Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinif Structured version   Visualization version   GIF version

Theorem iocinif 32704
Description: Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))

Proof of Theorem iocinif
StepHypRef Expression
1 exmid 894 . . 3 (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)
2 xrltle 13109 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
32imp 406 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
433adantl3 1169 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 iocinioc2 32702 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
64, 5syldan 591 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
76ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)))
87ancld 550 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))))
9 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
10 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
11 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
12 xrlenlt 11239 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1312biimpar 477 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
149, 10, 11, 13syl21anc 837 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
15 3ancoma 1097 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
16 incom 4172 . . . . . . . . 9 ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶))
17 iocinioc2 32702 . . . . . . . . 9 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = (𝐴(,]𝐶))
1816, 17eqtr3id 2778 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
1915, 18sylanbr 582 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2014, 19syldan 591 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2120ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))
2221ancld 550 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
238, 22orim12d 966 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))))
241, 23mpi 20 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
25 eqif 4530 . 2 (((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)) ↔ ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
2624, 25sylibr 234 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cin 3913  ifcif 4488   class class class wbr 5107  (class class class)co 7387  *cxr 11207   < clt 11208  cle 11209  (,]cioc 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioc 13311
This theorem is referenced by:  pnfneige0  33941
  Copyright terms: Public domain W3C validator