MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  args Structured version   Visualization version   GIF version

Theorem args 6045
Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6825 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem args
StepHypRef Expression
1 imasng 6037 . . . . . 6 (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
21elv 3442 . . . . 5 (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦}
32eqeq1i 2738 . . . 4 ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦𝑥𝐹𝑦} = {𝑦})
43exbii 1849 . . 3 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
5 euabsn 4678 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
64, 5bitr4i 278 . 2 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
76abbii 2800 1 {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1780  ∃!weu 2565  {cab 2711  Vcvv 3437  {csn 4575   class class class wbr 5093  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator