Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvpcfv0 Structured version   Visualization version   GIF version

Theorem afvpcfv0 46152
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvpcfv0 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)

Proof of Theorem afvpcfv0
StepHypRef Expression
1 dfafv2 46138 . . 3 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
21eqeq1i 2735 . 2 ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V)
3 eqcom 2737 . . . 4 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹𝐴), V))
4 eqif 4568 . . . 4 (V = if(𝐹 defAt 𝐴, (𝐹𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
53, 4bitri 274 . . 3 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
6 fveqvfvv 46048 . . . . . 6 ((𝐹𝐴) = V → (𝐹𝐴) = ∅)
76eqcoms 2738 . . . . 5 (V = (𝐹𝐴) → (𝐹𝐴) = ∅)
87adantl 480 . . . 4 ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) → (𝐹𝐴) = ∅)
9 fvfundmfvn0 6933 . . . . . . 7 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 46125 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
119, 10sylibr 233 . . . . . 6 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
1211necon1bi 2967 . . . . 5 𝐹 defAt 𝐴 → (𝐹𝐴) = ∅)
1312adantr 479 . . . 4 ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹𝐴) = ∅)
148, 13jaoi 853 . . 3 (((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹𝐴) = ∅)
155, 14sylbi 216 . 2 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V → (𝐹𝐴) = ∅)
162, 15sylbi 216 1 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 843   = wceq 1539  wcel 2104  wne 2938  Vcvv 3472  c0 4321  ifcif 4527  {csn 4627  dom cdm 5675  cres 5677  Fun wfun 6536  cfv 6542   defAt wdfat 46122  '''cafv 46123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-iota 6494  df-fun 6544  df-fv 6550  df-aiota 46091  df-dfat 46125  df-afv 46126
This theorem is referenced by:  afvfv0bi  46158  aovpcov0  46196
  Copyright terms: Public domain W3C validator