MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabiotadm Structured version   Visualization version   GIF version

Theorem opabiotadm 6748
Description: Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
Hypothesis
Ref Expression
opabiota.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
Assertion
Ref Expression
opabiotadm dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabiotadm
StepHypRef Expression
1 dmopab 5787 . 2 dom {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}} = {𝑥 ∣ ∃𝑦{𝑦𝜑} = {𝑦}}
2 opabiota.1 . . 3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
32dmeqi 5776 . 2 dom 𝐹 = dom {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}
4 euabsn 4665 . . 3 (∃!𝑦𝜑 ↔ ∃𝑦{𝑦𝜑} = {𝑦})
54abbii 2889 . 2 {𝑥 ∣ ∃!𝑦𝜑} = {𝑥 ∣ ∃𝑦{𝑦𝜑} = {𝑦}}
61, 3, 53eqtr4i 2857 1 dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wex 1779  ∃!weu 2652  {cab 2802  {csn 4570  {copab 5131  dom cdm 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-dm 5568
This theorem is referenced by:  opabiota  6749
  Copyright terms: Public domain W3C validator