Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecinn0 | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.) |
Ref | Expression |
---|---|
ecinn0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecin0 36484 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) | |
2 | 1 | necon3abid 2980 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
3 | notnotb 315 | . . . . 5 ⊢ (𝐵𝑅𝑥 ↔ ¬ ¬ 𝐵𝑅𝑥) | |
4 | 3 | anbi2i 623 | . . . 4 ⊢ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ (𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥)) |
5 | 4 | exbii 1850 | . . 3 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥)) |
6 | exanali 1862 | . . 3 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)) | |
7 | 5, 6 | bitri 274 | . 2 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)) |
8 | 2, 7 | bitr4di 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: brcoss3 36556 brcosscnv2 36591 |
Copyright terms: Public domain | W3C validator |