![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvpcfv0 | Structured version Visualization version GIF version |
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvpcfv0 | ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv2 46512 | . . 3 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
2 | 1 | eqeq1i 2733 | . 2 ⊢ ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V) |
3 | eqcom 2735 | . . . 4 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V)) | |
4 | eqif 4570 | . . . 4 ⊢ (V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) |
6 | fveqvfvv 46422 | . . . . . 6 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = ∅) | |
7 | 6 | eqcoms 2736 | . . . . 5 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = ∅) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) → (𝐹‘𝐴) = ∅) |
9 | fvfundmfvn0 6940 | . . . . . . 7 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 46499 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
11 | 9, 10 | sylibr 233 | . . . . . 6 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐹 defAt 𝐴) |
12 | 11 | necon1bi 2966 | . . . . 5 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹‘𝐴) = ∅) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹‘𝐴) = ∅) |
14 | 8, 13 | jaoi 856 | . . 3 ⊢ (((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹‘𝐴) = ∅) |
15 | 5, 14 | sylbi 216 | . 2 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V → (𝐹‘𝐴) = ∅) |
16 | 2, 15 | sylbi 216 | 1 ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 ifcif 4529 {csn 4629 dom cdm 5678 ↾ cres 5680 Fun wfun 6542 ‘cfv 6548 defAt wdfat 46496 '''cafv 46497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-aiota 46465 df-dfat 46499 df-afv 46500 |
This theorem is referenced by: afvfv0bi 46532 aovpcov0 46570 |
Copyright terms: Public domain | W3C validator |