Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinif Structured version   Visualization version   GIF version

Theorem iocinif 31004
Description: Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))

Proof of Theorem iocinif
StepHypRef Expression
1 exmid 891 . . 3 (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)
2 xrltle 12812 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
32imp 406 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
433adantl3 1166 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 iocinioc2 31002 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
64, 5syldan 590 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
76ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)))
87ancld 550 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))))
9 simpl2 1190 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
10 simpl1 1189 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
11 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
12 xrlenlt 10971 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1312biimpar 477 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
149, 10, 11, 13syl21anc 834 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
15 3ancoma 1096 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
16 incom 4131 . . . . . . . . 9 ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶))
17 iocinioc2 31002 . . . . . . . . 9 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = (𝐴(,]𝐶))
1816, 17eqtr3id 2793 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
1915, 18sylanbr 581 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2014, 19syldan 590 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2120ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))
2221ancld 550 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
238, 22orim12d 961 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))))
241, 23mpi 20 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
25 eqif 4497 . 2 (((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)) ↔ ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
2624, 25sylibr 233 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cin 3882  ifcif 4456   class class class wbr 5070  (class class class)co 7255  *cxr 10939   < clt 10940  cle 10941  (,]cioc 13009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ioc 13013
This theorem is referenced by:  pnfneige0  31803
  Copyright terms: Public domain W3C validator