MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpima Structured version   Visualization version   GIF version

Theorem xpima 6171
Description: Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
xpima ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)

Proof of Theorem xpima
StepHypRef Expression
1 exmid 891 . . 3 ((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅)
2 df-ima 5679 . . . . . . . 8 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ↾ 𝐶)
3 df-res 5678 . . . . . . . . 9 ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V))
43rneqi 5926 . . . . . . . 8 ran ((𝐴 × 𝐵) ↾ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
52, 4eqtri 2752 . . . . . . 7 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴 × 𝐵) ∩ (𝐶 × V))
6 inxp 5822 . . . . . . . 8 ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴𝐶) × (𝐵 ∩ V))
76rneqi 5926 . . . . . . 7 ran ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ran ((𝐴𝐶) × (𝐵 ∩ V))
8 inv1 4386 . . . . . . . . 9 (𝐵 ∩ V) = 𝐵
98xpeq2i 5693 . . . . . . . 8 ((𝐴𝐶) × (𝐵 ∩ V)) = ((𝐴𝐶) × 𝐵)
109rneqi 5926 . . . . . . 7 ran ((𝐴𝐶) × (𝐵 ∩ V)) = ran ((𝐴𝐶) × 𝐵)
115, 7, 103eqtri 2756 . . . . . 6 ((𝐴 × 𝐵) “ 𝐶) = ran ((𝐴𝐶) × 𝐵)
12 xpeq1 5680 . . . . . . . . 9 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = (∅ × 𝐵))
13 0xp 5764 . . . . . . . . 9 (∅ × 𝐵) = ∅
1412, 13eqtrdi 2780 . . . . . . . 8 ((𝐴𝐶) = ∅ → ((𝐴𝐶) × 𝐵) = ∅)
1514rneqd 5927 . . . . . . 7 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ran ∅)
16 rn0 5915 . . . . . . 7 ran ∅ = ∅
1715, 16eqtrdi 2780 . . . . . 6 ((𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = ∅)
1811, 17eqtrid 2776 . . . . 5 ((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
1918ancli 548 . . . 4 ((𝐴𝐶) = ∅ → ((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅))
20 df-ne 2933 . . . . . . 7 ((𝐴𝐶) ≠ ∅ ↔ ¬ (𝐴𝐶) = ∅)
21 rnxp 6159 . . . . . . 7 ((𝐴𝐶) ≠ ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2220, 21sylbir 234 . . . . . 6 (¬ (𝐴𝐶) = ∅ → ran ((𝐴𝐶) × 𝐵) = 𝐵)
2311, 22eqtrid 2776 . . . . 5 (¬ (𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
2423ancli 548 . . . 4 (¬ (𝐴𝐶) = ∅ → (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
2519, 24orim12i 905 . . 3 (((𝐴𝐶) = ∅ ∨ ¬ (𝐴𝐶) = ∅) → (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
261, 25ax-mp 5 . 2 (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵))
27 eqif 4561 . 2 (((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵) ↔ (((𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = ∅) ∨ (¬ (𝐴𝐶) = ∅ ∧ ((𝐴 × 𝐵) “ 𝐶) = 𝐵)))
2826, 27mpbir 230 1 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 844   = wceq 1533  wne 2932  Vcvv 3466  cin 3939  c0 4314  ifcif 4520   × cxp 5664  ran crn 5667  cres 5668  cima 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679
This theorem is referenced by:  xpima1  6172  xpima2  6173  imadifxp  32301  bj-xpimasn  36326  bj-imdirco  36561
  Copyright terms: Public domain W3C validator