![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabiotadm | Structured version Visualization version GIF version |
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.) |
Ref | Expression |
---|---|
opabiota.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
Ref | Expression |
---|---|
opabiotadm | ⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab 5940 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} = {𝑥 ∣ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}} | |
2 | opabiota.1 | . . 3 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} | |
3 | 2 | dmeqi 5929 | . 2 ⊢ dom 𝐹 = dom {〈𝑥, 𝑦〉 ∣ {𝑦 ∣ 𝜑} = {𝑦}} |
4 | euabsn 4751 | . . 3 ⊢ (∃!𝑦𝜑 ↔ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}) | |
5 | 4 | abbii 2812 | . 2 ⊢ {𝑥 ∣ ∃!𝑦𝜑} = {𝑥 ∣ ∃𝑦{𝑦 ∣ 𝜑} = {𝑦}} |
6 | 1, 3, 5 | 3eqtr4i 2778 | 1 ⊢ dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∃!weu 2571 {cab 2717 {csn 4648 {copab 5228 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-dm 5710 |
This theorem is referenced by: opabiota 7004 |
Copyright terms: Public domain | W3C validator |