![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvpcfv0 | Structured version Visualization version GIF version |
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvpcfv0 | ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv2 47047 | . . 3 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
2 | 1 | eqeq1i 2745 | . 2 ⊢ ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V) |
3 | eqcom 2747 | . . . 4 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V)) | |
4 | eqif 4589 | . . . 4 ⊢ (V = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V))) |
6 | fveqvfvv 46955 | . . . . . 6 ⊢ ((𝐹‘𝐴) = V → (𝐹‘𝐴) = ∅) | |
7 | 6 | eqcoms 2748 | . . . . 5 ⊢ (V = (𝐹‘𝐴) → (𝐹‘𝐴) = ∅) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) → (𝐹‘𝐴) = ∅) |
9 | fvfundmfvn0 6963 | . . . . . . 7 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
10 | df-dfat 47034 | . . . . . . 7 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
11 | 9, 10 | sylibr 234 | . . . . . 6 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐹 defAt 𝐴) |
12 | 11 | necon1bi 2975 | . . . . 5 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹‘𝐴) = ∅) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹‘𝐴) = ∅) |
14 | 8, 13 | jaoi 856 | . . 3 ⊢ (((𝐹 defAt 𝐴 ∧ V = (𝐹‘𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹‘𝐴) = ∅) |
15 | 5, 14 | sylbi 217 | . 2 ⊢ (if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V → (𝐹‘𝐴) = ∅) |
16 | 2, 15 | sylbi 217 | 1 ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 ifcif 4548 {csn 4648 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 defAt wdfat 47031 '''cafv 47032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 |
This theorem is referenced by: afvfv0bi 47067 aovpcov0 47105 |
Copyright terms: Public domain | W3C validator |