Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvpcfv0 Structured version   Visualization version   GIF version

Theorem afvpcfv0 44638
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvpcfv0 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)

Proof of Theorem afvpcfv0
StepHypRef Expression
1 dfafv2 44624 . . 3 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
21eqeq1i 2743 . 2 ((𝐹'''𝐴) = V ↔ if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V)
3 eqcom 2745 . . . 4 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ V = if(𝐹 defAt 𝐴, (𝐹𝐴), V))
4 eqif 4500 . . . 4 (V = if(𝐹 defAt 𝐴, (𝐹𝐴), V) ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
53, 4bitri 274 . . 3 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V ↔ ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)))
6 fveqvfvv 44534 . . . . . 6 ((𝐹𝐴) = V → (𝐹𝐴) = ∅)
76eqcoms 2746 . . . . 5 (V = (𝐹𝐴) → (𝐹𝐴) = ∅)
87adantl 482 . . . 4 ((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) → (𝐹𝐴) = ∅)
9 fvfundmfvn0 6812 . . . . . . 7 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
10 df-dfat 44611 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
119, 10sylibr 233 . . . . . 6 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
1211necon1bi 2972 . . . . 5 𝐹 defAt 𝐴 → (𝐹𝐴) = ∅)
1312adantr 481 . . . 4 ((¬ 𝐹 defAt 𝐴 ∧ V = V) → (𝐹𝐴) = ∅)
148, 13jaoi 854 . . 3 (((𝐹 defAt 𝐴 ∧ V = (𝐹𝐴)) ∨ (¬ 𝐹 defAt 𝐴 ∧ V = V)) → (𝐹𝐴) = ∅)
155, 14sylbi 216 . 2 (if(𝐹 defAt 𝐴, (𝐹𝐴), V) = V → (𝐹𝐴) = ∅)
162, 15sylbi 216 1 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  c0 4256  ifcif 4459  {csn 4561  dom cdm 5589  cres 5591  Fun wfun 6427  cfv 6433   defAt wdfat 44608  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by:  afvfv0bi  44644  aovpcov0  44682
  Copyright terms: Public domain W3C validator