MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem29 Structured version   Visualization version   GIF version

Theorem fin23lem29 9752
Description: Lemma for fin23 9800. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem29 ran 𝑍 ran 𝑡
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem29
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4465 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 219 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 rneq 5770 . . . . . 6 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
54unieqd 4814 . . . . 5 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6 rncoss 5808 . . . . . 6 ran (𝑡𝑅) ⊆ ran 𝑡
76unissi 4809 . . . . 5 ran (𝑡𝑅) ⊆ ran 𝑡
85, 7eqsstrdi 3969 . . . 4 (𝑍 = (𝑡𝑅) → ran 𝑍 ran 𝑡)
98adantl 485 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → ran 𝑍 ran 𝑡)
10 rneq 5770 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
1110unieqd 4814 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
12 rncoss 5808 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
1312unissi 4809 . . . . . 6 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
14 unissb 4832 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡 ↔ ∀𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))𝑎 ran 𝑡)
15 abid 2780 . . . . . . . . 9 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈))
16 fvssunirn 6674 . . . . . . . . . . . . 13 (𝑡𝑧) ⊆ ran 𝑡
1716a1i 11 . . . . . . . . . . . 12 (𝑧𝑃 → (𝑡𝑧) ⊆ ran 𝑡)
1817ssdifssd 4070 . . . . . . . . . . 11 (𝑧𝑃 → ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡)
19 sseq1 3940 . . . . . . . . . . 11 (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎 ran 𝑡 ↔ ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡))
2018, 19syl5ibrcom 250 . . . . . . . . . 10 (𝑧𝑃 → (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡))
2120rexlimiv 3239 . . . . . . . . 9 (∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡)
2215, 21sylbi 220 . . . . . . . 8 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} → 𝑎 ran 𝑡)
23 eqid 2798 . . . . . . . . 9 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
2423rnmpt 5791 . . . . . . . 8 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)}
2522, 24eleq2s 2908 . . . . . . 7 (𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → 𝑎 ran 𝑡)
2614, 25mprgbir 3121 . . . . . 6 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡
2713, 26sstri 3924 . . . . 5 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran 𝑡
2811, 27eqsstrdi 3969 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 ran 𝑡)
2928adantl 485 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ran 𝑍 ran 𝑡)
309, 29jaoi 854 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → ran 𝑍 ran 𝑡)
311, 3, 30mp2b 10 1 ran 𝑍 ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497   cuni 4800   cint 4838   class class class wbr 5030  cmpt 5110  ran crn 5520  ccom 5523  suc csuc 6161  cfv 6324  crio 7092  (class class class)co 7135  cmpo 7137  ωcom 7560  seqωcseqom 8066  m cmap 8389  cen 8489  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fv 6332
This theorem is referenced by:  fin23lem31  9754
  Copyright terms: Public domain W3C validator