Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  args Structured version   Visualization version   GIF version

Theorem args 5735
 Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6431 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
Distinct variable groups:   𝑦,𝐹   𝑥,𝑦
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem args
StepHypRef Expression
1 vex 3418 . . . . . 6 𝑥 ∈ V
2 imasng 5729 . . . . . 6 (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦})
31, 2ax-mp 5 . . . . 5 (𝐹 “ {𝑥}) = {𝑦𝑥𝐹𝑦}
43eqeq1i 2831 . . . 4 ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦𝑥𝐹𝑦} = {𝑦})
54exbii 1949 . . 3 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
6 euabsn 4480 . . 3 (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦𝑥𝐹𝑦} = {𝑦})
75, 6bitr4i 270 . 2 (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
87abbii 2945 1 {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1658  ∃wex 1880   ∈ wcel 2166  ∃!weu 2640  {cab 2812  Vcvv 3415  {csn 4398   class class class wbr 4874   “ cima 5346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4875  df-opab 4937  df-xp 5349  df-cnv 5351  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator