![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > args | Structured version Visualization version GIF version |
Description: Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6889 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.) |
Ref | Expression |
---|---|
args | ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasng 6083 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦}) | |
2 | 1 | elv 3481 | . . . . 5 ⊢ (𝐹 “ {𝑥}) = {𝑦 ∣ 𝑥𝐹𝑦} |
3 | 2 | eqeq1i 2738 | . . . 4 ⊢ ((𝐹 “ {𝑥}) = {𝑦} ↔ {𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
4 | 3 | exbii 1851 | . . 3 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) |
5 | euabsn 4731 | . . 3 ⊢ (∃!𝑦 𝑥𝐹𝑦 ↔ ∃𝑦{𝑦 ∣ 𝑥𝐹𝑦} = {𝑦}) | |
6 | 4, 5 | bitr4i 278 | . 2 ⊢ (∃𝑦(𝐹 “ {𝑥}) = {𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦) |
7 | 6 | abbii 2803 | 1 ⊢ {𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∃wex 1782 ∃!weu 2563 {cab 2710 Vcvv 3475 {csn 4629 class class class wbr 5149 “ cima 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |