Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecinn0 Structured version   Visualization version   GIF version

Theorem ecinn0 35164
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.)
Assertion
Ref Expression
ecinn0 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ecinn0
StepHypRef Expression
1 ecin0 35163 . . 3 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
21necon3abid 3020 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
3 notnotb 316 . . . . 5 (𝐵𝑅𝑥 ↔ ¬ ¬ 𝐵𝑅𝑥)
43anbi2i 622 . . . 4 ((𝐴𝑅𝑥𝐵𝑅𝑥) ↔ (𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥))
54exbii 1829 . . 3 (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥))
6 exanali 1840 . . 3 (∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))
75, 6bitri 276 . 2 (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))
82, 7syl6bbr 290 1 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1520  wex 1761  wcel 2081  wne 2984  cin 3862  c0 4215   class class class wbr 4966  [cec 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pr 5226
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3710  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-sn 4477  df-pr 4479  df-op 4483  df-br 4967  df-opab 5029  df-xp 5454  df-cnv 5456  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-ec 8146
This theorem is referenced by:  brcoss3  35234  brcosscnv2  35269
  Copyright terms: Public domain W3C validator