MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima Structured version   Visualization version   GIF version

Theorem xpima 5793
Description: The image by a constant function (or other Cartesian product). (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
xpima ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)

Proof of Theorem xpima
StepHypRef Expression
1 exmid 919 . . 3 ((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅)
2 df-ima 5325 . . . . . . . 8 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
3 df-res 5324 . . . . . . . . 9 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
43rneqi 5555 . . . . . . . 8 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
52, 4eqtri 2821 . . . . . . 7 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
6 inxp 5458 . . . . . . . 8 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
76rneqi 5555 . . . . . . 7 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
8 inv1 4166 . . . . . . . . 9 (𝐵 ∩ V) = 𝐵
98xpeq2i 5339 . . . . . . . 8 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
109rneqi 5555 . . . . . . 7 ran ((𝐴𝐶) × (𝐵 ∩ V)) = ran ((𝐴𝐶) × 𝐵)
115, 7, 103eqtri 2825 . . . . . 6 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × 𝐵)
12 xpeq1 5326 . . . . . . . . 9 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = (∅ × 𝐵))
13 0xp 5404 . . . . . . . . 9 (∅ × 𝐵) = ∅
1412, 13syl6eq 2849 . . . . . . . 8 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = ∅)
1514rneqd 5556 . . . . . . 7 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ran ∅)
16 rn0 5581 . . . . . . 7 ran ∅ = ∅
1715, 16syl6eq 2849 . . . . . 6 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ∅)
1811, 17syl5eq 2845 . . . . 5 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
1918ancli 545 . . . 4 ((𝐴𝐶) = ∅ → ((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅))
20 df-ne 2972 . . . . . . 7 ((𝐴𝐶) ≠ ∅ ↔ ¬ (𝐴𝐶) = ∅)
21 rnxp 5781 . . . . . . 7 ((𝐴𝐶) ≠ ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2220, 21sylbir 227 . . . . . 6 (¬ (𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2311, 22syl5eq 2845 . . . . 5 (¬ (𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
2423ancli 545 . . . 4 (¬ (𝐴𝐶) = ∅ → (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
2519, 24orim12i 933 . . 3 (((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅) → (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
261, 25ax-mp 5 . 2 (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
27 eqif 4317 . 2 (((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵) ↔ (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
2826, 27mpbir 223 1 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 385  wo 874   = wceq 1653  wne 2971  Vcvv 3385  cin 3768  c0 4115  ifcif 4277   × cxp 5310  ran crn 5313  cres 5314  cima 5315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844  df-opab 4906  df-xp 5318  df-rel 5319  df-cnv 5320  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325
This theorem is referenced by:  xpima1  5794  xpima2  5795  imadifxp  29931  bj-xpimasn  33434
  Copyright terms: Public domain W3C validator