Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinif Structured version   Visualization version   GIF version

Theorem iocinif 32606
Description: Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))

Proof of Theorem iocinif
StepHypRef Expression
1 exmid 892 . . 3 (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)
2 xrltle 13160 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
32imp 405 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
433adantl3 1165 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 iocinioc2 32604 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
64, 5syldan 589 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
76ex 411 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)))
87ancld 549 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))))
9 simpl2 1189 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
10 simpl1 1188 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
11 simpr 483 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
12 xrlenlt 11309 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1312biimpar 476 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
149, 10, 11, 13syl21anc 836 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
15 3ancoma 1095 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
16 incom 4200 . . . . . . . . 9 ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶))
17 iocinioc2 32604 . . . . . . . . 9 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = (𝐴(,]𝐶))
1816, 17eqtr3id 2779 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
1915, 18sylanbr 580 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2014, 19syldan 589 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2120ex 411 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))
2221ancld 549 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
238, 22orim12d 962 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))))
241, 23mpi 20 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
25 eqif 4570 . 2 (((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)) ↔ ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
2624, 25sylibr 233 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  cin 3944  ifcif 4529   class class class wbr 5148  (class class class)co 7417  *cxr 11277   < clt 11278  cle 11279  (,]cioc 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-ioc 13361
This theorem is referenced by:  pnfneige0  33622
  Copyright terms: Public domain W3C validator