![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecinn0 | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.) |
Ref | Expression |
---|---|
ecinn0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecin0 35163 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) | |
2 | 1 | necon3abid 3020 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
3 | notnotb 316 | . . . . 5 ⊢ (𝐵𝑅𝑥 ↔ ¬ ¬ 𝐵𝑅𝑥) | |
4 | 3 | anbi2i 622 | . . . 4 ⊢ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ (𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥)) |
5 | 4 | exbii 1829 | . . 3 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥)) |
6 | exanali 1840 | . . 3 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)) | |
7 | 5, 6 | bitri 276 | . 2 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)) |
8 | 2, 7 | syl6bbr 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 ∃wex 1761 ∈ wcel 2081 ≠ wne 2984 ∩ cin 3862 ∅c0 4215 class class class wbr 4966 [cec 8142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pr 5226 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3710 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-nul 4216 df-if 4386 df-sn 4477 df-pr 4479 df-op 4483 df-br 4967 df-opab 5029 df-xp 5454 df-cnv 5456 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-ec 8146 |
This theorem is referenced by: brcoss3 35234 brcosscnv2 35269 |
Copyright terms: Public domain | W3C validator |