| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvpcfv0 | Structured version Visualization version GIF version | ||
| Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afvpcfv0 | ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfafv2 47144 | . . 3 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
| 2 | 1 | eqeq1i 2742 | . 2 ⊢ ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V) |
| 3 | eqcom 2744 | . . . 4 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V)) | |
| 4 | eqif 4567 | . . . 4 ⊢ (V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) |
| 6 | fveqvfvv 47052 | . . . . . 6 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = ∅) | |
| 7 | 6 | eqcoms 2745 | . . . . 5 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = ∅) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) → (𝐹‘𝐴) = ∅) |
| 9 | fvfundmfvn0 6949 | . . . . . . 7 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 10 | df-dfat 47131 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 11 | 9, 10 | sylibr 234 | . . . . . 6 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐹 defAt 𝐴) |
| 12 | 11 | necon1bi 2969 | . . . . 5 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹‘𝐴) = ∅) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹‘𝐴) = ∅) |
| 14 | 8, 13 | jaoi 858 | . . 3 ⊢ (((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹‘𝐴) = ∅) |
| 15 | 5, 14 | sylbi 217 | . 2 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V → (𝐹‘𝐴) = ∅) |
| 16 | 2, 15 | sylbi 217 | 1 ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 ifcif 4525 {csn 4626 dom cdm 5685 ↾ cres 5687 Fun wfun 6555 ‘cfv 6561 defAt wdfat 47128 '''cafv 47129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-aiota 47097 df-dfat 47131 df-afv 47132 |
| This theorem is referenced by: afvfv0bi 47164 aovpcov0 47202 |
| Copyright terms: Public domain | W3C validator |