ran 𝑍 ran 𝑈) = ( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ∩ ran 𝑈))
74 rncoss 5818 . . . . . . . 8 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
7574unissi 4810 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
76 disj 4347 . . . . . . . 8 (( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∩ ran 𝑈) = ∅ ↔ ∀𝑎 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ¬ 𝑎 ran 𝑈)
77 eluniab 4816 . . . . . . . . . 10 (𝑎 {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑏(𝑎𝑏 ∧ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)))
78 eleq2 2840 . . . . . . . . . . . . . 14 (𝑏 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎𝑏𝑎 ∈ ((𝑡𝑧) ∖ ran 𝑈)))
79 eldifn 4035 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑡𝑧) ∖ ran 𝑈) → ¬ 𝑎 ran 𝑈)
8078, 79syl6bi 256 . . . . . . . . . . . . 13 (𝑏 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎𝑏 → ¬ 𝑎 ran 𝑈))
8180rexlimivw 3206 . . . . . . . . . . . 12 (∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎𝑏 → ¬ 𝑎 ran 𝑈))
8281impcom 411 . . . . . . . . . . 11 ((𝑎𝑏 ∧ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)) → ¬ 𝑎 ran 𝑈)
8382exlimiv 1931 . . . . . . . . . 10 (∃𝑏(𝑎𝑏 ∧ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)) → ¬ 𝑎 ran 𝑈)
8477, 83sylbi 220 . . . . . . . . 9 (𝑎 {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)} → ¬ 𝑎 ran 𝑈)
85 eqid 2758 . . . . . . . . . . 11 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
8685rnmpt 5801 . . . . . . . . . 10 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)}
8786unieqi 4814 . . . . . . . . 9 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑏 ∣ ∃𝑧𝑃 𝑏 = ((𝑡𝑧) ∖ ran 𝑈)}
8884, 87eleq2s 2870 . . . . . . . 8 (𝑎 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → ¬ 𝑎 ran 𝑈)
8976, 88mprgbir 3085 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∩ ran 𝑈) = ∅
90 ssdisj 4359 . . . . . . 7 (( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∧ ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∩ ran 𝑈) = ∅) → ( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ∩ ran 𝑈) = ∅)
9175, 89, 90mp2an 691 . . . . . 6 ( ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ∩ ran 𝑈) = ∅
9273, 91eqtrdi 2809 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ( ran 𝑍 ran 𝑈) = ∅)
9392a1d 25 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
9493adantl 485 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
9570, 94jaoi 854 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅))
961, 3, 95mp2b 10 1 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2735  ∀wral 3070  ∃wrex 3071  {crab 3074  Vcvv 3409   ∖ cdif 3857   ∪ cun 3858   ∩ cin 3859   ⊆ wss 3860  ∅c0 4227  ifcif 4423  𝒫 cpw 4497  ∪ cuni 4801  ∩ cint 4841   class class class wbr 5036   ↦ cmpt 5116  dom cdm 5528  ran crn 5529   ∘ ccom 5532  suc csuc 6176  Fun wfun 6334  ⟶wf 6336  –1-1-onto→wf1o 6339  ‘cfv 6340  ℩crio 7113  (class class class)co 7156   ∈ cmpo 7158  ωcom 7585  seqωcseqom 8099   ↑m cmap 8422   ≈ cen 8537  Fincfn 8540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-seqom 8100  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-card 9414 This theorem is referenced by:  fin23lem31  9816
 Copyright terms: Public domain W3C validator