MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotadm Structured version   Visualization version   GIF version

Theorem opabiotadm 6942
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotadm dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotadm
StepHypRef Expression
1 dmopab 5879 . 2 dom {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} = {𝑥 ∣ ∃𝑦{𝑦𝜑} = {𝑦}}
2 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
32dmeqi 5868 . 2 dom 𝐹 = dom {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
4 euabsn 4690 . . 3 (∃!𝑦𝜑 ↔ ∃𝑦{𝑦𝜑} = {𝑦})
54abbii 2796 . 2 {𝑥 ∣ ∃!𝑦𝜑} = {𝑥 ∣ ∃𝑦{𝑦𝜑} = {𝑦}}
61, 3, 53eqtr4i 2762 1 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  ∃!weu 2561  {cab 2707  {csn 4589  {copab 5169  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-dm 5648
This theorem is referenced by:  opabiota  6943
  Copyright terms: Public domain W3C validator