MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem19 Structured version   Visualization version   GIF version

Theorem fin23lem19 10333
Description: Lemma for fin23 10386. The first set in 𝑈 to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem19 (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝑈(𝑡)

Proof of Theorem fin23lem19
StepHypRef Expression
1 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
21fin23lem12 10328 . . . 4 (𝐴 ∈ ω → (𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))))
3 eqif 4568 . . . 4 ((𝑈‘suc 𝐴) = if(((𝑡𝐴) ∩ (𝑈𝐴)) = ∅, (𝑈𝐴), ((𝑡𝐴) ∩ (𝑈𝐴))) ↔ ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) ∨ (¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)))))
42, 3sylib 217 . . 3 (𝐴 ∈ ω → ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) ∨ (¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)))))
5 incom 4200 . . . . 5 ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ((𝑡𝐴) ∩ (𝑈‘suc 𝐴))
6 ineq2 4205 . . . . . . 7 ((𝑈‘suc 𝐴) = (𝑈𝐴) → ((𝑡𝐴) ∩ (𝑈‘suc 𝐴)) = ((𝑡𝐴) ∩ (𝑈𝐴)))
76eqeq1d 2732 . . . . . 6 ((𝑈‘suc 𝐴) = (𝑈𝐴) → (((𝑡𝐴) ∩ (𝑈‘suc 𝐴)) = ∅ ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅))
87biimparc 478 . . . . 5 ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) → ((𝑡𝐴) ∩ (𝑈‘suc 𝐴)) = ∅)
95, 8eqtrid 2782 . . . 4 ((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) → ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅)
10 inss1 4227 . . . . . 6 ((𝑡𝐴) ∩ (𝑈𝐴)) ⊆ (𝑡𝐴)
11 sseq1 4006 . . . . . 6 ((𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)) → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ↔ ((𝑡𝐴) ∩ (𝑈𝐴)) ⊆ (𝑡𝐴)))
1210, 11mpbiri 257 . . . . 5 ((𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)) → (𝑈‘suc 𝐴) ⊆ (𝑡𝐴))
1312adantl 480 . . . 4 ((¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴))) → (𝑈‘suc 𝐴) ⊆ (𝑡𝐴))
149, 13orim12i 905 . . 3 (((((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = (𝑈𝐴)) ∨ (¬ ((𝑡𝐴) ∩ (𝑈𝐴)) = ∅ ∧ (𝑈‘suc 𝐴) = ((𝑡𝐴) ∩ (𝑈𝐴)))) → (((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡𝐴)))
154, 14syl 17 . 2 (𝐴 ∈ ω → (((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅ ∨ (𝑈‘suc 𝐴) ⊆ (𝑡𝐴)))
1615orcomd 867 1 (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡𝐴)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 843   = wceq 1539  wcel 2104  Vcvv 3472  cin 3946  wss 3947  c0 4321  ifcif 4527   cuni 4907  ran crn 5676  suc csuc 6365  cfv 6542  cmpo 7413  ωcom 7857  seqωcseqom 8449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-seqom 8450
This theorem is referenced by:  fin23lem20  10334
  Copyright terms: Public domain W3C validator