Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinif Structured version   Visualization version   GIF version

Theorem iocinif 31987
Description: Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))

Proof of Theorem iocinif
StepHypRef Expression
1 exmid 893 . . 3 (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)
2 xrltle 13127 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
32imp 407 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
433adantl3 1168 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 iocinioc2 31985 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
64, 5syldan 591 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
76ex 413 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)))
87ancld 551 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))))
9 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
10 simpl1 1191 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
11 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
12 xrlenlt 11278 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1312biimpar 478 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
149, 10, 11, 13syl21anc 836 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
15 3ancoma 1098 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
16 incom 4201 . . . . . . . . 9 ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶))
17 iocinioc2 31985 . . . . . . . . 9 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = (𝐴(,]𝐶))
1816, 17eqtr3id 2786 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
1915, 18sylanbr 582 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2014, 19syldan 591 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2120ex 413 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))
2221ancld 551 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
238, 22orim12d 963 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))))
241, 23mpi 20 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
25 eqif 4569 . 2 (((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)) ↔ ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
2624, 25sylibr 233 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cin 3947  ifcif 4528   class class class wbr 5148  (class class class)co 7408  *cxr 11246   < clt 11247  cle 11248  (,]cioc 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ioc 13328
This theorem is referenced by:  pnfneige0  32926
  Copyright terms: Public domain W3C validator