![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem19 | Structured version Visualization version GIF version |
Description: Lemma for fin23 9499. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem19 | ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fin23lem12 9441 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
3 | eqif 4317 | . . . 4 ⊢ ((𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ↔ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) | |
4 | 2, 3 | sylib 210 | . . 3 ⊢ (𝐴 ∈ ω → ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) |
5 | incom 4003 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) | |
6 | ineq2 4006 | . . . . . . 7 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
7 | 6 | eqeq1d 2801 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
8 | 7 | biimparc 472 | . . . . 5 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅) |
9 | 5, 8 | syl5eq 2845 | . . . 4 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) |
10 | inss1 4028 | . . . . . 6 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴) | |
11 | sseq1 3822 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴))) | |
12 | 10, 11 | mpbiri 250 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
13 | 12 | adantl 474 | . . . 4 ⊢ ((¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
14 | 9, 13 | orim12i 933 | . . 3 ⊢ (((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
15 | 4, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
16 | 15 | orcomd 898 | 1 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 ifcif 4277 ∪ cuni 4628 ran crn 5313 suc csuc 5943 ‘cfv 6101 ↦ cmpt2 6880 ωcom 7299 seq𝜔cseqom 7781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-seqom 7782 |
This theorem is referenced by: fin23lem20 9447 |
Copyright terms: Public domain | W3C validator |