| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10429. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem19 | ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 2 | 1 | fin23lem12 10371 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 3 | eqif 4567 | . . . 4 ⊢ ((𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ↔ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐴 ∈ ω → ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) |
| 5 | incom 4209 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) | |
| 6 | ineq2 4214 | . . . . . . 7 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
| 7 | 6 | eqeq1d 2739 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
| 8 | 7 | biimparc 479 | . . . . 5 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅) |
| 9 | 5, 8 | eqtrid 2789 | . . . 4 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) |
| 10 | inss1 4237 | . . . . . 6 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴) | |
| 11 | sseq1 4009 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴))) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
| 14 | 9, 13 | orim12i 909 | . . 3 ⊢ (((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
| 15 | 4, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
| 16 | 15 | orcomd 872 | 1 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 ifcif 4525 ∪ cuni 4907 ran crn 5686 suc csuc 6386 ‘cfv 6561 ∈ cmpo 7433 ωcom 7887 seqωcseqom 8487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seqom 8488 |
| This theorem is referenced by: fin23lem20 10377 |
| Copyright terms: Public domain | W3C validator |