MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem29 Structured version   Visualization version   GIF version

Theorem fin23lem29 10098
Description: Lemma for fin23 10146. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem29 ran 𝑍 ran 𝑡
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem29
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4506 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 215 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 rneq 5844 . . . . . 6 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
54unieqd 4859 . . . . 5 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6 rncoss 5880 . . . . . 6 ran (𝑡𝑅) ⊆ ran 𝑡
76unissi 4854 . . . . 5 ran (𝑡𝑅) ⊆ ran 𝑡
85, 7eqsstrdi 3980 . . . 4 (𝑍 = (𝑡𝑅) → ran 𝑍 ran 𝑡)
98adantl 482 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → ran 𝑍 ran 𝑡)
10 rneq 5844 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
1110unieqd 4859 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
12 rncoss 5880 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
1312unissi 4854 . . . . . 6 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
14 unissb 4879 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡 ↔ ∀𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))𝑎 ran 𝑡)
15 abid 2721 . . . . . . . . 9 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈))
16 fvssunirn 6800 . . . . . . . . . . . . 13 (𝑡𝑧) ⊆ ran 𝑡
1716a1i 11 . . . . . . . . . . . 12 (𝑧𝑃 → (𝑡𝑧) ⊆ ran 𝑡)
1817ssdifssd 4082 . . . . . . . . . . 11 (𝑧𝑃 → ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡)
19 sseq1 3951 . . . . . . . . . . 11 (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎 ran 𝑡 ↔ ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡))
2018, 19syl5ibrcom 246 . . . . . . . . . 10 (𝑧𝑃 → (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡))
2120rexlimiv 3211 . . . . . . . . 9 (∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡)
2215, 21sylbi 216 . . . . . . . 8 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} → 𝑎 ran 𝑡)
23 eqid 2740 . . . . . . . . 9 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
2423rnmpt 5863 . . . . . . . 8 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)}
2522, 24eleq2s 2859 . . . . . . 7 (𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → 𝑎 ran 𝑡)
2614, 25mprgbir 3081 . . . . . 6 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡
2713, 26sstri 3935 . . . . 5 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran 𝑡
2811, 27eqsstrdi 3980 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 ran 𝑡)
2928adantl 482 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ran 𝑍 ran 𝑡)
309, 29jaoi 854 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → ran 𝑍 ran 𝑡)
311, 3, 30mp2b 10 1 ran 𝑍 ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1542  wcel 2110  {cab 2717  wral 3066  wrex 3067  {crab 3070  Vcvv 3431  cdif 3889  cin 3891  wss 3892  c0 4262  ifcif 4465  𝒫 cpw 4539   cuni 4845   cint 4885   class class class wbr 5079  cmpt 5162  ran crn 5591  ccom 5594  suc csuc 6267  cfv 6432  crio 7227  (class class class)co 7271  cmpo 7273  ωcom 7706  seqωcseqom 8269  m cmap 8598  cen 8713  Fincfn 8716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fv 6440
This theorem is referenced by:  fin23lem31  10100
  Copyright terms: Public domain W3C validator