Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin23lem19 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10145. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem19 | ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fin23lem12 10087 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
3 | eqif 4500 | . . . 4 ⊢ ((𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ↔ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ (𝐴 ∈ ω → ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) |
5 | incom 4135 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) | |
6 | ineq2 4140 | . . . . . . 7 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
7 | 6 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
8 | 7 | biimparc 480 | . . . . 5 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅) |
9 | 5, 8 | eqtrid 2790 | . . . 4 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) |
10 | inss1 4162 | . . . . . 6 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴) | |
11 | sseq1 3946 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴))) | |
12 | 10, 11 | mpbiri 257 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
13 | 12 | adantl 482 | . . . 4 ⊢ ((¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
14 | 9, 13 | orim12i 906 | . . 3 ⊢ (((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
15 | 4, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
16 | 15 | orcomd 868 | 1 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ifcif 4459 ∪ cuni 4839 ran crn 5590 suc csuc 6268 ‘cfv 6433 ∈ cmpo 7277 ωcom 7712 seqωcseqom 8278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seqom 8279 |
This theorem is referenced by: fin23lem20 10093 |
Copyright terms: Public domain | W3C validator |