| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10403. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem19 | ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 2 | 1 | fin23lem12 10345 | . . . 4 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) |
| 3 | eqif 4542 | . . . 4 ⊢ ((𝑈‘suc 𝐴) = if(((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅, (𝑈‘𝐴), ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) ↔ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝐴 ∈ ω → ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))))) |
| 5 | incom 4184 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) | |
| 6 | ineq2 4189 | . . . . . . 7 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) | |
| 7 | 6 | eqeq1d 2737 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = (𝑈‘𝐴) → (((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅)) |
| 8 | 7 | biimparc 479 | . . . . 5 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑡‘𝐴) ∩ (𝑈‘suc 𝐴)) = ∅) |
| 9 | 5, 8 | eqtrid 2782 | . . . 4 ⊢ ((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) |
| 10 | inss1 4212 | . . . . . 6 ⊢ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴) | |
| 11 | sseq1 3984 | . . . . . 6 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ↔ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) ⊆ (𝑡‘𝐴))) | |
| 12 | 10, 11 | mpbiri 258 | . . . . 5 ⊢ ((𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴)) |
| 14 | 9, 13 | orim12i 908 | . . 3 ⊢ (((((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈‘𝐴)) ∨ (¬ ((𝑡‘𝐴) ∩ (𝑈‘𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡‘𝐴) ∩ (𝑈‘𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
| 15 | 4, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴))) |
| 16 | 15 | orcomd 871 | 1 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ifcif 4500 ∪ cuni 4883 ran crn 5655 suc csuc 6354 ‘cfv 6531 ∈ cmpo 7407 ωcom 7861 seqωcseqom 8461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 |
| This theorem is referenced by: fin23lem20 10351 |
| Copyright terms: Public domain | W3C validator |