MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem19 Structured version   Visualization version   GIF version

Theorem fin23lem19 10334
Description: Lemma for fin23 10387. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem19 (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem19
StepHypRef Expression
1 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21fin23lem12 10329 . . . 4 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
3 eqif 4570 . . . 4 ((𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))) ↔ ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) ∨ (¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)))))
42, 3sylib 217 . . 3 (𝐴 ∈ ω → ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) ∨ (¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)))))
5 incom 4202 . . . . 5 ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ((𝑡𝐴) ∩ (𝑈‘suc 𝐴))
6 ineq2 4207 . . . . . . 7 ((𝑈‘suc 𝐴) = (𝑈𝐴) → ((𝑡𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡𝐴) ∩ (𝑈𝐴)))
76eqeq1d 2733 . . . . . 6 ((𝑈‘suc 𝐴) = (𝑈𝐴) → (((𝑡𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅))
87biimparc 479 . . . . 5 ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) → ((𝑡𝐴) ∩ (𝑈‘suc 𝐴)) = ∅)
95, 8eqtrid 2783 . . . 4 ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅)
10 inss1 4229 . . . . . 6 ((𝑡𝐴) ∩ (𝑈𝐴)) ⊆ (𝑡𝐴)
11 sseq1 4008 . . . . . 6 ((𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) ⊆ (𝑡𝐴)))
1210, 11mpbiri 257 . . . . 5 ((𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡𝐴))
1312adantl 481 . . . 4 ((¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡𝐴))
149, 13orim12i 906 . . 3 (((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) ∨ (¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡𝐴)))
154, 14syl 17 . 2 (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡𝐴)))
1615orcomd 868 1 (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1540  wcel 2105  Vcvv 3473  cin 3948  wss 3949  c0 4323  ifcif 4529   cuni 4909  ran crn 5678  suc csuc 6367  cfv 6544  cmpo 7414  ωcom 7858  seqωcseqom 8450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-seqom 8451
This theorem is referenced by:  fin23lem20  10335
  Copyright terms: Public domain W3C validator