Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocinif Structured version   Visualization version   GIF version

Theorem iocinif 30504
Description: Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017.)
Assertion
Ref Expression
iocinif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))

Proof of Theorem iocinif
StepHypRef Expression
1 exmid 891 . . 3 (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)
2 xrltle 12543 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
32imp 409 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
433adantl3 1164 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
5 iocinioc2 30502 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
64, 5syldan 593 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))
76ex 415 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)))
87ancld 553 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶))))
9 simpl2 1188 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
10 simpl1 1187 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
11 simpr 487 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
12 xrlenlt 10706 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
1312biimpar 480 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
149, 10, 11, 13syl21anc 835 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
15 3ancoma 1094 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ↔ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
16 incom 4178 . . . . . . . . 9 ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶))
17 iocinioc2 30502 . . . . . . . . 9 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐵(,]𝐶) ∩ (𝐴(,]𝐶)) = (𝐴(,]𝐶))
1816, 17syl5eqr 2870 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
1915, 18sylanbr 584 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐵𝐴) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2014, 19syldan 593 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))
2120ex 415 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))
2221ancld 553 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ 𝐴 < 𝐵 → (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
238, 22orim12d 961 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶)))))
241, 23mpi 20 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
25 eqif 4507 . 2 (((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)) ↔ ((𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐵(,]𝐶)) ∨ (¬ 𝐴 < 𝐵 ∧ ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = (𝐴(,]𝐶))))
2624, 25sylibr 236 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴(,]𝐶) ∩ (𝐵(,]𝐶)) = if(𝐴 < 𝐵, (𝐵(,]𝐶), (𝐴(,]𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cin 3935  ifcif 4467   class class class wbr 5066  (class class class)co 7156  *cxr 10674   < clt 10675  cle 10676  (,]cioc 12740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-ioc 12744
This theorem is referenced by:  pnfneige0  31194
  Copyright terms: Public domain W3C validator