| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabiotadm | Structured version Visualization version GIF version | ||
| Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
| Ref | Expression |
|---|---|
| opabiotadm | ⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab 5850 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} = {𝑥 ∣ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}} | |
| 2 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
| 3 | 2 | dmeqi 5839 | . 2 ⊢ dom 𝐹 = dom {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
| 4 | euabsn 4674 | . . 3 ⊢ (∃!𝑦𝜑 ↔ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
| 5 | 4 | abbii 2798 | . 2 ⊢ {𝑥 ∣ ∃!𝑦𝜑} = {𝑥 ∣ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}} |
| 6 | 1, 3, 5 | 3eqtr4i 2764 | 1 ⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∃!weu 2563 {cab 2709 {csn 4571 {copab 5148 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-dm 5621 |
| This theorem is referenced by: opabiota 6899 |
| Copyright terms: Public domain | W3C validator |