| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabiotadm | Structured version Visualization version GIF version | ||
| Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
| Ref | Expression |
|---|---|
| opabiotadm | ⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab 5879 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} = {𝑥 ∣ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}} | |
| 2 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
| 3 | 2 | dmeqi 5868 | . 2 ⊢ dom 𝐹 = dom {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
| 4 | euabsn 4690 | . . 3 ⊢ (∃!𝑦𝜑 ↔ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
| 5 | 4 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃!𝑦𝜑} = {𝑥 ∣ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}} |
| 6 | 1, 3, 5 | 3eqtr4i 2762 | 1 ⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∃!weu 2561 {cab 2707 {csn 4589 {copab 5169 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-dm 5648 |
| This theorem is referenced by: opabiota 6943 |
| Copyright terms: Public domain | W3C validator |