![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem19 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10426. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem19 | ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fin23lem12 10368 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
3 | eqif 4571 | . . . 4 ⊢ ((𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ↔ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) | |
4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐴 ∈ ω → ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) |
5 | incom 4216 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) | |
6 | ineq2 4221 | . . . . . . 7 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
7 | 6 | eqeq1d 2736 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
8 | 7 | biimparc 479 | . . . . 5 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅) |
9 | 5, 8 | eqtrid 2786 | . . . 4 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) |
10 | inss1 4244 | . . . . . 6 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴) | |
11 | sseq1 4020 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴))) | |
12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
13 | 12 | adantl 481 | . . . 4 ⊢ ((¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
14 | 9, 13 | orim12i 908 | . . 3 ⊢ (((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
15 | 4, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
16 | 15 | orcomd 871 | 1 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 ifcif 4530 ∪ cuni 4911 ran crn 5689 suc csuc 6387 ‘cfv 6562 ∈ cmpo 7432 ωcom 7886 seqωcseqom 8485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-seqom 8486 |
This theorem is referenced by: fin23lem20 10374 |
Copyright terms: Public domain | W3C validator |