Step | Hyp | Ref
| Expression |
1 | | fin23lem.e |
. . 3
⊢ 𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) |
2 | | eqif 4480 |
. . 3
⊢ (𝑍 = if(𝑃 ∈ Fin, (𝑡 ∘ 𝑅), ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)))) |
3 | 1, 2 | mpbi 233 |
. 2
⊢ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄))) |
4 | | difss 4046 |
. . . . . . . . 9
⊢ (ω
∖ 𝑃) ⊆
ω |
5 | | ominf 8890 |
. . . . . . . . . 10
⊢ ¬
ω ∈ Fin |
6 | | fin23lem.b |
. . . . . . . . . . . . . 14
⊢ 𝑃 = {𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ (𝑡‘𝑣)} |
7 | 6 | ssrab3 3995 |
. . . . . . . . . . . . 13
⊢ 𝑃 ⊆
ω |
8 | | undif 4396 |
. . . . . . . . . . . . 13
⊢ (𝑃 ⊆ ω ↔ (𝑃 ∪ (ω ∖ 𝑃)) = ω) |
9 | 7, 8 | mpbi 233 |
. . . . . . . . . . . 12
⊢ (𝑃 ∪ (ω ∖ 𝑃)) = ω |
10 | | unfi 8850 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ Fin ∧ (ω
∖ 𝑃) ∈ Fin)
→ (𝑃 ∪ (ω
∖ 𝑃)) ∈
Fin) |
11 | 9, 10 | eqeltrrid 2843 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ Fin ∧ (ω
∖ 𝑃) ∈ Fin)
→ ω ∈ Fin) |
12 | 11 | ex 416 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Fin → ((ω
∖ 𝑃) ∈ Fin
→ ω ∈ Fin)) |
13 | 5, 12 | mtoi 202 |
. . . . . . . . 9
⊢ (𝑃 ∈ Fin → ¬
(ω ∖ 𝑃) ∈
Fin) |
14 | | fin23lem.d |
. . . . . . . . . 10
⊢ 𝑅 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤)) |
15 | 14 | fin23lem22 9941 |
. . . . . . . . 9
⊢
(((ω ∖ 𝑃) ⊆ ω ∧ ¬ (ω
∖ 𝑃) ∈ Fin)
→ 𝑅:ω–1-1-onto→(ω ∖ 𝑃)) |
16 | 4, 13, 15 | sylancr 590 |
. . . . . . . 8
⊢ (𝑃 ∈ Fin → 𝑅:ω–1-1-onto→(ω ∖ 𝑃)) |
17 | 16 | adantl 485 |
. . . . . . 7
⊢ ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃)) |
18 | | f1of1 6660 |
. . . . . . 7
⊢ (𝑅:ω–1-1-onto→(ω ∖ 𝑃) → 𝑅:ω–1-1→(ω ∖ 𝑃)) |
19 | | f1ss 6621 |
. . . . . . . 8
⊢ ((𝑅:ω–1-1→(ω ∖ 𝑃) ∧ (ω ∖ 𝑃) ⊆ ω) → 𝑅:ω–1-1→ω) |
20 | 4, 19 | mpan2 691 |
. . . . . . 7
⊢ (𝑅:ω–1-1→(ω ∖ 𝑃) → 𝑅:ω–1-1→ω) |
21 | 17, 18, 20 | 3syl 18 |
. . . . . 6
⊢ ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → 𝑅:ω–1-1→ω) |
22 | | f1co 6627 |
. . . . . 6
⊢ ((𝑡:ω–1-1→V ∧ 𝑅:ω–1-1→ω) → (𝑡 ∘ 𝑅):ω–1-1→V) |
23 | 21, 22 | syldan 594 |
. . . . 5
⊢ ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → (𝑡 ∘ 𝑅):ω–1-1→V) |
24 | | f1eq1 6610 |
. . . . 5
⊢ (𝑍 = (𝑡 ∘ 𝑅) → (𝑍:ω–1-1→V ↔ (𝑡 ∘ 𝑅):ω–1-1→V)) |
25 | 23, 24 | syl5ibrcom 250 |
. . . 4
⊢ ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → (𝑍 = (𝑡 ∘ 𝑅) → 𝑍:ω–1-1→V)) |
26 | 25 | impr 458 |
. . 3
⊢ ((𝑡:ω–1-1→V ∧ (𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅))) → 𝑍:ω–1-1→V) |
27 | | fvex 6730 |
. . . . . . . . . . 11
⊢ (𝑡‘𝑧) ∈ V |
28 | 27 | difexi 5221 |
. . . . . . . . . 10
⊢ ((𝑡‘𝑧) ∖ ∩ ran
𝑈) ∈
V |
29 | 28 | rgenw 3073 |
. . . . . . . . 9
⊢
∀𝑧 ∈
𝑃 ((𝑡‘𝑧) ∖ ∩ ran
𝑈) ∈
V |
30 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) = (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) |
31 | 30 | fmpt 6927 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑃 ((𝑡‘𝑧) ∖ ∩ ran
𝑈) ∈ V ↔ (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃⟶V) |
32 | 29, 31 | mpbi 233 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃⟶V |
33 | 32 | a1i 11 |
. . . . . . 7
⊢ (𝑡:ω–1-1→V → (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃⟶V) |
34 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑎 → (𝑡‘𝑧) = (𝑡‘𝑎)) |
35 | 34 | difeq1d 4036 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑎 → ((𝑡‘𝑧) ∖ ∩ ran
𝑈) = ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) |
36 | | fvex 6730 |
. . . . . . . . . . . . 13
⊢ (𝑡‘𝑎) ∈ V |
37 | 36 | difexi 5221 |
. . . . . . . . . . . 12
⊢ ((𝑡‘𝑎) ∖ ∩ ran
𝑈) ∈
V |
38 | 35, 30, 37 | fvmpt 6818 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝑃 → ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑎) = ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) |
39 | 38 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑎) = ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) |
40 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑏 → (𝑡‘𝑧) = (𝑡‘𝑏)) |
41 | 40 | difeq1d 4036 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑏 → ((𝑡‘𝑧) ∖ ∩ ran
𝑈) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈)) |
42 | | fvex 6730 |
. . . . . . . . . . . . 13
⊢ (𝑡‘𝑏) ∈ V |
43 | 42 | difexi 5221 |
. . . . . . . . . . . 12
⊢ ((𝑡‘𝑏) ∖ ∩ ran
𝑈) ∈
V |
44 | 41, 30, 43 | fvmpt 6818 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝑃 → ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑏) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈)) |
45 | 44 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑏) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈)) |
46 | 39, 45 | eqeq12d 2753 |
. . . . . . . . 9
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑎) = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑏) ↔ ((𝑡‘𝑎) ∖ ∩ ran
𝑈) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈))) |
47 | | uneq2 4071 |
. . . . . . . . . . 11
⊢ (((𝑡‘𝑎) ∖ ∩ ran
𝑈) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈) → (∩ ran 𝑈 ∪ ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) = (∩ ran 𝑈 ∪ ((𝑡‘𝑏) ∖ ∩ ran
𝑈))) |
48 | | fveq2 6717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑎 → (𝑡‘𝑣) = (𝑡‘𝑎)) |
49 | 48 | sseq2d 3933 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑎 → (∩ ran
𝑈 ⊆ (𝑡‘𝑣) ↔ ∩ ran
𝑈 ⊆ (𝑡‘𝑎))) |
50 | 49, 6 | elrab2 3605 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝑃 ↔ (𝑎 ∈ ω ∧ ∩ ran 𝑈 ⊆ (𝑡‘𝑎))) |
51 | 50 | simprbi 500 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝑃 → ∩ ran
𝑈 ⊆ (𝑡‘𝑎)) |
52 | 51 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ∩ ran
𝑈 ⊆ (𝑡‘𝑎)) |
53 | | undif 4396 |
. . . . . . . . . . . . 13
⊢ (∩ ran 𝑈 ⊆ (𝑡‘𝑎) ↔ (∩ ran
𝑈 ∪ ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) = (𝑡‘𝑎)) |
54 | 52, 53 | sylib 221 |
. . . . . . . . . . . 12
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (∩ ran
𝑈 ∪ ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) = (𝑡‘𝑎)) |
55 | | fveq2 6717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑏 → (𝑡‘𝑣) = (𝑡‘𝑏)) |
56 | 55 | sseq2d 3933 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑏 → (∩ ran
𝑈 ⊆ (𝑡‘𝑣) ↔ ∩ ran
𝑈 ⊆ (𝑡‘𝑏))) |
57 | 56, 6 | elrab2 3605 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝑃 ↔ (𝑏 ∈ ω ∧ ∩ ran 𝑈 ⊆ (𝑡‘𝑏))) |
58 | 57 | simprbi 500 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝑃 → ∩ ran
𝑈 ⊆ (𝑡‘𝑏)) |
59 | 58 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ∩ ran
𝑈 ⊆ (𝑡‘𝑏)) |
60 | | undif 4396 |
. . . . . . . . . . . . 13
⊢ (∩ ran 𝑈 ⊆ (𝑡‘𝑏) ↔ (∩ ran
𝑈 ∪ ((𝑡‘𝑏) ∖ ∩ ran
𝑈)) = (𝑡‘𝑏)) |
61 | 59, 60 | sylib 221 |
. . . . . . . . . . . 12
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (∩ ran
𝑈 ∪ ((𝑡‘𝑏) ∖ ∩ ran
𝑈)) = (𝑡‘𝑏)) |
62 | 54, 61 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((∩ ran
𝑈 ∪ ((𝑡‘𝑎) ∖ ∩ ran
𝑈)) = (∩ ran 𝑈 ∪ ((𝑡‘𝑏) ∖ ∩ ran
𝑈)) ↔ (𝑡‘𝑎) = (𝑡‘𝑏))) |
63 | 47, 62 | syl5ib 247 |
. . . . . . . . . 10
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝑡‘𝑎) ∖ ∩ ran
𝑈) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈) → (𝑡‘𝑎) = (𝑡‘𝑏))) |
64 | 7 | sseli 3896 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝑃 → 𝑎 ∈ ω) |
65 | 7 | sseli 3896 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝑃 → 𝑏 ∈ ω) |
66 | 64, 65 | anim12i 616 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃) → (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) |
67 | | f1fveq 7074 |
. . . . . . . . . . 11
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑡‘𝑎) = (𝑡‘𝑏) ↔ 𝑎 = 𝑏)) |
68 | 66, 67 | sylan2 596 |
. . . . . . . . . 10
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((𝑡‘𝑎) = (𝑡‘𝑏) ↔ 𝑎 = 𝑏)) |
69 | 63, 68 | sylibd 242 |
. . . . . . . . 9
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝑡‘𝑎) ∖ ∩ ran
𝑈) = ((𝑡‘𝑏) ∖ ∩ ran
𝑈) → 𝑎 = 𝑏)) |
70 | 46, 69 | sylbid 243 |
. . . . . . . 8
⊢ ((𝑡:ω–1-1→V ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑎) = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑏) → 𝑎 = 𝑏)) |
71 | 70 | ralrimivva 3112 |
. . . . . . 7
⊢ (𝑡:ω–1-1→V → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑎) = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑏) → 𝑎 = 𝑏)) |
72 | | dff13 7067 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃–1-1→V ↔ ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃⟶V ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 (((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑎) = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈))‘𝑏) → 𝑎 = 𝑏))) |
73 | 33, 71, 72 | sylanbrc 586 |
. . . . . 6
⊢ (𝑡:ω–1-1→V → (𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃–1-1→V) |
74 | | fin23lem.c |
. . . . . . . . 9
⊢ 𝑄 = (𝑤 ∈ ω ↦ (℩𝑥 ∈ 𝑃 (𝑥 ∩ 𝑃) ≈ 𝑤)) |
75 | 74 | fin23lem22 9941 |
. . . . . . . 8
⊢ ((𝑃 ⊆ ω ∧ ¬
𝑃 ∈ Fin) → 𝑄:ω–1-1-onto→𝑃) |
76 | | f1of1 6660 |
. . . . . . . 8
⊢ (𝑄:ω–1-1-onto→𝑃 → 𝑄:ω–1-1→𝑃) |
77 | 75, 76 | syl 17 |
. . . . . . 7
⊢ ((𝑃 ⊆ ω ∧ ¬
𝑃 ∈ Fin) → 𝑄:ω–1-1→𝑃) |
78 | 7, 77 | mpan 690 |
. . . . . 6
⊢ (¬
𝑃 ∈ Fin → 𝑄:ω–1-1→𝑃) |
79 | | f1co 6627 |
. . . . . 6
⊢ (((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)):𝑃–1-1→V ∧ 𝑄:ω–1-1→𝑃) → ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄):ω–1-1→V) |
80 | 73, 78, 79 | syl2an 599 |
. . . . 5
⊢ ((𝑡:ω–1-1→V ∧ ¬ 𝑃 ∈ Fin) → ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄):ω–1-1→V) |
81 | | f1eq1 6610 |
. . . . 5
⊢ (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → (𝑍:ω–1-1→V ↔ ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄):ω–1-1→V)) |
82 | 80, 81 | syl5ibrcom 250 |
. . . 4
⊢ ((𝑡:ω–1-1→V ∧ ¬ 𝑃 ∈ Fin) → (𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄) → 𝑍:ω–1-1→V)) |
83 | 82 | impr 458 |
. . 3
⊢ ((𝑡:ω–1-1→V ∧ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄))) → 𝑍:ω–1-1→V) |
84 | 26, 83 | jaodan 958 |
. 2
⊢ ((𝑡:ω–1-1→V ∧ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡 ∘ 𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧 ∈ 𝑃 ↦ ((𝑡‘𝑧) ∖ ∩ ran
𝑈)) ∘ 𝑄)))) → 𝑍:ω–1-1→V) |
85 | 3, 84 | mpan2 691 |
1
⊢ (𝑡:ω–1-1→V → 𝑍:ω–1-1→V) |