Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvpcfv0 Structured version   Visualization version   GIF version

Theorem afvpcfv0 43702
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvpcfv0 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)

Proof of Theorem afvpcfv0
StepHypRef Expression
1 dfafv2 43688 . . 3 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
21eqeq1i 2803 . 2 ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V)
3 eqcom 2805 . . . 4 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹𝐴), V))
4 eqif 4465 . . . 4 (V = if(𝐹 defAt 𝐴, (𝐹𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
53, 4bitri 278 . . 3 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
6 fveqvfvv 43632 . . . . . 6 ((𝐹𝐴) = V → (𝐹𝐴) = ∅)
76eqcoms 2806 . . . . 5 (V = (𝐹𝐴) → (𝐹𝐴) = ∅)
87adantl 485 . . . 4 ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) → (𝐹𝐴) = ∅)
9 fvfundmfvn0 6683 . . . . . . 7 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 43675 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
119, 10sylibr 237 . . . . . 6 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
1211necon1bi 3015 . . . . 5 𝐹 defAt 𝐴 → (𝐹𝐴) = ∅)
1312adantr 484 . . . 4 ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹𝐴) = ∅)
148, 13jaoi 854 . . 3 (((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹𝐴) = ∅)
155, 14sylbi 220 . 2 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V → (𝐹𝐴) = ∅)
162, 15sylbi 220 1 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  c0 4243  ifcif 4425  {csn 4525  dom cdm 5519  cres 5521  Fun wfun 6318  cfv 6324   defAt wdfat 43672  '''cafv 43673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-iota 6283  df-fun 6326  df-fv 6332  df-aiota 43642  df-dfat 43675  df-afv 43676
This theorem is referenced by:  afvfv0bi  43708  aovpcov0  43746
  Copyright terms: Public domain W3C validator