MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem29 Structured version   Visualization version   GIF version

Theorem fin23lem29 10294
Description: Lemma for fin23 10342. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem29 ran 𝑍 ran 𝑡
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem29
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4530 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 216 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 rneq 5900 . . . . . 6 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
54unieqd 4884 . . . . 5 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6 rncoss 5939 . . . . . 6 ran (𝑡𝑅) ⊆ ran 𝑡
76unissi 4880 . . . . 5 ran (𝑡𝑅) ⊆ ran 𝑡
85, 7eqsstrdi 3991 . . . 4 (𝑍 = (𝑡𝑅) → ran 𝑍 ran 𝑡)
98adantl 481 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → ran 𝑍 ran 𝑡)
10 rneq 5900 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
1110unieqd 4884 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
12 rncoss 5939 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
1312unissi 4880 . . . . . 6 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
14 unissb 4903 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡 ↔ ∀𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))𝑎 ran 𝑡)
15 abid 2711 . . . . . . . . 9 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈))
16 fvssunirn 6891 . . . . . . . . . . . . 13 (𝑡𝑧) ⊆ ran 𝑡
1716a1i 11 . . . . . . . . . . . 12 (𝑧𝑃 → (𝑡𝑧) ⊆ ran 𝑡)
1817ssdifssd 4110 . . . . . . . . . . 11 (𝑧𝑃 → ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡)
19 sseq1 3972 . . . . . . . . . . 11 (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎 ran 𝑡 ↔ ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡))
2018, 19syl5ibrcom 247 . . . . . . . . . 10 (𝑧𝑃 → (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡))
2120rexlimiv 3127 . . . . . . . . 9 (∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡)
2215, 21sylbi 217 . . . . . . . 8 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} → 𝑎 ran 𝑡)
23 eqid 2729 . . . . . . . . 9 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
2423rnmpt 5921 . . . . . . . 8 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)}
2522, 24eleq2s 2846 . . . . . . 7 (𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → 𝑎 ran 𝑡)
2614, 25mprgbir 3051 . . . . . 6 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡
2713, 26sstri 3956 . . . . 5 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran 𝑡
2811, 27eqsstrdi 3991 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 ran 𝑡)
2928adantl 481 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ran 𝑍 ran 𝑡)
309, 29jaoi 857 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → ran 𝑍 ran 𝑡)
311, 3, 30mp2b 10 1 ran 𝑍 ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563   cuni 4871   cint 4910   class class class wbr 5107  cmpt 5188  ran crn 5639  ccom 5642  suc csuc 6334  cfv 6511  crio 7343  (class class class)co 7387  cmpo 7389  ωcom 7842  seqωcseqom 8415  m cmap 8799  cen 8915  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fv 6519
This theorem is referenced by:  fin23lem31  10296
  Copyright terms: Public domain W3C validator