Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvpcfv0 Structured version   Visualization version   GIF version

Theorem afvpcfv0 44525
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvpcfv0 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)

Proof of Theorem afvpcfv0
StepHypRef Expression
1 dfafv2 44511 . . 3 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
21eqeq1i 2743 . 2 ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V)
3 eqcom 2745 . . . 4 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹𝐴), V))
4 eqif 4497 . . . 4 (V = if(𝐹 defAt 𝐴, (𝐹𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
53, 4bitri 274 . . 3 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
6 fveqvfvv 44421 . . . . . 6 ((𝐹𝐴) = V → (𝐹𝐴) = ∅)
76eqcoms 2746 . . . . 5 (V = (𝐹𝐴) → (𝐹𝐴) = ∅)
87adantl 481 . . . 4 ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) → (𝐹𝐴) = ∅)
9 fvfundmfvn0 6794 . . . . . . 7 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 44498 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
119, 10sylibr 233 . . . . . 6 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
1211necon1bi 2971 . . . . 5 𝐹 defAt 𝐴 → (𝐹𝐴) = ∅)
1312adantr 480 . . . 4 ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹𝐴) = ∅)
148, 13jaoi 853 . . 3 (((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹𝐴) = ∅)
155, 14sylbi 216 . 2 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V → (𝐹𝐴) = ∅)
162, 15sylbi 216 1 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  ifcif 4456  {csn 4558  dom cdm 5580  cres 5582  Fun wfun 6412  cfv 6418   defAt wdfat 44495  '''cafv 44496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499
This theorem is referenced by:  afvfv0bi  44531  aovpcov0  44569
  Copyright terms: Public domain W3C validator